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Abstract-The proliferation of artijicially intelligent diagnostic 
reasoners and tools necessitates establishing standard interfaces to 
these tools and formal data specifications to capture relevant 
diagnostic information to be processed by these tools. Current test 
standards provide little guidance to using AI technology in test 
applications. Proposed AI standards (e.g., KIF) do not specifically 
address the concerns of the test communi@. Thus, no standard 
exists, currently, addressing the use of AI vstems in test 
environments. AI-ESTATE is intended to fill this void This paper 
will provide an update on the status of all of the AI-ESTATE 
standards and their potential use to support diagnostic tools and 
applications. 

I. INTRODUCTION 

ecent initiatives by the Institute of Electrical and FL lectronics Engineers (IEEE) on standardizing test 
architectures have provided a unique opportunity to improve 
the development of test systems. The IEEE P1232 “Artificial 
Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE)’” initiative is attempting to 
usher in the next generation in product diagnostics by 
standardizing diagnostic services and development tool 
interfaces. By using problem encapsulation, defining interface 
boundaries, developing exchange formats and specifying 
standard services, AI-ESTATE provides a methodology for 
developing diagnostic systems that will be interoperable, have 
transportable software, and move beyond vendor and product 
specific solutions. 

The concepts in the AI-ESTATE standard are not limited 
to the arena of automatic test equipment, but apply to manual, 
automatic, and semi-automatic test, as well as the domains of 
electronic, mechanical, pneumatic, and other types of systems. 
The AI-ESTATE subcommittee designed the P1232 standards 
to abstract specific test and product details out of the diagnostic 
models and tie these models to domain-specific models as 
needed to complete the test system. 

In this paper, we describe the AI-ESTATE architecture [I]  
and recent progress in the standards’ development. We discuss 
progress on defining several software services to be provided 

1 Previously, Artificial Intelligence and Expert System Tie to Automatic 
Test Equipment. 
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by an AI-ESTATE conformant diagnostic system [2] with 
emphasis given to a new information model for dynamic data. 
In addition, we describe initial work on a new standards project 
to develop a commercial replacement to MIL-STD-2 165 based 
on the models in IEEE Std 1232.1-1997 [3]. Finally, we 
provide directions for future work on AI-ESTATE and issue an 
invitation for interested parties to participate in the AI- 
ESTATE development process. 

It. BACKGROUND 

Increasing complexity and cost of current systems, the 
inability to consistently diagnose and isolate faults in systems 
using conventional means, and advances in artificial 
intelligence technology have fostered the growth of AI 
technology in test and diagnosis. The proliferation of 
diagnostic reasoners and tools necessitates establishing 
standard interfaces to these tools and formal data 
specifications to capture relevant diagnostic information. 
Current test standards (e.g., Boundary Scan and STIL) [4,5] 
provide no guidance for using AI technology in test 
applications. Proposed AI standards (e.g., KIF) do not 
specifically address the concerns of the test community [6]. 
Thus, no standard exists, currently, addressing the use of AI 
systems in test environments. The AI-ESTATE standards are 
intended to fill this void. 

The AI-ESTATE subcommittee has established several 
ambitious goals for the AI-ESTATE standards that include: 
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0 Provide a standard interface between diagnostic 
reasoners and other functional elements that reside 
within an AI-ESTATE system. 
Provide formal data specifications to support the 
exchange of information relevant to the techniques 
commonly used in system test and diagnosis. 

0 Maximize compatibility of diagnostic reasoning 
system implementations. 

0 Accommodate embedded, coupled, and stand-alone 
diagnostic systems. 

0 Facilitate portability, reuse, and sharing of 
diagnostic knowledge. 
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Figure 1. AI-ESTATE Architectural Concept 

To achieve these goals, the AI-ESTATE subcommittee 
proceeded to define an architecture for a standard diagnostic 
system and then defmed component standards for 
information exchange and software interfaces. 

one another via a “communications pathway.” Essentially, 
this pathway is an abstraction of the services provided by the 
functional elements to one another. Thus, implementing 
services of a reasoner for a test system to use results in a 
communication pathway being established between the 
reasoner and the test system. 

AI-ESTATE services (P1232.2) are provided by 
reasoners to the other functional elements fitting within the 
architecture illustrated by Figure 1. These reasoners may 
include (but are not necessarily limited to) diagnostic 
systems, test sequencers, maintenance data feedback 
analyzers, intelligent user interfaces, and intelligent test 
programs. The current focus of the standards is on diagnostic 
reasoners. In addition to providing services to the test system, 
the human presentation system, a maintenance data collection 
system, and possibly the unit under test, the reasoner also 
uses services provided by these other systems as required. 
These services are not specified by the standards. 

IV. DIAGNOSTIC SERVICES 
111. AN ARCHITECTURE FOR DIAGNOSIS 

The AI-ESTATE architecture presented in Figure 1 
shows a conceptual view of an AI-ESTATE-conformant 
system. AI-ESTATE applications may use any combination 
of functional elements and inter-function communication as 
shown in the figure. The service specification (P1232.2), or 
other specifications relevant to the particular functional 
element, define the form and method of communication 
between reasoning systems and other functional elements. 
AI-ESTATE identifies reasoning services provided by a 
diagnostic reasoner so that transactions between test system 
components and the reasoner are portable. AI-ESTATE 
assumes a client-server or cooperative processing model in 
defining the diagnostic services. 

As indicated in Figure 1, AI-ESTATE includes two 
component standards focusing on two distinct aspects of the 
stated objectives. The first aspect concerns the need to 
exchange data and knowledge between conformant 
diagnostic systems. By providing a standard representation of 
test and diagnostic data and knowledge and standard 
interfaces between reasoners and other elements of a test 
environment, test, production, operation, and support costs 
will be reduced. 

Two approaches can be taken to address this need: 
providing interchangeable files (P 1232.1) and providing 
services for retrieving the required data or knowledge 
through a set of standard accessor services (P1232.2). AI- 
ESTATE is structured such that either approach can be used 

The second aspect concerns the need for functional 
elements of an AI-ESTATE conformant system to interact 
and interoperate. The AI-ESTATE architectural concept 
provides for the functional elements to communicate with 

~ 3 1 .  

The AI-ESTATE standard defines several software 
services to be provided by a diagnostic reasoner. The nature 
of these services enables the reasoner to be embedded in a 
larger test system; however, it is possible that the diagnostic 
system is a stand-alone application connected to a graphical 
user interface of some kind. 

Currently, the services defined by AI-ESTATE are 
classified as either static model accessor services, reasoner 
state accessor services, knowledge acquisition services, and 
reasoner control services. Following the object-oriented 
programming paradigm, we found that all services could be 
represented in one of four forms: create, get, put, or 
delete [8]. Since knowledge acquisition services provide 
the create, put, and delete services to match the model 
accessor services, we will consider these together. 

A. Static Model Traversal Services 

With the publication of the data and knowledge 
specification [3], the first set of service defined for the 
service specification [2] focused on the existing models. The 
data and knowledge specification defines three models-a 
common element model, a fault tree model, and an enhanced 
diagnostic inference model (EDIM). The common element 
model provides definitions of basic entities expected to be 
used by any diagnostic reasoner, and the fault tree model and 
EDIM organize these entities in a way to facilitate diagnostic 
reasoning. 

The model traversal services provide the means for a 
reasoner to process the model on line. As an example, IEEE 
Std 1232.1-1997 defines, using EXPRESS [7], a diagnostic 
model to be the following entity: 
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ENTITY diagnostic-model; 
name : name-type; 
description : description-type; 
model-test : SET [l:?] OF test; 
model-diagnosis : SET [ 2 : ? ]  OF diagnosis; 
model-resource : SET [ O : ? ]  OF resource; 
model-anomaly : SET [ O : ? ]  OF anomaly; 

END-ENTITY; 

Based on this model, we can define services for 
traversing the model to obtain information about a particular 
diagnostic model. For example, consider the set of tests 
defined in a particular model. To find the set of tests, we 
must first have access to the model itself. To obtain this 
access, we need to know either the name or the internal 
identifier of the model. 

The service, get-diagnostic-model (name), 
retums an identifier for a diagnostic model identified by its 
name. Once we have the identifier, we can then access the set 
of tests defined in the model with the service 
get-model-tests (model-id) . This service would 
retum a list of tests which can then be used with another 
service to reference the actual test entities. 

Associated with each entity in the model will be the four 
types of services given above (i.e., create, get, put, and 
delete). EXPRESS includes the ability to define functions 
and procedures (similar to a programming language), but the 
intent is for these functions and procedures to be used in 
defining constraints on model entities [9]. The AI-ESTATE 
committee observed, however, that EXPRESS provides a 
natural fit between information modeling and service 
definition since the type system is provided by the models. 
As a result, the committee decided to use EXPRESS to define 
the services as well. For example, get-model-tests is 
defined in P1232.2 as follows: 

FUNCTION 
get-model-tests(model-id:diagnostic-model) : 

SET [l:?] OF test; 
END-FUNCTION; 

Once all of the services have been defined in EXPRESS, 
language bindings can be provided to make the services 
enable the services to be implemented by a reasoner. 
Currently, AI-ESTATE is exploring the development of 
language binding for Ada and C. 

B. Reasoner State Services 

Given a model has been loaded and a system is being 
tested, the model needs to be processed for diagnosis to be 

performed. Simply traversing the models defined in P1232.1 
is not useful since the model only defines expectations rather 
than reality. Any reasoner will maintain an internal state of its 
reasoning process that will be used to report a diagnosis or to 
explain its reasoning. For diagnostic reasoners to be “plug- 
and-play” compatible, certain diagnostic state information 
needs to be in common between the reasoners. 

To facilitate defining services for accessing or modifying 
the state of the reasoner, the AI-ESTATE committee made 
some assumptions about common diagnostic information. 
These assumptions were derived from the common element 
model and extended to support various types of reasoners. 
Specifically, the AI-ESTATE committee has defined a new 
information model, called the dynamic context model, that 
provides the type structure for reasoner state (Figure 2). 

The “starting point” for the model is given by a 
diagnostic session. The session corresponds to a sequence 
of steps in which the state of the reasoner changes at each 
step. At each step, the reasoner keep track of what it knows 
about the state of models (i.e., whether or not a model is 
available for processing), the resources, the tests, and the 
diagnoses. In addition, for each resource and test, the actual 
cost incurred at that step (both time and non-time) is 
recorded. 

This model can be traversed similarly to the models 
defined in P1232.1. More interesting is the fact that entities 
can be created “on the fly” and the states of these entities 
vary from step to step. Another interesting byproduct of this 
model is that, by organizing the state according to steps in a 
session, the information captured can be fed to a maintenance 
data collection system and retained as a diagnostic history. 
This is the scope of the TMIMS (Standard for the 
Management of Test and Maintenance Information) standards 
project P13 89. AI-ESTATE and TMIMS have been 
coordinating closely to ensure compatibility between their 
information models. 

Another issue related to reasoner state is how one 
“explains” the reasoning process. During committee 
discussion, this was a highly contentious issue since no one 
could agree on a good method for explanation. The debate 
was settled when it was observed that the process of 
traversing reasoner state provides a rudimentary approach to 
explanation. Then, if tool developers want to provide “higher 
order” services, they can use the standard services to collect 
the necessary information. For example, explaining the 
currently inferred value for a diagnosis can be accomplished 
by identifying the tests in the model that affect the diagnosis 
and showing the step in the session where one of these tests 
was performed that led to the current assertion. 
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Figure 2. Dynamic Context Model 

C. Reasoner Control Services 

AI-ESTATE anticipates defining several services for 
controlling the reasoner. Currently, six services have been 
identified: 

1. set-mode-inactive 
2 .  set-mode-active 
3.  attachmodel 
4. detach-model 
5. save-model 
6. load-model 

All of these services focus on making models available or 
updating the models. 

The reasoner is assumed to be in one of three modes: 
null, inactive, and active. It is assumed the reasoner is in null 
mode until a model is attached. At that point the reasoner 
transitions into inactive mode automatically. Once all models 

have been detached, the reasoner transitions automatically 
back to null mode. The only way to transition between 
inactive and active is by a specific request from the 
application executive. 

In a previous version of the standard, several other 
services were provided to control the reasoner such as setting 
search criteria, applying test outcomes, and reverting the state 
to a previous state. All of these services were deleted since 
they can all be handled by “putting” values in the dynamic 
context model. For example, applying a test outcome 
involves a call to put-actual-outcome. This would 
inform the reasoner that a new outcome is available for 
processing, and the reasoner state would be updated 
accordingly. 

V. TESTABILITY STANDARDS 

As defined in MIL-STD-2 165, testability is “a design 
characteristic which allows the status (operable, inoperable, 
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or degraded) of an item to be determined and the isolation of 
faults within the item to be performed in a timely manner 
[lO].” The purpose of MIL-STD-2165 was to provide 
uniform procedures and methods to control planning, 
implementation, and verification of testability during the 
system acquisition process by the Department of Defense 
(DoD). It was to be applied during all phases of system 
development--from concept to production to fielding. This 
standard, though deficient in some areas, provided useful 
guidance to government suppliers. Further, lacking any 
equivalent industry standard, many commercial system 
developers have used it to guide their activities even though it 
was not imposed as a requirement. 

With the current emphasis within the DoD on the use of 
industry standards, the continuing need to control the 
achievable testability of delivered systems in DoD and 
commercial sectors, and the removal of MIL-STD-2165 as a 
standard with no replacement (commercial or DoD), there is 
a need for a new industry standard that addresses system 
testability issues and that can be used by both commercial 
and government sectors. To be useful, this commercial 
standard must provide specific, unambiguous definitions of 
criteria for assessing system testability. In addition, the 
standard should recommend processes for implementing a 
testability program as part of a product’s full life cycle. 

MIL-STD-2 165 was deficient in the precise definition of 
measurable testability figures-of-merit and relied mostly on a 
weighting scheme for testability assessment. (It should be 
noted, however, that the standard did permit the use of 
analytical tools for testability assessment such as SCOAP, 
STAMP, and WSTA.) Now that a standard diagnostic model 
exists [2] and the definition of reasoner services are nearing 
completion [3], AI-ESTATE has decided to explore creating 
a standard defining testability metrics in terms of the 
knowledge and service standards. 

In the industry many terms such as test coverage and 
fault detection are not well defied and not comparable from 
system to system. Some measures, such as false alarm rate, 
are not measurable in field applications. An immediate 
benefit will come with a consistent, precise, measurable set of 
testability attributes that can be compared across systems and 
within iterations of system design. 

The ability of a system implementation to support its 
fault isolation goals must be measured in terms of both the 
fundamental capability of the diagnostic model to support the 
reasoning process and of the ability of the reasoner to do the 
reasoning. For example, suppose that we have a diagnostic 
system that is intended to work in a time critical 
environment. Furthermore, suppose the diagnostic model 
contains the information required to fully fault isolate to the 
required level unambiguously. If the reasoner is too slow, 
then the system will not satisfy its performance requirements. 
Similarly, if the diagnostic model or the set of tests 
supporting that model contains insufficient information to 

achieve fault isolation to the required level, it will not matter 
how fast the reasoner is, the system will not satisfy its 
isolation requirements. Metrics must be established that allow 
us to clearly identify important testability parameters of both 
models and reasoners. 

MIL-STD-2 165 attempted to standardize both 
programmatic and measurement tasks. Variations in the 
internal program management methods of different 
companies and DoD organizations makes the standardization 
of the programmatic tasks unreasonable. We are exploring 
creating a “Recommended Practice” document to support the 
programmatic aspects of system testability. 

MIL-STD-2165 identified five key elements of a 
comprehensive testability program, including the following: 

1. Testability program plan 
2. 
3. 
4. 
5. 

Establishment of achievable testability requirements 
Participation in the design process 
Prediction and evaluation of design testability 
Inclusion of testability in program reviews 

Lacking well defined testability measures, the tasks of 
establishing testability requirements, and predicting and 
evaluating the testability of the design are extremely difficult. 
This in turn makes effective participation in the design for 
testability process difficult. These difficulties will be greatly 
diminished by the establishment of standard testability 
metrics. Beyond the participation with design engineering 
MIL-STD-2165 also puts emphasis on the information 
exchanged between the testability and logistics functions and 
the testability and maintainability functions, 

As we strive to establish concurrent engineering 
practices, the interchange between the testability function and 
other functions becomes even more important. To create 
integrated diagnostic environments, where the elements of 
automatic testing, manual testing, training, maintenance aids, 
and technical information work in concert with the testability 
element, we must maximize the reuse of data, information, 
knowledge, and software. Complete diagnostic systems 
include BIT, ATE, and manual troubleshooting. It would be 
desirable to be able to predict and evaluate the testability of 
systems at these levels. 

Currently, the AI-ESTATE subcommittee is gathering 
information from the DoD and industry about model 
representations, their associated metrics, and the processes 
put in place to utilize them. The results of this review will 
form the basis for defining the metrics to be included in the 
standard and the procedural guidance to be included in the 
“Recommended Practice.” 

VI. FUTURE WORK 

In spite of the large amount of work that has been done 
on the AI-ESTATE standards and the acceptance of the 
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standards in government and industry, much additional work 
needs to be done to keep the standards in pace with 
technology advances. Currently, several projects are 
underway within the AI-ESTATE subcommittee to do just 
that. 

First, we recognize that there are more approaches to 
performing diagnosis than using fault trees and diagnostic 
inference models. Currently, we are in the process of defining 
a constraint model that will capture temporal, logical, and 
resource constraints in testing and diagnosing a system. 
Related to this is work underway in the ABBET (A Broad 
Based Environment for Test) subcommittee and EDIF 
committee defining a test requirements model (TeRM). 
TeRM that includes constraints for capturing information 
about the behavior of a product and a test resource. We 
expect to be able to work with the constraints defined in 
TeRM to facilitate reasoning with constraint-based systems. 

In addition to the constraint model, we anticipate 
developing models for rule-based systems and for 
connectionist systems. Rule-based systems provided the first 
success stories in diagnosis and artificial intelligence. While 
both the EDIM and the constraint model would be able to 
capture the logical information contained in a rule base, a 
separate model is required that is tailored to the rule-based 
architecture. 

Diagnosis occurs within some context. In fact, the 
context is central to determining the scope of the test and 
diagnosis problem. Unfortunately, capturing information 
about context in a standard way is problematic. The number 
of variables associated with context is excessive, and the 
relationships between those variables are frequently 
unknown. Nevertheless, we find that proper interpretation of 
diagnostic and test information relies upon a common 
understanding of the context in which testing takes place. As 
a result, we are beginning to develop a model of context for 
diagnosis. We believe the model capturing reasoner state 
provides a starting point for capturing context; however, 
much more work is required. Recent work in non-monotonic 
reasoning and categorical reasoning may offer promise in 
further capturing context for the diagnostic problem [ 1 11. 

VIII. AN INVITATION 

The AI-ESTATE family of standards represents the 
consensus of industry participants in SCC20 that standards 
are required for diagnostic reasoners and that these models 
accurately reflect the state of the practice in diagnostic tools. 
As such, SCC20 is constantly seeking out people in 
government, industry, and academia to assist in developing 
the standards. Anyone interested in the work of AI-ESTATE 
or other SCC20 standards, whether user, provider, or a 
generally interested party, is encouraged to get involved. 

Detailed information on the progress of the standards and on 
key personnel is available on the world wide web at 
“http://www.cs.jhu.edu/-sheppard/Pl232”. 

VIII. CONCLUSION 

Reasoning system technology has progressed to the point 
where electronic systems are employing artificial intelligence 
as a primary component in meeting system test and 
verification requirements. This is giving rise to a proliferation 
of AI-based design, test, and diagnostic tools. Unfortunately, 
the lack of standard interfaces between these reasoning 
systems is increasing the likelihood of significantly higher 
product life-cycle cost. Such costs would arise from 
redundant engineering efforts during design and test phases, 
sizable investment in special-purpose tools, and loss of 
system configuration control. 

The AI-ESTATE standard promises to facilitate ease in 
production testing and long-term support of systems as well 
as reducing overall product life-cycle cost. This will be 
accomplished by facilitating portability and knowledge reuse 
and sharing of test and diagnostic information, among 
embedded, automatic, and stand-alone test systems within the 
broader scope of product design, manufacture, and support. 
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