A Systems View of Test Standardization

John W. Sheppard
ARINC
2551 Riva Road
Annapolis, MD 21401
(410) 266-2099
sheppard@arinc.com

Abstract-In test engineering, “system test” s
frequently considered to be testing at a particular level in
a product hierarchy. With increasing complexity in
systems, testing at lower levels is now faced with problems
previously encountered at the system level. For this
reason, it is becoming increasingly important to apply a
system perspective to testing. In this paper, we present a
model of a “system” to be applied to test engineering
which abstracts test information above the physical level
of the product. We then describe how this model supports
two standardization efforts within the IEEE-P1226 and
P1232.

I. INTRODUCTION

ncreasing complexity in modern electronics is forcing

design and test engineers to consider even “low-level”
components as systems. A system can be defined as “any
aggregation of related elements that together form an entity
of sufficient complexity for which it is impractical to treat all
of the elements at the lowest level of detail [1].” Universities
have begun to provide graduate-level curricula and courses in
“systems engineering” to address the need for analysis using
the systems view.

In the domain of test engineering, “system test” has been
regarded as a “level” of test within the hierarchy of
equipment rather than as a “view” of the test process. System
test was applied to aircraft, armored vehicles, satellites, and
missiles. Testing of radar subsystems, guidance subsystems,
environmental control subsystems, etc. has been considered
“assembly level” or “replaceable-unit level” even though
they may be considered systems in their own right. In fact,
down to the chip level, we may find sufficient complexity
that we need to consider these “components” to be systems.

Much of the difficulty in defining system test has been in
developing a definition of the word “system.” In this paper,
we will propose a definition of system test that approaches
the definition of “system” from a functional view rather than
a physical view. This definition will be based on a model
developed of testing in which the subject of testing is defined
by its context and test itself is defined by abstract
information. We will discuss this model in detail and provide

William R. Simpson
IDA
1801 N. Beauregard St.
Alexandria, VA 22311
(703) 845-6637
rsimpson@ida.org

several examples illustrating multiple test problems
represented as “system test” problems. Ultimately, we will
argue that the “system” view of testing is applicable to all
types of testing problems and, in fact, provides a medium for
consistent testing that can efficiently and effectively bridge
the gap across multiple levels of test.

In addition to defining the system view of testing, we
will consider this definition in the context of several
emerging test standards. The Department of Defense is
actively pursuing using commercial standards in place of
military standards and incorporating commercial solutions to
its procurement needs. Two families of standards—A Broad
Based Environment for Test (ABBET™) [2] and Artificial
Intelligence and Expert System Tie to Automatic Test
Equipment (AI-ESTATE) [3]-purport to apply a systems
perspective to their families. Both families plan to enable
cost-effective test solutions for military test by drawing from
successful test engineering in the commercial market place.
Both families of standards can benefit from the consistent
view of system test as defined here, and we will describe how
this view fits within the vision of these two standards
initiatives.

II. THE COMPLEXITY OF TEST AND DIAGNOSIS

In the broadest possible scope, testing is performed for
various activities, including performance evaluation, mechani-
cal/electrical integrity, periodic and unscheduled maintenance,
process evaluation, operational readiness, and specification and
compliance. In short, the underlying purpose of any testing
process is information discovery. In this paper, we limited our
view of testing to electronics test for design verification,
manufacturing test, and maintenance test. In-our concept, a test
is a signal, indication, or other observable event that provides
information about the system being tested [1]. The observation
may be caused to happen (as with a stimulus/response test) or
be part of a normal operational environment (as in the case of a
symptom). The only purpose a test serves is to provide an
outcome that can be used to infer something about the system
being tested. As such, testing is driven by separate reasoning
processes. The resultant reasoning on test results is context
sensitive.

384

0-7803-3379-9/96 $5.00 © 1996 1IEEE

is applied to

corrective action

determines

test subject

communicates
through

interface

applies in

oomay 3

observation

diagnosis

corrects

indi exonerates
alters indicts

captures

interprets
produces

outcome

draws inferences from

identifies
maps to

is associated with

Figure 1. Model of System for Test.

The process of testing systems (regardless of the product
hierarchy or the test objective) is highly complex. In [1], we
presented several complexity results for the general problem of
optimal fault diagnosis and for isolating multiple faults.
Specifically, we proved that the number of potential test

sequences that can be generated is O(2'¢!) for binary tests
where ¢ is the number of tests available. Further, the number of
possible decision trees (i.e., fault trees) that can be generated is

also O(2't!). This demonstrates that it is not possible to
enumerate all possible diagnostic strategies and “pick the best
one.” Further, it has been proven that constructing an optimal
binary decision tree is NP-complete [4].

Many Dbelieve that incorporating domain-specific
information will reduce the complexity of the problem by
focusing on characteristics unique to the domain.
Unfortunately, this actually tends to increase complexity.
Domain specific information can be used in one of two ways:
either through identifying constraints and reasoning with those
constraints or through capitalizing on specific information
provided by technology-specific testing (e.g., IDDQ or digital
fault dictionaries). For the case where one is reasoning about
constraints, the general task of solving constraint satisfaction
problems is also NP-complete [5].

For domain-specific testing, obviously the actual tests
must be tied to the domain of the system. However, one
frequently finds that attempting to use one specific approach to
testing can be very expensive. The digital fault dictionary
provides an excellent case in point. The cost of generating

comprehensive digital fault dictionaries for detection is very
expensive [6]. In fact, this has led to research attempting to
reduce the number of vectors in the dictionary and simplify the
matching process in the dictionary. When using fault
dictionaries for isolation, the problem becomes significantly
worse since now the need arises for tracking state changes,
especially after a fault is detected. It should be clear that an
approach for managing this level of complexity is required.

III. A NEW MODEL OF SYSTEM TEST

To begin to address the issue of complexity described in
the previous section, we define a new model for a system
within the context of test and diagnosis (Figure 1). Our
definition of system [1] supports a hierarchical view where a
test strategy is applied within a level of the hierarchy. The
objective of the model is to provide a consistent framework
for testing across hierarchical levels to manage the
complexity of testing within a particular hierarchical level.
This model is based on an earlier model developed for the
upper layers of the ABBET architecture [7].

In interpreting this model, note that we have not applied
any of the standard object [8][9], activity [10], or information
modeling [11] techniques commonly in use today. To read
this model, each of the blocks represent entities or objects
within the test environment. The relationships between the
entities provide “processes” or “constraints” that one entity
performs or imposes on another. In some cases, the processes
are highly dynamic (e.g., diagnostics selects

385

test), and in others they simply define a relationship (e.g.,
knowledge applies_in context). In all cases, the
entity to entity relationships can be read as a simple sentence
(subject verb object). In fact, we can now read the model
much like a story or narrative description of test.

The primary focus of the model is test subject
which we can consider to be the “system under test.” Thus, to
define a system view of test that is applicable in all test
environments, we focus on the test subject and define
the test_subject in relation to the other entities of the
test environment. In all cases, these entities should be
sufficiently concrete to be identifiable by a test engineer yet
sufficiently abstract to be applicable in multiple contexts.

In general, we test to draw conclusions about some
test subject. This test subject is defined by the
context in which we are testing, meaning that elements
such as the purpose of test, the operating conditions under
which testing occurs, the accessibility of parts of the system,
determine the types of tests available to us and the types of
conclusions we can infer from testing. Thus the portion of the
system that is actually being evaluated and the way in which
it is being evaluated is defined by these elements of context
and becomes the test subject.

What we know about a test_subject is derived
from observing characteristics of the system in context.
Reading the model, we see that a test interprets
observation which captures attributes which in
turn characterize test_subject. This illustrates
that testing is an inherently uncertain process since it is
limited to interpreting the way specific characteristics of the
system are manifest. There is no way to directly observe the
presence or absence of all faults that may exist in a system;
therefore, it is possible that error can be introduced into the
process. The error may result from having too little
information within an observation to draw a reliable
conclusion, or we may be focusing on an inappropriate set of
attributes.

The specific attributes of the system may be
dynamic (behavioral) or static (physical). This is a change

from the model presented in Sheppard and Simpson [7] .

where the focus of testing was on behavior. It was argued that
static properties could be cast in terms of system behavior,
but for some tests this seems to be unnatural. The natural way
of representing the observable characteristics of a system is
by considering a “supertype” of the dynamic and static
properties. This is captured in the entity, attribute. Of
course, if a system is not functioning according to some set of
requirements, then we say the test subject
may exhibit anomaly. Clearly, whether or not an
anomaly is in fact exhibit depends on all of the facts that
ultimately define the context for testing. Further, these
observable anomalies alter attributes of the

nominal system. The purpose of testing (in this context) is to
determine whether or not a system is nominal, and if not, to
determine what the anomalies are. Further, when the
anomaly is identified, we want to determine the proper
corrective_ action to restore the system to its nominal
state (thus corrective action corrects
anomaly).

Testing does not take place in a vacuum. Generally,
test uses resource to make its observations. Further,
the resource uses interface of the
test_subject (thus test_subject
communicates_through interface to the
resource) to make its observation. For this reason, we say
that an observation occurs_at interface. Note
that the notion of an interface is very broad but still cast
in the terminology of systems (as distinct from the port—cell-
net model being used by EDIF [12]). As such, an
interface may correspond to a physical mating between
the test_subject and the resource, or it may
correspond to a functional or logical mating (e.g., in
software).

The final element of the model that we need to discuss
drives the test process. As we said before, the purpose of
testing is information discovery and drawing conclusions
about the test_subject. The process of drawing
conclusions from test information is referred to as
“diagnostics.”. Thus we consider the diagnostic process as
centering on an entity called diagnostics. Here
diagnostics uses knowledge to
draw_inferences_ from outcome to then
identify diagnosis. As one might expected,
selects test which in tum
produces outcome. Then outcome either indicts or
exonerates anomaly. Once the diagnosis has been
determined, one can take appropriate action since
diagnosis maps_to anomaly and
is_associated with corrective action. The
whole process of performing a diagnosis is fully dependent
on what diagnostics knows about the test subject.
This is captured by knowledge which models
test_subject and applies_in context.

diagnostics

IV. MAPPING PRODUCTS INTO SYSTEMS

The primary advantage of providing an abstract model
for test and diagnosis and associating that model with a
“system view” of the test subject is that it provides a means
for abstracting details out of the test problem until needed.
This in turn permits the structure of the test problem to be
optimized, thus managing the complexities inherent in
manipulating large, heterogeneous systems. For this to work,

386

we need to be able to see how to map real systems into the
model. This in turn enables us to identify the critical elements
of the test problem and to optimize the solution. In this
section, we map two “systems” into the model to illustrate.

The first system we will consider would not be
considered by many to be a system since it is very simple.
Consider an integrated circuit contain four D flip-flops (e.g.,
an SN5475). The test_subject would correspond to the
this IC, and we would identify the attributes of the IC as
the nominal behavior of the chip (as we might find in the
truth table for each of the flip-flops). In addition, we might
add characteristics such as voltage, temperature range,
orientation of the pins, size and color of the packaging, etc.
The actual set of attributes of interest to us would depend on
the context under which we are testing. If we only care
about failure modes associated with the pins and the logic of
the chip, we may restrict our focus to the logic values
observed at the pins. If we are interested in manufacturing
issues, we might include characteristics of packaging.

For the sake of discussion, we will limit the context to be
assessing the logical performance of the chip at the pins.
Thus we can restrict our attention to the logic specification
and to the set of stuck-at faults. This set of faults would
define the anomalies that might be exhibited by the chip.
If we use a digital tester with a fault dictionary, then
knowledge would correspond to the fault dictionary itself
and diagnostics would include the test controller and the
matching algorithm in the dictionary. The tests would be
defined by the vectors in the fault dictionary (actually, each
of the output values for each vector would correspond to a
different test). Whenever a vector is processed, the
associated tests would either pass or fail (thus we know the
outcomes), and these outcomes would point to the possible
anomalies of the chip. Possible corrective actions in
the event the chip is faulty include replacing the chip or re-
setting (or re-soldering) the chip in the socket.

For the second system, we will consider a case at the
other end of the spectrum. Consider a network of satellites in
orbit that provide the backbone for a communications
network. One test context of interest would be to verify
that all of the defined links in the network are present
(including satellite-to-satellite cross links and ground links).
Thus we have defined our test_subject to be the
connectivity of the network. Attributes of this system
might include transmission of messages between two points
in the network in a reasonable period of time, and we could
define tests to be a set of messages that traverse the
network in some predictable way. The anomalies would
correspond to links being down. (This is actually analogous
to a kind of stuck-at fault in the digital model.)

For this system, the knowledge required for diagnosis
and the associated diagnostics might be significantly

different from the fault dictionary of the first system. For
example, it is possible we would be able to rely on a set of
SNMP (simple network management protocol) traps to
signify when a link drops in the network (assuming the
endpoints of the links are treated as SNMP managed objects).
In this case, the knowledge would correspond to the MIB
(managed-object information base), and the diagnostics
would be a passive network monitoring system or alarm
correlator.

V. APPLYING THE MODEL TO TEST STANDARDS

The advantage to an abstract model such as the one we
describe in this paper is that we might be able to develop an
approach to test and diagnosis that is consistent with all
systems mapped onto the model. Our previous two examples,
in fact, outline very different approaches to test and
diagnosis; however, this is not necessary. If we can
standardize on 1) the process for controlling test resources, 2)
the process of making a diagnosis, and 3) the knowledge used
by these two controllers, then we can devise a generic
approach to test and diagnosis that is independent of the
underlying technology.

This is exactly the intent of the ABBET and AI-ESTATE
standardization efforts. ABBET is attempting to define a set
of service specifications for managing test resources in a test
environment, and as the name implies, the intent is for this
test environment to be “broad based.” Recently, AI-ESTATE
modified the meaning of the acronym to emphasize broad
applicability as well. The new definition of AI-ESTATE is
“Artificial Intelligence Exchange and Service Tie to All Test
Environments.” AI-ESTATE is concerned with defining the
knowledge and services to be provided for a diagnostic
reasoner in a test environment.

As described in [7], the model of the ABBET upper
layers is very close to the model presented in this paper.
Currently, ABBET is structured around a “test foundation
framework™ and a set of application frameworks specific to
test. One view of the ABBET architecture is presented as a
set of five layers: the product description layer, the test
strategy/requirements layer, the test procedure layer, the test
resource layer, and the instrument layer. Accordingly, the
following projects have been authorized by the IEEE for
developing ABBET standards:

P1226—ABBET overview and architecture
P1226.3—Resource management
P1226.4—Software interface for instrument drivers
P1226.5—Software interface for instrument buses
P1226.6—Guide to the understanding of ABBET
P1226.7—Software interface for product data
P1226.8—Software interface for test strategies
P1226.10—Software interface for runtime services

387

Current work performed in these projects are devoted to
standardizing the interfaces and services which focus on the
resources used for automatic testing. The current set of
standards deal almost exclusively with testing on Automatic
Test Systems (ATS), but the ultimate intent is to apply the
standards in a much broader context. The model described
above could be used to help focus this initiative.

The AI-ESTATE initiative is much more tightly focused
in terms of the systems view. The AI-ESTATE standard
P1232 is being developed to standardize on the interfaces
between test systems and artificial intelligence based systems.
In addition, AI-ESTATE is including standard representations
for several types of knowledge bases and databases. Currently
[13], the standard specifies representations for fault tree models
(FTMs) and enhanced diagnostic inference models (EDIMs).

Currently, AI-ESTATE is being developed using a
cooperative processing model. Under this model, all processes
communicate across a communications pathway or bus and
access other parts of the system through a set of services. Thus
each functional block of an AI-ESTATE system consists of an
object in the sense of object-oriented analysis. Specifically,
each functional block is defined by the operations that can be
performed on or by that block. The attributes of the block are
specified in a class lattice in order to maximize reuse of
components. If one functional block needs to interact with
another, it does so by using the services provided by that block.
Using this architectural concept, the objects communicating in
an AI-ESTATE systems include the test system, the reasoner,
the human presentation system, a maintenance data collection
system, the unit under test, and the operating system. Any data
that is used by the objects on the pathway will be specified in
some standard representation. Even though we currently have
specifications for only the FTM and the EDIM, AI-ESTATE is
working on a specification for a constraint model [14]. Al-
ESTATE anticipates defining or referencing standards for other
data and knowledge bases.

Recently, considerable progress has been made in defining
P1232.2 [15] which is the service specification for Al-
ESTATE. This document provides a definition of the services
to be provided by a diagnostic reasoner according to the
cooperative processing model described above. Details
describing the application of this standard in a test environment
are discussed in [16].

V. CONCLUSION

The rising complexity of systems is forcing test
engineers to apply novel approaches test and diagnosis.
Engineers have recognized that complexity is continuing to
rise and no clever algorithm or process will eliminate that
complexity. Consequently, approaches are required to
manage the complexity and control the impact of the rate of
growth on current or new test processes. Perhaps the best
way to approach a difficult problem is to cast that problem in

a new light. By attempting to represent the requirements and
constraints of a problem from a new perspective, one can
gain added insight into the source of complexity. This in turn
can shed light on how one might best approach the problem.

The purpose of this paper has been to provide a new
perspective of the test problem to facilitate developing a
structure for managing the complexities associated with
efficient and effective test and diagnosis. The approach
involved modeling the test problem from an abstract point-
of-view in which the context defines the subject of testing
and the requirements to be achieved by testing. The approach
abstracts low-level details of the problem out of the model
until a structure is in place for testing, at which time these
details can be reapplied to the problem.

The focus of the paper has been on applying this model
in the context of standards for test and diagnosis. The
primary purpose of standardization is to facilitate the
development of tools and systems that are predictable and
widely applicable, thereby managing the complexity
associated with their target problems. By defining the new
model fot system test and mapping this model into the
ABBET and AI-ESTATE test standards, we have provided
direction for developing and applying these standards in such
a way that the stated objectives of standardization can be
achieved.

REFERENCES

[1] Simpson, W. R. and J. W. Sheppard. 1994. System Test and Diagnosis,
Norwell, Massachusetts: Kluwer Academic Publishers.

[2] IEEE Std 1226-1993. Trial Use Standard for A Broad Based
Environment for Test (ABBET): Overview and Architecture,
Piscataway, New Jersey: IEEE Standards Press.

[3] IEEE Std 1232-1995. Trial Use Standard for Artificial Intelligence
and Expert System Tie to Automatic Test Equipment (AI-ESTATE):
Overview and Architecture, Piscataway, New Jersey: IEEE Standards
Press.

[4] Hyafil, L. and R. Rivest. 1976. “Constructing Optimal Binary
Decision Trees is NP-Complete,” Information Processing Letters, Vol.
5, No. 1, May, pp. 15-17.

[5] Dechter, R. 1992. “Constraint Networks: A Survey,” Encyclopedia of
Artificial Intelligence, Stuart C. Shapiro (ed.), New York: Wiley.

[6] Sheppard, J. W.. and W. R. Simpson. 1996. “Improving the Accuracy
of Diagnostics Using Fault Dictionaries,” Proceedings of the 14th
IEEE VLSI Test Symposium, Piscataway, New Jersey: IEEE Press.

[7] Sheppard, J. W., and Simpson, W. R. 1995. “A View of the ABBET™
Upper Layers,” AUTOTESTCON ‘95 Proceedings, Piscataway, New
Jersey: IEEE, pp. 51-56.

[8] Booch, G. 1994. Object-Oriented Analysis And Design With
Applications, 2nd Ed. Benjamin Cummings.

[9] Schlaer, S., and Mellor, S. L. 1992. Object Lifecycles: Modeling the
World in States, Englewood Cliffs, New Jersey: Yourdon Press.

[10] FIPS-183. 1993. Integrated Definition for Function Modeling
(IDEF0). National Institute of Standards and Technology.

[11] ISO 10303-11. 1992. Industrial Automatic Systems—Product Data
Representation and Exchange—Part 11: EXPRESS Language
Reference Manual, International Organization on Standardization.

[12] ANSVEIA Std 618. 1994. EDIF 3 (0 0, American National Standards
Institute.

388

[13} IEEE P1232.1. 1996. Trial Use Standard for Artificial Intelligence
and Expert System Tie to Automatic Test Equipment (AI-ESTATE):
Data and Knowledge Specification, Draft 4.7.

[14] Sheppard, J. W. and J. Astrand. 1995. “Modeling Diagnostic
Constraints with AI-ESTATE,” Proceedings of AUTOTESTCON ‘95,
Piscataway, New Jersey: IEEE Press.

389

{15] IEEE P1232.2. 1996. Trial Use Standard for Artificial Intelligence
and Expert System Tie to Automatic Test Equipment (AI-ESTATE):
Service Specification, Draft 2.0.

[16] Maguire, R., and J. W. Sheppard. 1996. “Application Scenarios for
AI-ESTATE Services,” Proceedings of AUTOTESTCON ‘96,
Piscataway, New Jersey: IEEE Press.

