Prototyping a Diagnostic Interface

John W. Sheppard
ARINC Incorporated
2551 Riva Road
Annapolis, MD 21401
jsheppar@arinc.com

Abstract: The ARI is planning to prototype several potential interface
implementations related to TPS transportability and interoperability. For
the diagnostic interface, examination of available commercial standards
has identified only one viable candidate—IEEE Std 1232, AI-ESTATE
(Artificial Intelligence Exchange and Service Tie to All Test
Environments) and its component standards. In this paper, we ¥l discuss
how to apply the AI-ESTATE standards to salisfy the diagnostic interface
requirements for an ARI profotype.

|. INTRODUCTION

According to the Automatic Test System (ATS)
Research and Development (R&D) Integrated Product Team
(IPT) system engineering plan, “the primary goal of the ARI
is to define a generic ATS open systems architecture from
which- specific hardware, software, and system
implementation architectures can derive [1].”” The identified
objectives of defining an open systemn architecture include:

e Supporting life-cycle test

s Supporting TPS rchost

s Supporting and promoting product
information reuse

s Facilitating commercial acceptance

and test

To that end, the ARI has decided to apply a spiral
development approach to defining this generic ATS open
architecture. The approach follows four major evolutions
with prototyping activities occurring in each evolution. These
four evolutions have been identified as:

1. Instrument Interchangeability and Interoperability
2. TPS Transportability and Interoperability

3. Life-cycle Information Exchange

4. Processes and Tools

Within the Department of Defense, there is direction to
move procurement activities toward commercial processes
and standards. To facilitate this process, the use of
commercial standards is being evaluated in defense ATS
environments. When the standards are successfully evaluated,
they will be included in the ATS Executive Agent’s
acquisition guidance requirements for implementing the ATS
critical interfaces [2].

0-7803-4420-0/98/$10.00 ©1998 IEEE

William R. Simpson
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311
rsimpson@ida.org

Currently, the ATS R&D program is analyzing the
results of prototyping Evolution 1 interfaces and is beginning
to consider issues related to Evolution 2. Moving into
Evolution 2 entails incorporating technology to address
requirements on capturing product design data and on
implementing the diagnostic interface (DIA). This document
discusses issues related to the requirements for the DIA
interface [2].

ll. THE DIAGNOSTIC INTERFACE

According to the ATS Critical Interfaces report, the DIA
interface is “the interface protocol linking execution of a test
with software diagnostic processes that analyze the
significance of test results and suggest conclusions or
additional actions that are required [2).” The key issues
identified by this definition include:

s The relationships between test and diagnosis,

s The analysis and interpretation of test results,

» Diagnostic inference resulting from analyzing test
results,

e Recommendations of appropriate actions based on
inference.

Further, the recommendations resulting from diagnoses may
address issues of

e Test setup or preparation,
e Test selection,
¢ Corrective action.

During Evolution 2, the ARI is planning 1o prototype
several potential interface implementations related to TPS
transportability and interoperability. For the DIA interface,
examination of available commercial standards has identified
only one viable candidate—IEEE Std 1232, AI-ESTATE
(Artificial Intelligence Exchange and Service Tie to All Test
Environments) and its component standards[3-5]. This paper
provides a detailed discussion of how to apply the Al-
ESTATE standards to satisfy the DIA interface requirements
for the Evolution 2 prototype.

276

A. Diagnosis

The current approach to testing intertwines the test
procedures, the sequence of tests, and the diagnostic
outcomes. To use the DIA interface effectively, details on the
test procedures must be separated from the details on
diagnosis, and vice versa. This intertwining of the test
procedures with diagnostic information inferred from tests
creates an obstacle in achieving test reuse. By separating test
procedures and “encapsulating” them, the diagnostic
information can be related to them as determined by the
system under test without requiring significant re-work of the
test procedures themselves [6].

To fully understand the importance of this separation of
test and diagnosis, several technical disciplines must come to
bear. The key engineering discipline having a direct impact
on diagnostics and the ultimate efficacy of the diagnostic
interface is termed, restability. In the context of the ARI,
testability is directly related to the ability to isolate faults. As
such, it extends beyond the traditional view of the ability to
control and observe to include the ability to infer the status of
the system.

One of the primary objectives of the ARI is to facilitate
communication between design and test activities to
capitalize on the impact of design on ultimate test
effectiveness. Thus, it becomes useful to consider testability
within the broader context of integrated diagnostics, which is
considered a part of the process of concurrent engineering.
While generally regarded more as a “buzzword” than as a real
discipline, integrated diagnostics includes an important
concept of applying structure to the process of system
support. The ultimate goal of integrated diagnostics is
maximizing the effectiveness of diagnostics, but this goal can
only be achieved in an environment where design and test
elements are utilized in an integrated (i.e., coordinated)
fashion.

The word “diagnosis” is derived from two Greek words
for “to discern apart.” Thus the goal of diagnosis is the
differentiation among multiple things (e.g., faults). In the
context of the ARI, diagnosis is the process of drawing
conclusions about the system under test and can be
considered at one of three levels.

1. Detection. This is the ability of a test, combination
of tests, or a diagnostic strategy to identify that a
failure in a subsystem has occurred.

2. Localization. This is the ability to say that a detected
fault is restricted to some subset of the possible
causes. Specifically, if the unit is not functioning
properly, then localization focuses the attention of
the tester to determine what is wrong.

3. Isolation. This is the identification of a specific
cause of a fault or anomaly through some test,
combination of tests, or diagnostic strategy. The
focus for isolation is determining what must be done
to return the unit to service.

0-7803-4420-0/98/$10.00 ©1998 |IEEE

B. Diagnostic Inference Models

Many approaches exist for performing fault diagnosis. In
fact, methods for improving the diagnostic process have been
studied for many years, with particular attention coming from
the artificial intelligence community. One formal approach
from artificial intelligence that facilitates developing
diagnostics is derived from the principles of formal logic.
This approach uses diagnostic inference models (DIMs) to
capture logical relationships between tests and faults in a unit.

DIMs are constructed to identify causal relationships
between diagnoses and tests. In other words, when
considering only Pass/Fail outcomes, the DIM captures which
faults “cause” which tests to fail. In the more general case
where a test may have three or more outcomes, the
conclusions “causing” the corresponding test outcomes are
identified.

Logically, DIMs provide “rules” for inferring candidate
conclusions (e.g., faults) from a set of test results. In other
words, given a set of test results, the process of diagnosis
with a DIM is to determine which conclusions are consistent
with these results.

Since DIMs only provide the logical relationships
between tests and conclusions, one can see that the DIM is an
abstraction of the test information and does not include
specific details of the tests or the faults themselves. DIMs do
not include procedural information or physical information
about the unit under test.

The process of combining information from multiple,
possibly heterogeneous sources and drawing some conclusion
from this information is called information fusion. The
diagnostic problem can be posed as an information fusion
problem in that information from multiple tests is being
combined to draw conclusions about the health of the unit
being tested. Information fusion carries with it a formal set of
mathematical tools and techniques that are readily applied to
the diagnostic problem.

From the view of information fusion, a test is “any
signal, observation, or other event that may be caused to
happen [6]” and provides information about the system. Thus,
simple observations or formal stimulus-response procedures
are regarded as tests. In addition, a diagnosis is any
conclusion to be drawn about the health-state of the system;
thus, no-fault is a diagnosis. Further, diagnoses may or may
not relate to faults, failure modes, or nominal and anomalous
behaviors of a system.

C. DIA Interface Requirements

To satisfy the requirements for the DIA interface, we
have analyzed the factors affecting test and diagnostic re-use
and measurement capabilities. From this we draw the

following conclusions:

1. It is necessary to separate test from diagnosis to
facilitate re-use of test and diagnostic methodologies

277

and rools. Such separation permits independent
analysis and development. It also allows a plug-and-
play environment to change only the relevant
elements in each of the domains.

2. It is necessary to address issues of incorporating
context and state dependence. These are aspects of
diagnostic problems that have either been embedded
or ignored. Such dependence severely limits the
ability to re-use either test or diagnostic elements.

3. Measurement theory dictates that, to obtain an
accurate diagnosis, reasoning under uncertainty must
be incorporated into diagnostic models and
processes [9, 10]. Calibration only addresses one
element of measurement theory, namely bias.
Random error can best be addressed by statistical
approaches.

4. The largest measure of cost savings will be obtained
through test synthesis. Related to this will be
derivation of diagnostic models. The largest single
cost element in the development of a TPS is labor.
Providing a reasonable tie to design environment
will promote synthesis of tests and diagnostic
models; thereby reducing labor cost. These factors
will be addressed in Evolution 3; therefore, it is
essential that' the DIA interface (defined in
Evolution 2) be capable of being tied to the design
environment.

5. Even utilizing effective reasoning under uncertainty
and test/diagnostic synthesis, variation between
systems and contexts will lead to inaccuracy in
diagnosis. In the long term, the best method for
combating this inaccuracy will be through machine
learning. Machine learning environments will be
dealt with in Evolution 3; therefore, it is essential
that the DIA interface support a machine learning
framework.

We have examined several alternative standards for
satisfying DIA interface requirements, including AI-ESTATE
(P1232), DTIF (P1445), Boundary Scan (P1149), and STIL
(P1450). Based on the above, it is apparent that an IEEE
1232-compliant reasoning system should be used in that it is
capable of incorporating methods addressing each of the
issues raised above. Further, AI-ESTATE can incorporate
implementations of the above-mentioned standards.

lil. AI-ESTATE

Recent initiatives by the Institute of Electrical and
Electronics Engineers (IEEE) on standardizing test
architectures have provided a unique opportunity to improve
the development of test systems. The IEEE P1232 “Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE)” initiative is attempting to usher
in the next generation in product diagnostics by standardizing
diagnostic services and development tool interfaces. By using

0-7803-4420-0/98/$10.00 ©1998 IEEE

problem encapsulation, defining interface boundaries,
developing exchange formats and specifying standard services,
AI-ESTATE provides a methodology for developing diagnostic
systems that will be interoperable, have transportable software,
and move beyond vendor and product specific solutions.

The concepts in the AI-ESTATE standard are not limited
to the arena of automatic test systems, but apply to manual,
automatic, and semi-automatic test, as well as the domains of
electronic, mechanical, pneumatic, and other types of
systems. The AI-ESTATE subcommittee designed the P1232
standards to abstract specific test and product details out of
the diagnostic models and to tie these models to domain-
specific models as needed to complete the test system.

The AI-ESTATE subcommittee has established several
ambitious goals for the AI-ESTATE standards that include:

e Provide a standard interface between diagnostic
reasoners and other functional elements that reside
within an AI-ESTATE system.

e Provide formal data specifications to support the
exchange of information relevant to the techniques
commonly used in system test and diagnosis.

e Maximize compatibility of diagnostic reasoning
system implementations.

e Accommodate embedded, coupled, and stand-alone
diagnostic systems.

e Facilitate portability,
diagnostic knowledge.

reuse, and sharing of

To achieve these goals, the AI-ESTATE subcommittee
defined an architecture for a standard diagnostic system and
then defined component standards for information exchange
and software interfaces.

A. AI-ESTATE Architecture

The AI-ESTATE architecture presented in Figure 1
shows a conceptual view of an AI-ESTATE-conformant

system [3]. AI-ESTATE applications may use any
combination of functional elements and inter-function
communication as shown in the figure. The service

specification (P1232.2), or other specifications relevant to the
particular functional element, define the form and method of

communication between reasoning systems and other
functional elements. AI-ESTATE identifies reasoning
services provided by a diagnostic reasoner Sso that

transactions between
reasoner are portable.

AI-ESTATE assumes a client-server or cooperative
processing model in defining the diagnostic services. One
significant difference between a traditional client-server
model and AI-ESTATE is the assumption of an abstract
application executive mediating service requests. In some
sense, this application executive can be regarded as a service
broker for the subsystems in the test environment. Services
are “published” to the application executive, and service

test system components and the

278

Test Controller

ABBET

User Interface
X, Motif, Win
/Epphceipon Info Mgmt
ecutiv
—!

Figure 1. AI-ESTATE Architecture

requests from other subsystems are matched to the available
services to satisfy the request. This idea is analogous to the
CORBA architecture except with no underlying assumption
of being object-oriented. Further, since the application
executive is abstract, it is still possible for subsystems to
interact directly with other subsystems using their published
services.

From the vantage point of an AI-ESTATE-conformant
diagnostic reasoner, one sees the interaction with the
application executive from two views, First, the AI-ESTATE-
conformant reasoner makes available several services (as
defined by IEEE P1232.2) to the application executive for
traversing diagnostic models or actually performing diagnosis
given test results. Second, the diagnostic reasoner interfaces
with other subsystems in the test environment (e.g., the test
system) by requesting services from the application
executive. For example, while the reasoner will not perform
any tests, it is likely to request certain tests be performed in
certain contexts. The application executive will be used to
submit the request to the test system.

In addition to interfacing with the application executive,
it is assumed the AI-ESTATE-conformant reasoner has direct
access to diagnostic models. IEEE Std 1232.1 provides a
means for exchanging models between conformant reasoners,
and this exchange can either be accomplished using model
traversal services or using the interchange format defined in
1232.1.

B. Diagnostic Models

The current version of IEEE Std 1232.1 defines three
models for use in diagnostic systems—a common element
model, a fault tree model, and an enhanced diagnostic

inference model [4]. All of the models were defined using
ISO 10303-11, EXPRESS [7]. EXPRESS is a language for

defining information models and has received widespread
acceptance in the international standards communities of ISO

0-7803-4420-0/98/$10.00 ©1998 IEEE

and IEC. For example, EDIF 3 0 0 and EDIF 4 0 O were
defined using EXPRESS.

The common element model defines information entities,
such as a test, a diagnosis, an anomaly, and a resource. The
common element model also includes a formal specification
of costs to be considered in the test process. The remaining
two models represent knowledge that may be used by specific
types of diagnostic systems. The fault tree model defines a
decision tree based on outcomes from tests performed by the
test system. Each node of the tree corresponds to a test with
some set of outcomes. The outcomes of the tests are branches
extending from the test node to other tests or to diagnostic
conclusions (such as No Fault). Currently, test programs are
designed around static fault trees; therefore, the AI-ESTATE
subcommittee decided to include a representation for a fault
tree in the standard, even though fault trees are not typically
considered to be Al systems.

The AI-ESTATE fault tree model imports elements and
attributes from the common element model. Typically, test
systems process fault trees by starting at the first test step,
performing the indicated test, and traversing the branch
corresponding to the test’'s outcome. The test program
follows this procedure recursively until it reaches a leaf in the
tree, indicating it can make a diagnosis.

The enhanced diagnostic inference model (EDIM) is
based on the dependency model. Historically, test engineers
used the dependency model to map relationships between
functional entities in a system under test and tests that
determine whether or not these functions are being performed
correctly. In the past, the model characterized the
connectivity of the system under test from a functional
perspective using observation points (or test points) as the
junctions joining the functional entities together. If a portion
of the system fed a test point, then the model assumed that
the test associated with that test point depended on the
function defined by that part of the system.

279

Recently, researchers and practitioners of diagnostic
modeling found that the functional dependency approach to
modeling could lead to inaccurate models. Believing the
algorithms processing the models were correct, researchers
began to identify the problems with the modeling approach
and to determine how to capitalize on the power of the
algorithms without inventing a new approach to model-based
diagnosis. They found that the focus of the model should be
on the tests and the faulits those tests detect rather than on
functions of the system. In particular, the focus of the model
shifted to the inferences drawable from real tests and their
outcomes, resulting in a new kind of model called the
“diagnostic inference model.” The enhanced diagnostic
inference model, defined by AI-ESTATE, generalizes the
diagnostic inference model by capturing hierarchical
relationships and general logical relationships between tests
and diagnoses.

The information models defined in the AI-ESTATE
standard provide a common way of talking about the
information used in diagnosis, but this is not enough for a
standard. In AI-ESTATE, these models also provide the basis
for a neutral exchange format. Using this neutral format,
multiple vendors can produce diagnostic models in the format
to enable their use by other tools that understand that format.

To specify the neutral exchange format, the AI-ESTATE
subcommittee decided to use an instance language defined by
the ISO STEP (Standards for the Exchange of Product data)
community based on EXPRESS—EXPRESS-I [8].
EXPRESS-I is an instance language defined to facilitate
developing example instances of information models and to
facilitate developing test cases for these models.

As an alternative, the ISO STEP community has defined
a standard physical file format derived from EXPRESS
models. Unfortunately, the STEP physical file format is
difficult for a human to read but easy for a computer to
process. The AI-ESTATE subcommittee found added benefit
in EXPRESS-I over the STEP physical file format in that the
language is both computer-processable and human-readable.

C. Diagnostic Services

The AI-ESTATE standard defines several software
services to be provided by a diagnostic reasoner [S]. The
nature of these services enables the reasoner to be embedded
in a larger test system; however, it is possible that the
diagnostic system is a stand-alone application connected to a
graphical user interface of some kind. Currently, the services
defined by AI-ESTATE are classified as either static model
fraversal services, reasoner state services, and reasoner
control services. Following the object-oriented programming
paradigm, we found that most services could be represented
in one of four forms: create, get, put, or delete.

With the publication of the data and knowledge
specification, the first set of services defined for the service
specification focused on the existing models. As described
above the data and knowledge specification defines three

0-7803-4420-0/98/$10.00 ©1998 IEEE

models—a common element model, a fault tree model, and
an enhanced diagnostic inference model (EDIM). The
common element model provides definitions of basic entities
expected to be used by any diagnostic reasoner, and the fault
tree model and EDIM organize these entities in a way to
facilitate diagnostic reasoning.

The model traversal services provide the means for a
reasoner to process the model on-line. As an example, IEEE
Std 1232.1-1997 defines, using EXPRESS, a diagnostic
model to be the following entity:

ENTITY diagnostic_model;

name name_type;
description description_type;
model_test SET [1:7] OF test,

model_diagnosis :

model_resource

model_anomaly :
END_ENTITY;

SET [2:7] OF diagnosis;
SET [0:7] OF resource;
SET [0:7] OF anomaly,

Based on this entity, we can define services for
traversing the model to obtain information about a particular
diagnostic model. For example, consider the set of tests
defined in a particular model. To find the set of tests, we must
first have access to the model itself. To obtain this access, we
need to know either the name or the internal identifier of the
model.

The service, get_diagnostic_model (name),
returns an identifier for a diagnostic model identified by its
name. Once we have the identifier, we can then access the set
of tests defined in the model with the service
get_model_tests (model_id). This service would
return a list of tests that can then be used with another service
to reference the actual test entities.

Associated with each entity in the model will be the four
types of services given. above (i.e., create, get, put, and
delete). EXPRESS includes the ability to define functions
and procedures (similar to a programming language), but the
intent is for these functions and procedures to be used in
defining constraints on model entities. The AI-ESTATE
committee observed, however, that EXPRESS provides a
natural fit between information modeling and service
definition since the models provide the type system. As a
result, the committee decided to use EXPRESS to define the
services as well. For example, get_model_tests is
defined in P1232.2 as follows:

FUNCTION get_model_tests(model_id:diagnostic_model):
SET (1:7] OF test;
END_FUNCTION;

Given a model has been loaded and a system is being
tested, the model needs to be processed for diagnosis to be
performed. Simply traversing the models defined in P1232.1
is not useful since the model only defines expectations rather

280

than reality. Any reasoner will maintain an internal state of its
reasoning process that will be used to report a diagnosis or to
explain its reasoning. For diagnostic reasoners to be plug-
and-play compatible, certain diagnostic state information
needs to be in common between the reasoners.

To facilitate defining services for accessing or modifying
the state of the reasoner, the AI-ESTATE committee made
some assumptions about common diagnostic information.
These assumptions were derived from the common element
model and extended to support various types -f reasoners.
Specifically, the AI-ESTATE committee has derined a new
information model, called the dynamic context model (DCM),
that provides the type structure for reasoner state.

The “starting point” for the model is given by a
diagnostic session. The session corresponds to a sequence
of steps in which the state of the reasoner changes at each
step. At each step, the reasoner keep track of what it knows
about the state of models (i.e., whether or not a model is
available for processing), the resources, the tests, and the
diagnoses. In addition, for each resource and test, the actual
cost incurred at that step (both time and non-time) is
recorded.

This model can be traversed similarly to the models
defined in P1232.1. More interesting is the fact that entities
can be created dynamically and the states of these entities
vary from step to step. Another interesting byproduct of this
model is that, by organizing the state according to steps in a
session, the information captured can be fed to a maintenance
data collection system and retained as a diagnostic history.

Another issue related to reasoner state is how one
“explains” the reasoning process. During committee
discussion, this was a highly contentious issue since no one
could agree on a good method for explanation. The debate
was settled when it was observed that the process of
traversing reasoner state provides a rudimentary approach to
explanation. Then, if tool developers want to provide “higher
order” services, they can use the standard services to collect
the necessary information. For example, explaining the
currently inferred value for a diagnosis can be accomplished
by identifying the tests in the model that affect the diagnosis
and showing the step in the session where one of these tests
was performed that led to the current assertion.

IV. EXAMPLES

The first “reasoner” model developed for AI-ESTATE
was the fault tree model. This model provides a baseline for
AI-ESTATE since most test environments in existence today
follow some kind of fixed test strategy that can be modeled as
a fault tree. The AI-ESTATE fault tree also extends the
notion of the traditional fault tree in two ways. First it permits
test confidences to be processed to establish a level of
“belief” in the reported diagnosis. This provides a simple
facility for satisfying DIA requirement to reason with
uncertain information, even in the fault tree. Second, it
provides the capability of reporting “intermediate diagnoses”

0-7803-4420-0/98/$10.00 ©1998 IEEE

pL—t-"—LF
=

Figure 2. Example Fault Tree

in the interior of the tree rather than waiting until the leaves
of the tree to report diagnostic information.

The following example shows a small portion of a fault
tree specified in EXPRESS-I (Figure 2). Note the fault tree
model assumes the incorporation of entities from the common
element model. These entities are not shown in the example.
In this example, the first entity, given as FT, identifies the
fault tree and points to the first step (Step1) of the tree.

FT = fault_tree_model

SubOf(@model 1);
fault_tree -> @Stepl;
b

Stepl = fault_tree_step
{

test_step -> @t3;

result -> (@S1_Result],@S1_Result2);
)

S1_Resultl = test_result

{
test_outcome -> @t3_pass;
next_step -> @Step2;
current_diagnosis -> ();

B

Stepl shows we are considering test £3 that has two
results, S1_Resultl and S1_Result2 corresponding to
the test passing or failing respectively. Assuming the test
passes, we go to S1_Resultl that points to the next step in
the tree, Step2.

The “primary” reasoning model defined in AI-ESTATE
is the enhanced diagnostic inference model (EDIM).
Philosophically, the EDIM is derived from the assumption
that information provided by tests is what matters rather than
focusing on the diagnoses that might be drawn. The EDIM
does not explicitly include sequence information but instead
records logical relationships between tests and diagnoses.

Since sequencing can be a significant concern as a part
of the diagnostic context, AI-ESTATE provides a means for
coupling EDIMs and fault trees together by way of the
diagnostic_knowledge entity in the common element
model. Atany point, if a test is selected that is simultaneously

281

a test in the EDIM and an initial test in a fault tree, the
application executive can shift from the EDIM to the fault
tree and follow the predefined sequence. When the fault tree
terminates, if tests remain that could further resolve the
diagnoses, the application executive can shift back to the
EDIM to continue. This mechanism partially fulfills the DIA
requirement for addressing context in diagnostics.

The following example shows a small portion of an
EDIM derived from a digital fault dictionary. As described
earlier, the EDIM is a set of inferences as shown in the
inference attribute of edim.

edim = enhanced_diagnostic_inference_model
{
SubOf(@modell);
inference -> (@t1_pass_implies,
@t1_fail_implies,
@t2_pass_implies,
@t2_fail_implies,
@t3_pass_implies,
@13 _fail_implies,
@t4_pass_implies,
@t4_fail_implies);
B

t1_pass_implies = outcome_inference
{
test_outcome -> @t1_pass;
conjuncts ->
(@x_sal_absent,@y_sal_absent,
@S_sal_absent,@C_sal,absent);
disjuncts -> ();

B
x_sal_absent = inference

SupOf(@x_sal_elim);
pos_neg -> inference_type{!positive};
confidence -> confidence_value(0.99);

B

A particular inference (¢1_pass_implies), specifies
the identification of the actual test outcome (t1_pass) and
the inferences that can be drawn. Note the test outcome
points to the respective test as one of its attributes thus
eliminating the need for the inference to point directly to the
test. In this example, the inferences are limited to a set of
AND diagnostic inferences in which several candidate faults
are eliminated from consideration.

Three example services are provided to demonstrate the
tie to the models and the specification in EXPRESS. The
service get_test_outcomes is a model traversal service
that returns the set of outcomes associated with the identified
test. The service put_actual_outcome demonstrates
how an attribute can be updated using the services but is tied
to the dynamic context model rather than the knowledge

0-7803-4420-0/98/310.00 ©1998 IEEE

model. Thus there are no modifications of the set of outcomes
tied to a test, but the specific outcome received for a test is
stored with the active test evaluated at the current step. The
service get_hypothesis is also tied to the dynamic
context model and simply returns the set of diagnoses that are
identified at the current step in the process.

The following example demonstrates using model
traversal services to process fault tree model.

curr_step = get_fault_tree(model_id),
while (curr_step '= NULL)
{
test = get_test_step(curr_step);
outcome = perform_Ltest(zest);
ourcomes = get_test_outcomes(test);
for (i=0;i<len(outcomes);i++)
if (outcome == outcomes{il)
{
result = get_result(curr_step,i);
curr_step = get_next_step(result);
break;
}
}

answer = get_current_diagnosis(result);

Technically, it is not necessary to use the dynamic
context model with the fault tree. However, from the
perspective of consistency in reasoning and the ability to
track reasoner state (for historical or other purposes), it is still
advisable to use the DCM. Note that the service
perform_test is not an AI-ESTATE service. All of the
other services correspond to services defined by the Al-
ESTATE standard. It is assumed the test environment
through the application executive is providing this service.

The third example demonstrates the use of the dynamic
services to process an EDIM.

curr_step = get_step(session_id,0);

while (test_available(curr_step))

{
test = choose_test(curr_step);
outcome = perform_test(rest);
next_step = create_step();
put_step(session_id,next_step);
put_actual_outcome(next_step,testoutcome);
update_state(session_id,next_step);
curr_step = nexi_siep,

)

answer = get_hypothesis(session_id,curr_step),

Several services in addition to the AI-ESTATE model
traversal services (either persistent or non-persistent) are
required, including test_available, choose_test,
perform_tesgt, and update_state. The services
test_available, choose_test, and
update_state are services tied to reasoner control. The

282

service test_available determines if any tests have
unknown outcome (or perhaps low confidence) and can be
performed. The service choose_test selects a test from
the set of available tests to be performed. The service
update_state uses the active model to update the states
of tests and diagnoses in the model and assigns the new state
to the current step in the DCM.

V. SUMMARY

Given the assumptions of the AI-ESTATE architecture,
the models and services of AI-ESTATE have broad
applicability to advanced diagnostics. As claimed in the
acronym, it is believed that AI-ESTATE covers all essential
elements of diagnostic reasoners in all test environments.
Nothing in the standard limits the applicability of the
standard to a particular approach to test; however, the
generality covers the diagnostic requirements for ATS as
needed in Evolution 2 and 3.

The principal assumption of AI-ESTATE is separation of
test and diagnosis. Without this separation, the standards
cannot be used effectively, nor can the DIA requirements be
satisfied. By separating the diagnostics from the test process,
it also provides a means of developing more accurate
diagnostics and a means for understanding and validating the
diagnostics.

The advantage to AI-ESTATE is that it provides a
consistent framework for incorporating diagnostic knowledge
and services in any test environment. For example, the
standards provide facilities for reasoning with multiple
models and for coupling fixed fault trees and dynamic

0-7803-4420-0/98/$10.00 ©1998 IEEE

EDIMs, which may be required in Evolution 2 depending on
the UUTs chosen for the prototype. In addition, this
framework supports a plug-and-play approach for
incorporating diagnostic reasoners into the ATS architecture.

REFERENCES

{11 ATS R&D IPT. (1997, April). Systems Engineering Plan for a Generic
ATS Open System Architecture, Version 1.01.

[21 ATS R&D IPT. (1996, September). Automatic Test System Critical
Interfaces Report, Release 1.

[31 IEEE Std 1232-1995. Standard for Atificial Intelligence Exchange and
Service Tie to All Test Environments (AlI-ESTATE): Overview and
Architecture, Piscataway, NI: IEEE Standards Press.

[4] 1EEE Std 1232.1-1997. Trial Use Standard for Asficial Intelligence
Exchange and Service Tie 10 All Test Environments (AI-ESTATE): Data
and Knowledge Specification Piscataway, NJ: IEEE Siandards Press.

[51 1EEE P1232.2. (1998, January). Trial Use Standard for Antificial
Intelligence Exchange and Service Tie 1o All Test Environments (Al-
ESTATE): Service Specification Draft 4.2,

[61 W.R. Simpson and J. W. Sheppard. 1994 .System Test and Diagnosis,
Kluwer Academic Publishers.

{71 1SO 10303-11:1994. Industrial Automation Systems and Integration—
Product Data Representation and Exchange—Part 11: EXPRESS
Language Reference Manual)

(8] ISO 10303-12. Industrial Automation - Systems and Integration—
Product Data Representation and Exchange—Part 12: EXPRESS-J
Language Reference Manual Technical Report.

(9] William R. Simpson 1998, “Inaccurate Diagnosis and What to Do
about Them’™ digest of the 1998 IEEE International Workshop on
System Test and Diagnosis (IWSTD '98), Alexandria. Virginia.

[10] J. W. Sheppard. and W. R. Simpson 1998. “Managing Conflict in
System Diagnosis”, Computer, Volume 31, Number 3 IEEE Computer
Society , Alameda, California

283

