An Experiment in Encapsulation in System Diagnosis

Don Gartner
McDonnell Douglas Aerospace
PO Box 516
St. Louis, MO 63166
(314) 234-2997
gartner@iddsrv01.mdc.com

Abstract-The maintenance of fighter aircraft has
become increasingly problematic as evidenced by the
numerous studies and research and development projects
(both contracted and independent) that have addressed the
problem in recent years. As a result of these efforts, the
“easy” problems have, at least to some extent, been
attacked and remedied. The more intractable problems
remain. Because of this, the sponsors of the Aircraft
Maintenance Integrated Diagnostics Demonstration
(AMIDD) project perceived that the application of
traditional methods used to perform maintenance and
diagnostics have begun to produce diminishing returns.
Thus, non-traditional methods using advanced diagnostics
appear to hold the most promise for alleviating the difficult
diagnostic problems currently faced. In this paper, we
describe the initial results of an AMIDD experiment with
advanced diagnostics that demonstrate some potential
improvements for aircraft maintenance associated with
using these methods.

1. BACKGROUND

MIDD was conceived in the early 1990s as part of the A-

12 program. The U.S. Navy initiated the original AMIDD
project to explore ways to convert the Navy’s existing
maintenance structure from a paper- to a computer-based
operation. After the demise of the A-12, the Navy contracted
the next phase of AMIDD exploration to add advanced
diagnostics and transition the demonstration platform to the
F/A-18 C/D aircraft. The final phase involved a diagnostics
demonstration with a Marine Corps F/A-18 squadron at El
Toro, California that began in 1995. The major requirements of
the last two phases included developing expert system-based
diagnostics for the APG-65 radar using concepts from rule- and
model-based reasoning to demonstrate the advantages of these
advanced technologies in an operational environment.

Specific objectives of the diagnostics demonstration can be
summarized as follows. First, the demonstration was expected
to provide an effective diagnostic system with the intent of
reducing the incidence of cannot duplicates and no fault founds
(designated in the Navy as A-799 codes). Second, the
demonstration would apply the principles emerging from the
IEEE AI-ESTATE (Artificial Intelligence and Expert System

John W. Sheppard
ARINC
2551 Riva Road
Annapolis, MD 21401
(410) 266-2099
sheppard@arinc.com

Tie to Automatic Test Equipment) initiative defining
“encapsulated” diagnostic systems with plug and play
capabilities. Finally, the demonstration would provide a
mechanism for supporting advanced maintenance feedback and
analysis to facilitate process and design improvement.

II. INFRASTRUCTURE

Figure 1 shows the AMIDD infrastructure with its top-
level diagnostic and maintenance system. Under this system,
the fault isolation process is initiated at debrief, where mission
and operational data from a flight are transferred to a ground-
based collection point. The data are transferred via a data
storage unit (DSU) which is brought from the aircraft to debrief
by the pilot. At this stage, the AMIDD system uses all available
data (built-in-test [BIT] data, environmental data, aircrew and
maintenance technician observations, aircraft historical data,
and design data in the form of dependency models) to isolate
faults to the maximum extent possible. This initial fault
isolation work saves a significant amount of maintenance time
at the aircraft.

The diagnosis developed during debrief is sent
electronically to Maintenance Control, which must manage all
base maintenance to provide as many operational aircraft as
possible. The corresponding maintenance action form (MAF)
contains a fault code that represents the isolated fault.
Maintenance Control uses the debrief diagnosis to assign the
problem to a Work Center, which completes the diagnosis
(when necessary) and performs the actual maintenance work.

When further diagnosis is required, the Work Center
receives the fault code in a task statement which specifies one
or more Interactive Electronic Technical Manuals (IETMs) and
any associated data required to complete the fault isolation.
Moreover, the specified data and IETM software is
downloaded onto a portable computer, termed the Portable
Electronic Display Device (PEDD) by AMIDD, which the
maintenance technician uses at the aircraft in lieu of a paper
technical manual. The PEDD also collects the maintenance
data entered by the technician or taken from the aircraft and
uploads it to the Work Center.

As shown in Figure 1, Debrief, Maintenance Control, and
the Work Center all have access to the Diagnostic Database,
both for storage and retrieval of data. As such, all data

468

0-7803-3379-9/96 $5.00 © 1996 IEEE

DSU * Pilot*

g

f Config. Changes

* Maintenance

3
Diagnostic
Database

Debrief
¥ MAF
Maintenance Control
Tasks, ‘
Status W
ork
Center <
IETMs
+ * Data
PEDD

Maintenance

Figure 1. AMIDD Infrastructure

associated with every maintenance action can be easily and
accurately collected and stored.

1I1. DIAGNOSTICS ON AMIDD

The AMIDD team performed its experiment using a
diagnostic inference model (DIM) which may be thought of as
a cause and effect model [4], [7]. This means that for every test
that can be applied to a system, one can associate a test failure
with the fault or failure mode which “caused” that test to fail. If
these causal relationships are defined and then linked together,
the resulting construct is called a DIM. From this, test results
(pass or fail) can be used to isolate failures to a small group of
components called an ambiguity group. Several software tools
are commercially available for constructing and evaluating
DIMs. AMIDD uses ARINC’s System Testability and
Maintenance Program (STAMP®)[3] for this function.
STAMP is not an embedded component of AMIDD but an off-
line application.

A DIM can be used in diagnostics in several ways. It can
be the basis for a fixed test tree (static diagnostics) or for test
selection on an individual case basis (dynamic diagnostics).
The AMIDD team initially designed a static implementation.
However, later in the program, the team recognized an
additional requirement for a dynamic diagnostic capability. As
a result, the AMIDD diagnostic architecture now features both
capabilities. Static diagnostics have been incorporated through
the use of the C Language Integrated Production System, or
CLIPS [5]. The dynamic implementation is provided through
the Portable Interactive Troubleshooter, or POINTER™ [6].

CLIPS is a NASA-developed, rule-based expert system
inference engine which operates in conjunction with a
knowledge base (KB). The knowledge base is a collection of

if/then rules that can be derived from either design data or
human experts. The inference engine controls rule execution by
firing rules that match the current state of diagnostics.

Unlike CLIPS, POINTER does not use a fixed test tree.
POINTER can directly import the STAMP-generated DIM,
which it uses in making diagnoses. The POINTER used in
AMIDD is a customized version. Prior to AMIDD, POINTER
existed as interactive software which had been designed to
perform dynamic diagnostics. Dynamic diagnostics offer a
library of tests from which POINTER may choose. POINTER
analyzes prior test results and decides which test should be
performed next. This is an iterative process that is repeated
until POINTER believes it has enough data to state a high-
confidence diagnosis. The AMIDD application did not require
POINTER to be interactive, since essentially all of the tests
available were BIT tests and all test results would be known
following a flight. Therefore, the AMIDD application called
for an embedded, background diagnostic reasoner which would
process test results in a preset sequence chosen to maximize
performance. This version, called Passive POINTER™,
consists of an inference engine which performs batch
processing of BIT data. It analyzes information from multiple
tests using symbolic logic, statistical inference, and pattern
recognition.

IV. CLIPS / POINTER COMPARISON

The AMIDD team constructed the CLIPS diagnostic
system around static fault trees and thus it is sequential in
nature. This point can be illustrated by considering any path in
the fault tree. Each path consists of a pre-defined sequence of
tests derived from some assumed context or set of requirements
for testing the system (e.g., minimum time to fault isolate). In

469

System Call_>

CLIPS or

STAMP = -
Knowledge |—p] Diagnostic Reasoneq
Base CLIPS or —
A
POINTER g:;g;:y
Inference
_ Engine
~— y

Figure 2. Reasoner Encapsulation

an operational environment, this context is not constant and test
results may not be certain. Thus the most relevant tests to be
considered may change. Under these changing conditions,
diagnosis according to the fixed sequence can lead to erroneous
results.

Passive POINTER, on the other hand, follows from the
encapsulated diagnosis philosophy [8]. Should Passive
POINTER determine a test to be relevant, it will process the
test result whether or not the test appears in some pre-defined
sequence. This feature illustrates the superior power and
sophistication of POINTER diagnostics as compared to the
simplicity of the CLIPS fault trees. While the fault trees can
adequately diagnose routine failures, they are brittle and fail to
diagnose faults outside the defined context.

Another aspect of POINTER s flexibility lies in its ability
to process trinary test outcomes. Test trees are binary and will
not tolerate any result except pass or fail. With POINTER,
however, an unknown outcome may also be designated. When
POINTER encounters this result, it will simply not use that test
and continue diagnosis by requesting and evaluating another
test.

Finally, in POINTER one may assign confidence values to
tests which offers several advantages. First, POINTER’s
reasoning mechanisms will take these confidence values into
account in making diagnoses. Further, because of its ability to
process uncertain test data, POINTER has the capacity for
handling conflicting information. This, in fact, has been a
major concern in the operational environment in which errors
can be made in the data read from the DSU and the data
recorded by pilots and maintenance personnel.

V. ENCAPSULATION

Because the Navy wanted to explore the flexibility of
future systems to accommodate different kinds of diagnostic

tools and techniques, the AMIDD team had to encapsulate the
diagnostic reasoner to allow the use of both CLIPS and
POINTER for the diagnostic function. An encapsulated
procedure exports an abstract interface that allows the
procedure to be selected and applied without having to
understand the details of its implementation. The effect is that
with respect to the rest of the system, one procedure can be
substituted for another with no other changes required. This is
popularly known as “plug-and-play.” For AMIDD, the goal
was to be able to swap a CLIPS diagnostic reasoner for a
POINTER diagnostic reasoner, or vice versa. This meant that
whatever data was furnished to one reasoner would also have
to be furnished to the other, and that the reasoners’ outputs
would have to be identical in format.

As part of its encapsulation efforts, AMIDD also has
addressed a related and growing problem: the wide variety of
software applications and databases from diverse suppliers that
must interact. Currently, many large systems consist of several
entities, each using a different software language and requiring
different data formats and communications protocols.

As a first step toward remedying this problem, the Navy
directed the AMIDD team to apply two emerging standards to
the encapsulated diagnostic reasoner. These were the Artificial
Intelligence Expert System Tie to Automatic Test Equipment
(AI-ESTATE)[1] and the Test and Maintenance Information
Management Standard (TMIMS)[2]. AI-ESTATE will be a
specification for a standard representation of data elements
required for system diagnosis and test. The intent is to ensure
portability of test-related knowledge bases for intelligent
system diagnosis and test. The purpose of TMIMS is to
facilitate the sharing of historical test and maintenance
information across the system life cycle. Since both are
emerging standards which are still being defined, all parties
agreed that the AMIDD implementation would comply with
the intent and spirit of the documents.

470

As illustrated in Figure 2, the encapsulated portion of the
diagnostic system has been termed (generally) the “diagnostic
reasoner.” Specifically, the reasoner can be either Passive
POINTER or the CLIPS interface code, whichever is installed.
For clarity, we have chosen to apply the name “diagnostic
executive” to the body of diagnostic executable software
external to the reasoner.

The interface between the diagnostic reasoner and the
diagnostic executive is accomplished through a system call and
a set of ASCII files. Aircraft BIT results are loaded into the test
results file by the debrief function. The diagnostic reasoner
decodes the system call so as to select the appropriate test tree
(CLIPS) or model (POINTER) and acts upon the content of the
test results file to provide a diagnosis via the ambiguity results
file, which contains a list of diagnostic conclusions.

The test results file, generated from aircraft BIT results, is
provided as an input to the diagnostic reasoner. Each line in the
file consists of four fixed-length, blank-delimited fields: test
labels, test results, test confidence factors and sequence
numbers. The ambiguity results file is an ASCII text file. When
Passive POINTER is the reasoner, all possible ambiguity
groups are listed in order of decreasing probability. When
CLIPS is the reasoner, only a single ambiguity group is
presented—the one reached by traversing the test tree to an end
(leaf) node.

VI. DIAGNOSTIC ARCHITECTURE

For AMIDD, the diagnostic architecture had to
accommodate the encapsulated diagnostic reasoner. However,
the team found that many related ancillary diagnostic functions
were best left outside of the encapsulated portion—those we call
the diagnostic executive. A third component was also essential
to the diagnostic capability: the database. In the database, the
models, trees, and test universe do not vary unless the system is
changed to improve or correct operation. The BIT Test Results
table is repopulated after each flight. The diagnostic
executive’s role is to obtain the correct data from the database,
transfer it to the diagnostic reasoner, interpret results passed
back from the diagnostic reasoner, and place a fault code in the
IETM database. As for the diagnostic reasoner itself, it must
accept test results and the appropriate model or tree from the
executive, generate a diagnosis, and provide the ambiguity
group of fault suspects to the executive.

The CLIPS diagnostic reasoner, built by McDonnell
Douglas Aerospace (MDA), consists of a set of rules that allow
the reasoner to import the appropriate test tree and test results,
traverse the tree to obtain a diagnosis, and store the diagnosis
for evaluation by the diagnostic executive in the ambiguity
results file. Furnished by ARINC, the Passive POINTER
diagnostic reasoner consists of software that decodes the
system call to access the correct model, performs reasoning to

produce a diagnosis, and places the diagnosis in the ambiguity
results file.

VII. RESULTS

The AMIDD diagnostic system has been well received by
Marine Corps users, who include both pilots and maintenance
technicians. This finding stems from a number of meetings
held during AMIDD development to familiarize users with the
software, obtain their impressions, and incorporate changes
based on their input.

From these meetings, we have learned that the system’s
data collection capabilities are proving extremely valuable. For
the first time, we are able to obtain both accurate and complete
data associated with every fault reported and every
maintenance action undertaken. Recurring problems are easily
recognized; in addition, we have found that some maintenance
solutions can be obtained without major investigation. In some
cases expert system rules to rectify problems can be speedily
written and implemented. Both the CLIPS and POINTER
diagnostic reasoners are performing well and are returning
accurate diagnoses. The combination of model- and rule-based
reasoning works seamlessly.

At the time of this writing, we had not completed the
demonstration or the data collection. However, our initial
results are both interesting and encouraging. So far, we have
identified 112 cases in which the system invoked the diagnostic
reasoner. We considered these 112 cases in four different
modes: 1) CLIPS processing weapons replaceable assembly
(WRA)-level rules, 2) CLIPS processing system-level rules, 3)
POINTER processing WRA-level models, and 4) POINTER
processing system-level models. Thus, we examined a total of
448 cases. The failure distribution by WRA is as follows:

Transmitter 34
Receiver/Exciter 33
Antenna 23
Radar Target Data Processor 7
Servo Electronics 6
Run “Initiated BIT” 5
Computer Power Supply 4

The average running times for the four scenarios using a
486/66 PC under UNIX amounted to less than 10 seconds for
all but the POINTER processing system-level models, and
slightly more than 20 seconds for the latter case. Of course,
much of the run-time need not be apparent to the user if
AMIDD performs other required functions in parallel. Thus,
the run-times should be acceptable to the user.

When considering the diagnostic results, the reasoner is
able to respond with either an identification of a failed WRA or
with a non-WRA fault code. The non-WRA codes include no

471

Jault found, run IBIT, conflict encountered, wiring fault, or
circuit breaker tripped,

With the exception of two fault codes (wiring fault and
circuit breaker tripped), non-WRA codes cause the system to
run the initiated BIT (IBIT). Initiated BIT is BIT that must be
manually commanded and runs only once. Of the 448 cases
considered, 254 were WRA faults, and the remaining 194 cases
were non-WRA codes. Of these, 67 instances were wiring
faults and 2 were tripped circuit breakers. Of special interest
regarding these diagnoses is the fact that the BIT was not
designed to address wiring faults, but by modeling the BIT, we
discovered that sufficient information was available to find
these faults. This aspect demonstrates the significant advantage
of using a model-based approach for fault diagnosis.

Of the remaining 125 non-WRA cases, 104 corresponded
to no fault found, possibly indicating insufficient coverage in
periodic BIT (PBIT), and 21 corresponded to conflict. Periodic
BIT is the implementation of BIT that runs continuously as
long as the system is powered. After examining the 104 cases
of no fault found, it was decided that these cases correspond to
40 unique events with the following distribution:

Legitimate “Run IBIT” 2
IBIT manually terminated 1
No confirming BIT results 16
Model error suspected 18

BIT deficiency suspected

The conflict diagnosis arose only when POINTER was invoked
since the CLIPS system had no ability to deal with conflicting
data. These instances of conflict may indicate problems in data
recording, mistakes in data entry, or errors in the model.

VIIL CONCLUSION

Although the results presented here are preliminary, some
significant observations can nevertheless be made about the
demonstration. First, we are encouraged to see that
computational burdens for the reasoner have not been
significant or surprising. Second, we have evidence to indicate
that a diagnostic inference model provides more robust fault
diagnosis than traditional methods by providing increased
flexibility and better understanding of the information being

furnished by the BIT results. In fact, the dynamic nature of the
diagnostics provided by POINTER is leading to a more reliable
diagnosis by providing confidence values for the possible faults
(including the possibility of conflict). Finally, the discrepancies
identified between CLIPS and POINTER results are identifying
areas for process improvement by flagging BIT deficiencies,
maintenance process glitches, and errors in diagnostics.

For the past 20 years, many claims have been made
regarding the significant advantages of applying Al to
advanced diagnostics for military weapon systems. Until now,
the “results” of these claims have been anecdotal at best. With
AMIDD, the Navy has made a concerted effort to quantify the
maintenance advantages and disadvantages between existing
procedures and the application of various Al techniques. The
Navy has also begun to quantify the advantages of providing
standardized approaches to intelligent diagnosis. While the
current AMIDD results are preliminary, we anticipate that the
end results will provide clear evidence as to the value of using
advanced diagnostics for complex weapon system
maintenance. The success shown in our initial results leads us
to believe that the final outcome will be both positive and even
more enlightening.

REFERENCES

[1] IEEE Std 1232-1995. Trial Use Standard for Artificial Intelligence and
Expert System Tie To Automatic Test Equipment (AI-ESTATE),
Piscataway, New Jersey: IEEE Press

[2} 1EEE P1389. Standard for the Management of Test and Maintenance
Information, Draft. 1995

[3] Johnson, F. and Unkle, C.R. “The System Testability and Maintenance
Program (STAMP): A Testability Assessment Tool for Aerospace
Systems,” Proceedings of the AI4A/NASA Symposium on Maintainability
of Aerospace Systems, New York: AIAA. 1989

[4] Peng, Y. and Reggia, J. Abductive Inference Models for Diagnostic
Problem Solving, New York: Springer-Verlag. 1990

[5] Riley, G. “CLIPS: A Tool for the Development and Delivery of Expert
Systems,” Proceedings of the Technology 2000 Conference,
Washington, D.C. November, 1990

[6] Sheppard, J. W. and Simpson, W. R. “Incorporating Model-Based
Reasoning in Interactive Maintenance Aids,” Proceedings of the
National Aerospace Electronics Conference, Piscataway, New Jersey:
IEEE Press, pp. 1238-1243. 1990

[7] Sheppard, J. W. and Simpson, W. R. “A Mathematical Model for
Integrated Diagnostics,” IEEE Design and Test of Computers, Vol. 8,
No. 4, pp. 25-38. 1991

[8] Simpson, W. R. and Sheppard, J. W. System Test and Diagnosis,
Norwell, Massachusetts: Kluwer Academic Publishers. 1994

472

