
Standardizing Diagnostic Information Usi

John W. Sheppard Antony Bartolini Leslie A. Orlidge
ARINC Etec Systems, Inc. AlliedSignal Aerospace

2551 Riva Road 26460 Corporate Avenue Guidance and Control Systems
Annapolis, MD 2 140 1 Hayward, CA 94545 Teterboro, NJ 07608

jsheppar@arinc.com antonyb@etec.com leslie.orlidge@alliedsignal.com

Abstract-The proliferation of artijicially intelligent diagnostic
reasoners and tools necessitates establishing standard interfaces to
these tools and formal data specifications to capture relevant
diagnostic information to be processed by these tools. Current test
standards provide little guidance to using AI technology in test
applications. Proposed AI standards (e.g., KIF) do not specifically
address the concerns of the test communi@. Thus, no standard
exists, currently, addressing the use of AI vstems in test
environments. AI-ESTATE is intended to fill this void This paper
will provide an update on the status of all of the AI-ESTATE
standards and their potential use to support diagnostic tools and
applications.

I. INTRODUCTION

ecent initiatives by the Institute of Electrical and FL lectronics Engineers (IEEE) on standardizing test
architectures have provided a unique opportunity to improve
the development of test systems. The IEEE P1232 “Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE)’” initiative is attempting to
usher in the next generation in product diagnostics by
standardizing diagnostic services and development tool
interfaces. By using problem encapsulation, defining interface
boundaries, developing exchange formats and specifying
standard services, AI-ESTATE provides a methodology for
developing diagnostic systems that will be interoperable, have
transportable software, and move beyond vendor and product
specific solutions.

The concepts in the AI-ESTATE standard are not limited
to the arena of automatic test equipment, but apply to manual,
automatic, and semi-automatic test, as well as the domains of
electronic, mechanical, pneumatic, and other types of systems.
The AI-ESTATE subcommittee designed the P1232 standards
to abstract specific test and product details out of the diagnostic
models and tie these models to domain-specific models as
needed to complete the test system.

In this paper, we describe the AI-ESTATE architecture [I]
and recent progress in the standards’ development. We discuss
progress on defining several software services to be provided

1 Previously, Artificial Intelligence and Expert System Tie to Automatic
Test Equipment.

0-7803-4162-7/97 $5.00 0 1997 IEEE

by an AI-ESTATE conformant diagnostic system [2] with
emphasis given to a new information model for dynamic data.
In addition, we describe initial work on a new standards project
to develop a commercial replacement to MIL-STD-2 165 based
on the models in IEEE Std 1232.1-1997 [3]. Finally, we
provide directions for future work on AI-ESTATE and issue an
invitation for interested parties to participate in the AI-
ESTATE development process.

It. BACKGROUND

Increasing complexity and cost of current systems, the
inability to consistently diagnose and isolate faults in systems
using conventional means, and advances in artificial
intelligence technology have fostered the growth of AI
technology in test and diagnosis. The proliferation of
diagnostic reasoners and tools necessitates establishing
standard interfaces to these tools and formal data
specifications to capture relevant diagnostic information.
Current test standards (e.g., Boundary Scan and STIL) [4,5]
provide no guidance for using AI technology in test
applications. Proposed AI standards (e.g., KIF) do not
specifically address the concerns of the test community [6].
Thus, no standard exists, currently, addressing the use of AI
systems in test environments. The AI-ESTATE standards are
intended to fill this void.

The AI-ESTATE subcommittee has established several
ambitious goals for the AI-ESTATE standards that include:

82

0 Provide a standard interface between diagnostic
reasoners and other functional elements that reside
within an AI-ESTATE system.
Provide formal data specifications to support the
exchange of information relevant to the techniques
commonly used in system test and diagnosis.

0 Maximize compatibility of diagnostic reasoning
system implementations.

0 Accommodate embedded, coupled, and stand-alone
diagnostic systems.

0 Facilitate portability, reuse, and sharing of
diagnostic knowledge.

0

mailto:jsheppar@arinc.com
mailto:antonyb@etec.com
mailto:leslie.orlidge@alliedsignal.com

Communications Pathwav

1232.1 Format

Figure 1. AI-ESTATE Architectural Concept

To achieve these goals, the AI-ESTATE subcommittee
proceeded to define an architecture for a standard diagnostic
system and then defmed component standards for
information exchange and software interfaces.

one another via a “communications pathway.” Essentially,
this pathway is an abstraction of the services provided by the
functional elements to one another. Thus, implementing
services of a reasoner for a test system to use results in a
communication pathway being established between the
reasoner and the test system.

AI-ESTATE services (P1232.2) are provided by
reasoners to the other functional elements fitting within the
architecture illustrated by Figure 1. These reasoners may
include (but are not necessarily limited to) diagnostic
systems, test sequencers, maintenance data feedback
analyzers, intelligent user interfaces, and intelligent test
programs. The current focus of the standards is on diagnostic
reasoners. In addition to providing services to the test system,
the human presentation system, a maintenance data collection
system, and possibly the unit under test, the reasoner also
uses services provided by these other systems as required.
These services are not specified by the standards.

IV. DIAGNOSTIC SERVICES
111. AN ARCHITECTURE FOR DIAGNOSIS

The AI-ESTATE architecture presented in Figure 1
shows a conceptual view of an AI-ESTATE-conformant
system. AI-ESTATE applications may use any combination
of functional elements and inter-function communication as
shown in the figure. The service specification (P1232.2), or
other specifications relevant to the particular functional
element, define the form and method of communication
between reasoning systems and other functional elements.
AI-ESTATE identifies reasoning services provided by a
diagnostic reasoner so that transactions between test system
components and the reasoner are portable. AI-ESTATE
assumes a client-server or cooperative processing model in
defining the diagnostic services.

As indicated in Figure 1, AI-ESTATE includes two
component standards focusing on two distinct aspects of the
stated objectives. The first aspect concerns the need to
exchange data and knowledge between conformant
diagnostic systems. By providing a standard representation of
test and diagnostic data and knowledge and standard
interfaces between reasoners and other elements of a test
environment, test, production, operation, and support costs
will be reduced.

Two approaches can be taken to address this need:
providing interchangeable files (P 1232.1) and providing
services for retrieving the required data or knowledge
through a set of standard accessor services (P1232.2). AI-
ESTATE is structured such that either approach can be used

The second aspect concerns the need for functional
elements of an AI-ESTATE conformant system to interact
and interoperate. The AI-ESTATE architectural concept
provides for the functional elements to communicate with

~ 3 1 .

The AI-ESTATE standard defines several software
services to be provided by a diagnostic reasoner. The nature
of these services enables the reasoner to be embedded in a
larger test system; however, it is possible that the diagnostic
system is a stand-alone application connected to a graphical
user interface of some kind.

Currently, the services defined by AI-ESTATE are
classified as either static model accessor services, reasoner
state accessor services, knowledge acquisition services, and
reasoner control services. Following the object-oriented
programming paradigm, we found that all services could be
represented in one of four forms: create, get, put, or
delete [8]. Since knowledge acquisition services provide
the create, put, and delete services to match the model
accessor services, we will consider these together.

A. Static Model Traversal Services

With the publication of the data and knowledge
specification [3], the first set of service defined for the
service specification [2] focused on the existing models. The
data and knowledge specification defines three models-a
common element model, a fault tree model, and an enhanced
diagnostic inference model (EDIM). The common element
model provides definitions of basic entities expected to be
used by any diagnostic reasoner, and the fault tree model and
EDIM organize these entities in a way to facilitate diagnostic
reasoning.

The model traversal services provide the means for a
reasoner to process the model on line. As an example, IEEE
Std 1232.1-1997 defines, using EXPRESS [7], a diagnostic
model to be the following entity:

83

ENTITY diagnostic-model;
name : name-type;
description : description-type;
model-test : SET [l:?] OF test;
model-diagnosis : SET [2 : ?] OF diagnosis;
model-resource : SET [O : ?] OF resource;
model-anomaly : SET [O : ?] OF anomaly;

END-ENTITY;

Based on this model, we can define services for
traversing the model to obtain information about a particular
diagnostic model. For example, consider the set of tests
defined in a particular model. To find the set of tests, we
must first have access to the model itself. To obtain this
access, we need to know either the name or the internal
identifier of the model.

The service, get-diagnostic-model (name),
retums an identifier for a diagnostic model identified by its
name. Once we have the identifier, we can then access the set
of tests defined in the model with the service
get-model-tests (model-id) . This service would
retum a list of tests which can then be used with another
service to reference the actual test entities.

Associated with each entity in the model will be the four
types of services given above (i.e., create, get, put, and
delete). EXPRESS includes the ability to define functions
and procedures (similar to a programming language), but the
intent is for these functions and procedures to be used in
defining constraints on model entities [9]. The AI-ESTATE
committee observed, however, that EXPRESS provides a
natural fit between information modeling and service
definition since the type system is provided by the models.
As a result, the committee decided to use EXPRESS to define
the services as well. For example, get-model-tests is
defined in P1232.2 as follows:

FUNCTION
get-model-tests(model-id:diagnostic-model) :

SET [l:?] OF test;
END-FUNCTION;

Once all of the services have been defined in EXPRESS,
language bindings can be provided to make the services
enable the services to be implemented by a reasoner.
Currently, AI-ESTATE is exploring the development of
language binding for Ada and C.

B. Reasoner State Services

Given a model has been loaded and a system is being
tested, the model needs to be processed for diagnosis to be

performed. Simply traversing the models defined in P1232.1
is not useful since the model only defines expectations rather
than reality. Any reasoner will maintain an internal state of its
reasoning process that will be used to report a diagnosis or to
explain its reasoning. For diagnostic reasoners to be “plug-
and-play” compatible, certain diagnostic state information
needs to be in common between the reasoners.

To facilitate defining services for accessing or modifying
the state of the reasoner, the AI-ESTATE committee made
some assumptions about common diagnostic information.
These assumptions were derived from the common element
model and extended to support various types of reasoners.
Specifically, the AI-ESTATE committee has defined a new
information model, called the dynamic context model, that
provides the type structure for reasoner state (Figure 2).

The “starting point” for the model is given by a
diagnostic session. The session corresponds to a sequence
of steps in which the state of the reasoner changes at each
step. At each step, the reasoner keep track of what it knows
about the state of models (i.e., whether or not a model is
available for processing), the resources, the tests, and the
diagnoses. In addition, for each resource and test, the actual
cost incurred at that step (both time and non-time) is
recorded.

This model can be traversed similarly to the models
defined in P1232.1. More interesting is the fact that entities
can be created “on the fly” and the states of these entities
vary from step to step. Another interesting byproduct of this
model is that, by organizing the state according to steps in a
session, the information captured can be fed to a maintenance
data collection system and retained as a diagnostic history.
This is the scope of the TMIMS (Standard for the
Management of Test and Maintenance Information) standards
project P13 89. AI-ESTATE and TMIMS have been
coordinating closely to ensure compatibility between their
information models.

Another issue related to reasoner state is how one
“explains” the reasoning process. During committee
discussion, this was a highly contentious issue since no one
could agree on a good method for explanation. The debate
was settled when it was observed that the process of
traversing reasoner state provides a rudimentary approach to
explanation. Then, if tool developers want to provide “higher
order” services, they can use the standard services to collect
the necessary information. For example, explaining the
currently inferred value for a diagnosis can be accomplished
by identifying the tests in the model that affect the diagnosis
and showing the step in the session where one of these tests
was performed that led to the current assertion.

84

korresponds-to

I I
- - - I

I corresponds-to

1

i

confidence

_ - - - J

I

I
I

I diagnoses s[2:?]

I hypothesis s[O:?] _ _ _ _ _ -

state

- - _ - , J

resources-used s[O:?]

cost-incurred s[O:?]

- - - - J

Figure 2. Dynamic Context Model

C. Reasoner Control Services

AI-ESTATE anticipates defining several services for
controlling the reasoner. Currently, six services have been
identified:

1. set-mode-inactive
2 . set-mode-active
3. attachmodel
4. detach-model
5. save-model
6. load-model

All of these services focus on making models available or
updating the models.

The reasoner is assumed to be in one of three modes:
null, inactive, and active. It is assumed the reasoner is in null
mode until a model is attached. At that point the reasoner
transitions into inactive mode automatically. Once all models

have been detached, the reasoner transitions automatically
back to null mode. The only way to transition between
inactive and active is by a specific request from the
application executive.

In a previous version of the standard, several other
services were provided to control the reasoner such as setting
search criteria, applying test outcomes, and reverting the state
to a previous state. All of these services were deleted since
they can all be handled by “putting” values in the dynamic
context model. For example, applying a test outcome
involves a call to put-actual-outcome. This would
inform the reasoner that a new outcome is available for
processing, and the reasoner state would be updated
accordingly.

V. TESTABILITY STANDARDS

As defined in MIL-STD-2 165, testability is “a design
characteristic which allows the status (operable, inoperable,

85

or degraded) of an item to be determined and the isolation of
faults within the item to be performed in a timely manner
[lO].” The purpose of MIL-STD-2165 was to provide
uniform procedures and methods to control planning,
implementation, and verification of testability during the
system acquisition process by the Department of Defense
(DoD). It was to be applied during all phases of system
development--from concept to production to fielding. This
standard, though deficient in some areas, provided useful
guidance to government suppliers. Further, lacking any
equivalent industry standard, many commercial system
developers have used it to guide their activities even though it
was not imposed as a requirement.

With the current emphasis within the DoD on the use of
industry standards, the continuing need to control the
achievable testability of delivered systems in DoD and
commercial sectors, and the removal of MIL-STD-2165 as a
standard with no replacement (commercial or DoD), there is
a need for a new industry standard that addresses system
testability issues and that can be used by both commercial
and government sectors. To be useful, this commercial
standard must provide specific, unambiguous definitions of
criteria for assessing system testability. In addition, the
standard should recommend processes for implementing a
testability program as part of a product’s full life cycle.

MIL-STD-2 165 was deficient in the precise definition of
measurable testability figures-of-merit and relied mostly on a
weighting scheme for testability assessment. (It should be
noted, however, that the standard did permit the use of
analytical tools for testability assessment such as SCOAP,
STAMP, and WSTA.) Now that a standard diagnostic model
exists [2] and the definition of reasoner services are nearing
completion [3], AI-ESTATE has decided to explore creating
a standard defining testability metrics in terms of the
knowledge and service standards.

In the industry many terms such as test coverage and
fault detection are not well defied and not comparable from
system to system. Some measures, such as false alarm rate,
are not measurable in field applications. An immediate
benefit will come with a consistent, precise, measurable set of
testability attributes that can be compared across systems and
within iterations of system design.

The ability of a system implementation to support its
fault isolation goals must be measured in terms of both the
fundamental capability of the diagnostic model to support the
reasoning process and of the ability of the reasoner to do the
reasoning. For example, suppose that we have a diagnostic
system that is intended to work in a time critical
environment. Furthermore, suppose the diagnostic model
contains the information required to fully fault isolate to the
required level unambiguously. If the reasoner is too slow,
then the system will not satisfy its performance requirements.
Similarly, if the diagnostic model or the set of tests
supporting that model contains insufficient information to

achieve fault isolation to the required level, it will not matter
how fast the reasoner is, the system will not satisfy its
isolation requirements. Metrics must be established that allow
us to clearly identify important testability parameters of both
models and reasoners.

MIL-STD-2 165 attempted to standardize both
programmatic and measurement tasks. Variations in the
internal program management methods of different
companies and DoD organizations makes the standardization
of the programmatic tasks unreasonable. We are exploring
creating a “Recommended Practice” document to support the
programmatic aspects of system testability.

MIL-STD-2165 identified five key elements of a
comprehensive testability program, including the following:

1. Testability program plan
2.
3.
4.
5.

Establishment of achievable testability requirements
Participation in the design process
Prediction and evaluation of design testability
Inclusion of testability in program reviews

Lacking well defined testability measures, the tasks of
establishing testability requirements, and predicting and
evaluating the testability of the design are extremely difficult.
This in turn makes effective participation in the design for
testability process difficult. These difficulties will be greatly
diminished by the establishment of standard testability
metrics. Beyond the participation with design engineering
MIL-STD-2165 also puts emphasis on the information
exchanged between the testability and logistics functions and
the testability and maintainability functions,

As we strive to establish concurrent engineering
practices, the interchange between the testability function and
other functions becomes even more important. To create
integrated diagnostic environments, where the elements of
automatic testing, manual testing, training, maintenance aids,
and technical information work in concert with the testability
element, we must maximize the reuse of data, information,
knowledge, and software. Complete diagnostic systems
include BIT, ATE, and manual troubleshooting. It would be
desirable to be able to predict and evaluate the testability of
systems at these levels.

Currently, the AI-ESTATE subcommittee is gathering
information from the DoD and industry about model
representations, their associated metrics, and the processes
put in place to utilize them. The results of this review will
form the basis for defining the metrics to be included in the
standard and the procedural guidance to be included in the
“Recommended Practice.”

VI. FUTURE WORK

In spite of the large amount of work that has been done
on the AI-ESTATE standards and the acceptance of the

86

standards in government and industry, much additional work
needs to be done to keep the standards in pace with
technology advances. Currently, several projects are
underway within the AI-ESTATE subcommittee to do just
that.

First, we recognize that there are more approaches to
performing diagnosis than using fault trees and diagnostic
inference models. Currently, we are in the process of defining
a constraint model that will capture temporal, logical, and
resource constraints in testing and diagnosing a system.
Related to this is work underway in the ABBET (A Broad
Based Environment for Test) subcommittee and EDIF
committee defining a test requirements model (TeRM).
TeRM that includes constraints for capturing information
about the behavior of a product and a test resource. We
expect to be able to work with the constraints defined in
TeRM to facilitate reasoning with constraint-based systems.

In addition to the constraint model, we anticipate
developing models for rule-based systems and for
connectionist systems. Rule-based systems provided the first
success stories in diagnosis and artificial intelligence. While
both the EDIM and the constraint model would be able to
capture the logical information contained in a rule base, a
separate model is required that is tailored to the rule-based
architecture.

Diagnosis occurs within some context. In fact, the
context is central to determining the scope of the test and
diagnosis problem. Unfortunately, capturing information
about context in a standard way is problematic. The number
of variables associated with context is excessive, and the
relationships between those variables are frequently
unknown. Nevertheless, we find that proper interpretation of
diagnostic and test information relies upon a common
understanding of the context in which testing takes place. As
a result, we are beginning to develop a model of context for
diagnosis. We believe the model capturing reasoner state
provides a starting point for capturing context; however,
much more work is required. Recent work in non-monotonic
reasoning and categorical reasoning may offer promise in
further capturing context for the diagnostic problem [1 11.

VIII. AN INVITATION

The AI-ESTATE family of standards represents the
consensus of industry participants in SCC20 that standards
are required for diagnostic reasoners and that these models
accurately reflect the state of the practice in diagnostic tools.
As such, SCC20 is constantly seeking out people in
government, industry, and academia to assist in developing
the standards. Anyone interested in the work of AI-ESTATE
or other SCC20 standards, whether user, provider, or a
generally interested party, is encouraged to get involved.

Detailed information on the progress of the standards and on
key personnel is available on the world wide web at
“http://www.cs.jhu.edu/-sheppard/Pl232”.

VIII. CONCLUSION

Reasoning system technology has progressed to the point
where electronic systems are employing artificial intelligence
as a primary component in meeting system test and
verification requirements. This is giving rise to a proliferation
of AI-based design, test, and diagnostic tools. Unfortunately,
the lack of standard interfaces between these reasoning
systems is increasing the likelihood of significantly higher
product life-cycle cost. Such costs would arise from
redundant engineering efforts during design and test phases,
sizable investment in special-purpose tools, and loss of
system configuration control.

The AI-ESTATE standard promises to facilitate ease in
production testing and long-term support of systems as well
as reducing overall product life-cycle cost. This will be
accomplished by facilitating portability and knowledge reuse
and sharing of test and diagnostic information, among
embedded, automatic, and stand-alone test systems within the
broader scope of product design, manufacture, and support.

REFERENCES

IEEE Std 1232-1995. 1995. Trial Use Standard for Artijcial
Intelligence and Expert System Tie to Automatic Test Equipment (AI-
ESTATE): Overview and Architectwe, Piscataway, New Jersey: IEEE
Standards Press.
IEEE Std 1232.1-1997. 1997. Trial Use Standard for Artijcial
Intelligence and Exchange and Service Tie to AN Test Environments
(AI-ESTATE): Data and Knowledge Specijkation, Piscataway, New
Jersey: IEEE Standards Press.
IEEE P1232.2. 1997. Trial Use Standard for Arti$cral Intelligence
Exchange and Service Tie to AN Test Environments (AI-ESTATE):
Service Specrfication, Draft 3.2.
IEEE Std-1149.1-1990. 1990. Standard Test Access Port and
Boundary Scan Architecture, Piscataway, New Jersey” IEEE
Standards Press.
IEEE P1450. 1996. Standard Test Interface Language (STIL), Draft
0.23.
IEEE P1252. 1993. Standard for a Frame Based Knowledge
Representation, Draft 2.1.
IS0 10303-1 1:1994. 1994. Industrial Automation Systems and
Integration-Product Data Representation and Exchange-Part 11:
EAPRESS Language Reference Manual, Geneva: IS0 Press.
Booch, G. 1994. Object-Oriented Analysis And Design With
Applications, 2nd Ed. Benjamin Cummings.
Schenk, D. A. and P. R. Wilson. 1994. Information Modeling: The
EXPRESS Way, New York: Oxford University Press.
MIL-STD-2165. 1985. Testability Requirements for Electronic
Systems and Equipments.
Akman, V. and M. Surav. 1996. “Steps Toward Formalizing Context,”
AIMagazine, 17(3):55-72.

87

http://www.cs.jhu.edu/-sheppard/Pl232

