
AI-ESTATE-THE NEXT GENERATION

John Sheppard
AFUNC

2551 Riva Road
Annapolis, MD 21401

jsheppar@arinc.com
410-266-2099

Abstract - In this paper, we present an overview of the
current and future directions of the AI-ES TA TE Standards.
We address the concerns of document organization,
information modeling, service versus API specification, and
other issues raised by the AI-ESTATE community. We also
discuss the vision of the AI-ESTATE subcommitfee in its
work to integrate the AI-ESTATE information models and
projects such as testabi/i~/diagnosabi/ity assessment and
testlmaintenance feedback.

INTRODUCTION

In 1998, the third of a series of three standards was
published by the IEEE addressing issues in system-
level diagnostics. The Artificial Intelligence Exchange
and Service Tie to All Test Environments (Al-
ESTATE) family of standards is now complete. Or is
it? IEEE Std 1232-1995 defines the architecture of an
AI-ESTATE-conformant system and has been
published as a "full-use" standard; however, this
standard was published before the vision of Al-
ESTATE and fully gelled. IEEE Std 1232.1-1997
defines a knowledge and data exchange standard and
was published as a "trial-use" standard. Trial-use
indicates that it is preliminary in nature, and the
standards committee is seeking comments from
organizations attempting to implement or use the
standard. In 1998, IEEE Std 1232.2-1998 was
approved. Its publication, also as a "trial-use" standard
is imminent. This standard formally defines a set of
standard software services to be provided by a
diagnostic reasoner in an open-architecture test
environment. Since it is also a trial-use standard,
comment and feedback is necessary here as well.

Following the completion of the P1232.2 ballot, the Al-
ESTATE subcommittee began examining the
structure of the standards to determine if a better
organization existed to make the standard easier to

Mark Kaufman
W A S

PO Box 5000
Corona, CA 91718

kaufman.mark@corona.navy.mil
210-522-2190

understand and to implement. A unified version of the
three standards is large and complex. The standards
were developed using information modeling, resulting
in the definition of four information models addressing
static and dynamic aspects of the diagnostic domain.
In addition, several issues have been identified by
members of the AI-ESTATE subcommittee and
organizations attempting to implement the standards.

In this paper, we present an overview of the current
and future directions of the AI-ESTATE standards. We
address the concerns of document organization,
information modeling, service versus Applications
Program Interface (API) specification, and other
issues raised by the AI-ESTATE community. We also
discuss the vision of the AI-ESTATE subcommittee in
its work to integrate the AI-ESTATE information
models and projects such as testability/diagnosability
assessment and test/ maintenance feedback.

THE AI-ESTATE ARCHITECTURE

According to IEEE Std 1232-1995, the AI-ESTATE
architecture is "a conceptual model" in which "AI-
ESTATE applications may use any combination of
components and intercomponent communication" [l].
On the other hand, according to IEEE Std 1232.2-
1998, AI-ESTATE includes explicit definitions of
services to be provided by a diagnostic reasoner,
where the services "can be thought of as responses to
client requests from the other components of the
system architecture" [2]. More specifically, "each of
the elements that interface with the reasoner will
interact through [an] application executive and will
provide its own set of encapsulated services to its
respective clients" [2].

0-7803-5432-X/99/$10.00 0 1999 EEE 11

mailto:jsheppar@arinc.com
mailto:kaufman.mark@corona.navy.mil

Figure 1. AI-ESTATE Architecture

Although not necessarily obvious from the standards
themselves, these two "views" of the AI-ESTATE
architecture present an interesting dichotomy.
Specifically, the architecture standard provides a
concept of AI-ESTATE that permits any
communication mechanism to be used between
components of a test environment in support of the
diagnostics provided by that environment. The service
specification, on the other hand, seems to cast the
communication mechanism in the form of a client-
server architecture.

We note that the intent of AI-ESTATE is to provide a
formal, standard framework for the exchange of
diagnostic information (both static and dynamic) in a
test environment. This exchange occurs at two levels.
At the first level, data and knowledge is exchanged
through a neutral exchange format, as specified by
IEEE Std 1232.1-1997 [3]. At the second level,
information is exchanged as needed between software
applications within the test environment. This
information includes entities as read in from a model
or information on the current state of the diagnostic
process.

To facilitate encapsulation of the information and the
underlying mechanisms providing that encapsulation,
AI-ESTATE assumes the presence of an "application
executive." We emphasize that this application
executive need not be a physically separate software
process but can be identified as a "view" of the
software process when it involves the communication
activity. This view of the architecture is shown in
Figure 1. In the following sections, we will provide a
more detailed discussion of the exchange and service
elements of the architecture, followed by a discussion
of the issues involved to ensure AI-ESTATE is a
viable standard for next generation test systems.

Data and Knowledge Exchange

IS0 10303-11 (EXPRESS) and IS0 10303-12
(EXPRESS-I) are used to define information models
and exchange formats for diagnostic knowledge [4],
[5]. These international standards being maintained
by the STEP (Standard for the Exchange of Product
model data) community. The current approach to
static information exchange within AI-ESTATE is to
derive the exchange format from the formal
information models as specified in the IS0 standards.

The purpose of information modeling is to provide a
formal specification of the semantics of information
that is being used in an "information system."
Specifically, information models identify the key
entities of information to be used, their relationships to
one another, and the "behaviof of these entities in
terms of constraints on valid values [6]. The intent is
to ensure that definitions of these entities are
unambiguous.

For example, central to the test and diagnosis problem
is the definition of a "test." If we ask a digital test
engineer what a test is, it is possible that the answer
will be something like "a set of vectors used to
determine whether or not a digital circuit is working
properly." On the other hand, if we ask a diagnostic
modeler what a test is, the answer is likely to be "any
combination of stimulus, response, and a basis for
comparison that can be used to detect a fault."

On the surface, these two definitions appear very
similar; however, there is a fundamental difference.
For the digital test engineer, there is an implicit
assumption that a "test" corresponds to the entire suite
of vectors. For the diagnostic modeler, individual
vectors are tests as well.

As a similar example, the test engineer and diagnostic
modeler are likely to have different definitions for
"diagnosis." The act of doing diagnosis, for most test
engineers, corresponds to running tests after dropping
off of the "go-path.'' For the diagnostic modeler, since
"no fault" is a diagnosis, the entire test process
(including the go-path) is part of doing diagnosis.

It may appear that we are "splitting hairs," but formal
definition of terms and information entities is an
exercise in splitting hairs. Further, such hair-splitting is
essential to ensure that communication is
unambiguous-especially when we are concerned
with communication between software processes. No
assumption can go unstated; otherwise, the risk exists

12

Figure 2. Revised Common Element Model

that something will be misunderstood. Information
models formally state all of the assumptions.

A New Information Model

When IEEE 1232.1 was published, it was published as
a "trial-use" standard to provide a period for people to
study it, attempt to implement it, and provide feedback
to the AI-ESTATE committee on the ability of the
standard to satisfy the stated requirements. Since
publication, comments have been received to indicate
that ambiguity still exists in the information models.

Because of the concern that the information models
are still ambiguous, the models are undergoing close
examination and modification. It is interesting to note
that much of the ambiguity has been identified in
connection with a related standard being developed by
the AI-ESTATE committee-PI522 Standard for

Testability and Diagnosability Metrics and
Characteristics. AI-ESTATES approach to developing
this new standard involved defining the rnetrics based
on the information models within the PI232 standard.
As we were identifying metrics to be standardized, we
discovered that the current models were incapable of
supporting their definition.

A conceptual view of the revised common element
model is shown in Figure 2. To support this revised
model, additional reorganization of the entities in the
model is undeway (as shown in Figure 3).

Of note in the revised model is the addition of a
context entity and the differentiation between fault and
fund ion^ Many diagnostic tools are highly context
dependent (e.g., different procedures are suggested
based on the environmental conditions of the test or
the skill levels of the maintenance technicians). In

13

(INV) parent S[O:?]
I memberS[O:?] I

(Mv) predecessor
SUCCeSSOr I

(3
(ABS)

hierarchical-element
1

Y h Y
failwe fault

Figure 3. FunctionlFauIt Information Model

addition, several tools focus on modeling function
rather than physical faults to support modeling at the
system level. Since the distinctions among context
and type of analysis were not previously made
explicit, new entities were defined to eliminate
ambiguity that may arise from different approaches
and contexts for modeling.

Diagnostic Services

The approach taken to defining services in Al-
ESTATE has been based on the traversal (i.e., the
following of the relationships defined between model
entities to access specific pieces of information in the
models) of the information models. The "simplest"
services involve traversing the models defined in
IEEE 1232.1 (i.e., the exchange models); however,
these models provide little functionality in terms of
actual diagnosis.

In IEEE 1232.2, a novel use of information modeling
was applied in that a dynamic information model was
specified to support dynamic services. This model,
called the "dynamic context model," relied on
dynamically creating entities that populate the model
during a diagnostic session. In fact, as suggested by
"dcm.session" and "dcm.step" in the model shown in
Figure 2. a diagnostic session is modeled as a
sequence of steps instantiating from the set of
possible values specified in the static model. Details
of how the service specification is expected to be
implemented can be found in [7], [8].

One of the concerns raised by a member of the Al-
ESTATE committee was whether the standard
specifies a set of services or simply an API. The claim

was that the service specification must include a
behavior specification as well and that this can only be
accomplished by defining a set of baseline behaviors,
perhaps through some sort of test bed.

The committee observed that people have different
opinions over the difference between a service
specification and an API specification. Many, in fact,
took issue with the claim that they were different.
Further, it was determined that including test cases to
specify standard behavior was not desirable in this
context due to the wide variety of diagnostic
approaches uses common diagnostic knowledge.
Rather, it was believed that it was more important for
the information itself to be standardized and the
specific behavior to be left to the implementation.

A VISION FOR TEST AND DIAGNOSIS
STANDARDS

The vision of AI-ESTATE is to provide an integrated,
formal view of diagnostic information as it exists in
diagnostic knowledge bases and as it is used (or
generated) in diagnostic systems. We assert that the
whole purpose of testing is to perform diagnosis (91.
In justifying this assumption, we rely on a very general
definition of diagnosis, derived from its Greek
components (ba ",qvwmcw) meaning, "to discern
apart." Given such a broad definition, all testing is
done to provide information about the object being
tested and to differentiate some state of that object
from a set of possible states.

In support of this vision, the AI-ESTATE committee
has been working on combining the existing standards
into a single, cohesive standard. This "unified

14

standard provides formal specifications of all of the
information models (both for file exchange and for
diagnostic processing), from which the service
specifications are then derived and specified. The
architectural framework is retained at the conceptual
level to emphasize that a wide variety of
implementation models are possible that still support
standard exchange of information as long as the
definition of that information is clear and
unambiguous. Thus, in a sense, the models define the
architecture, and the implementation is left entirely to
the implementer.

With this vision in mind, we believe AI-ESTATE plays
a central role in any test environment (thus the “All
Test Environments” part of the name). To date, the
focus of the standards has been the development of
specifications supporting diagnosis in the traditional
sense of the word (i.e., fault isolation). However, the
broader context within which AI-ESTATE is envisioned
to participate involves tying diagnostic information to
explicit product behavior descriptions, assessments of
the ability of testing to satisfy its requirements, and
maturation of the diagnostic process through test and
maintenance information feedback.

Ties to Testability

In 1997, the AI-ESTATE committee began to work on
a new standard focusing on replacing the cancelled
MIL-STD 2165 [IO]. The military standard focused on
specifying the essential elements of a testability
program and explained the elements needed to define
a testability program plan. In addition, MIL-STD 2165
included the “definition” of several testability metrics,
including a testability checklist to be used to
determine overall system testability. With the
cancellation of military standards and specifications by
the Perry Memo in 1994 [l l] , and with the lack of
specificity and clarity in MIL-STD 2165, it became
evident that a replacement was necessary.

The approach being taken to develop this standard
involves defining testability and diagnosability metrics
based on standard information models. Specifically, it
was found that the AI-ESTATE models provided an
excellent foundation for defining these metrics. As an
example, one metric defined using the model is
Fractions of Faults Detected (FFD).

The FFD metric assumes the existence of a diagnostic
model that ties tests (especially test outcomes) to
potential faults in the system analyzed. Within Al-
ESTATE, tests, diagnoses, and faults are modeled
explicitly in the common element model. In addition,

AI-ESTATE includes specifications for two diagnostic
models-the fault tree model and the Enhanced
Diagnostic Inference Model (EDIM). Due to its
generality, the EDIM was used to define FFD.

The assumptions used to define FFD are as follows:

We are interested in the various metrics at a
particular level;

A hierarchical element exists at a particular level;

No descendant of a hierarchical element is at the
same level as that hierarchical element; and

At this point, we don’t care about the ordering of
the levels.

From these assumptions and the information models,
we can define FFD using the procedural constructs of
EXPRESS. Specifically, a function (FFD) can be
specified as in Figure 4. In the process of defining
this one metric, several issues were identified. These
issues are discussed in detail in [12].

Ties to Maintenance Feedback

In 1993, a Project Authorization Request (PAR) was
submitted to the IEEE for new standards project
related to specifying information and services for test
and maintenance information feedback. The Test and
Maintenance Information Management Standard
(TMIMS) project was approved by the IEEE in early
1994. The focus of this project was to define
exchange and service standards (similar to Al-
ESTATE) which support the test and diagnostic
maturation process. In 1998, due to a lack of progress,
the TMIMS PAR was cancelled.

AI-ESTATE continues to require definition of
exchange and service standards related to test and
maintenance information. In 1998, shortly after the
cancellation of the TMIMS PAR, the AI-ESTATE
committee decided to include test and maintenance
information in its scope. The approach will be
consistent with AI-ESTATE (i.e., the definition of
information models and EXPRESS-level services
derived from traversing the models). Further, it is
anticipated that the starting point for the new models
will be the dynamic context model in IEEE 1232.2. By
keeping track of the sequence of events during a
diagnostic session, much of the historical information
is identified and captured that can be used for later
diagnostic maturation.

15

FUNCTION ffd(model:EDIM.edim; 1vl:CEM.level) : REAL;
LOCAL

diag-count : INTEGER;
diags : SET LO:?] OF EDIM.inference
detect-set : SET [O:?] OF CEM.diagnosis := NULL;

END-LOCAL;

diag-count := SIZEOF(QUERY(tmp <* model.mode1-diagnosis I
tmp.leve1-of-diagnosis = l v l) ;
REPEAT I := LOINDEX(model.inference) TO HIINDEX(rnodel.inference);

diags := QUERY(tmp <* model.inference[Il.conjuncts I
diags := diags + QUERY(tmp <* model.inference[il.disjuncts I
diags := QUERY(tmp <* diags I

(TYPEOF(tmp) = 'EDIM.diagnostic-inference')) ;

(TYPEOF(tmp) = 'EDIM.diagnostic-inference'));

tmp.pos-neg = nega t i ve OR
NOT(tmp.diagnostic-assertion = ' G o o d ')) ;

tmp.leve1-of-diagnosis = l v l) ;
detect -set := detect-set + QUERY(tmp c* diags.for-diagnosis I

END-REPEAT;
RETURN(SIZEOF(detect-set) / diag-count);

END-FUNCTION;

Figure 4. Sample Metric Definition in EXPRESS

Ties to Product Descriptions

Through the 199Os, the IEEE has been developing a
family of standards under the umbrella of "A Broad
Based Environment for Test" (ABBET) [13], [14]. An
early architecture of ABBET, based on information
modeling, presented ABBET as five layers: 1) product
description, 2) test requirementslstrategy, 3) test
methods, 4) test resources, and 5) instrumentation.
Since then, standards for the "lower layers" of ABBET
(i.e., layers 3-5) have been defined; however, it has
long been recognized that the major benefit from
standardization will come from the "upper layers" (i.e.,
layers 1 and 2).

AI-ESTATE satisfies many of the requirements related
to layer two of ABBET (however, AI-ESTATE has
never been considered part of the ABBET family).
Further, a recent proposal for a new information
model-based standard, called the Test Requirements
Model (TeRM), will address specific concerns of test
requirements 1151, [16]. Standards for the product
description layer have always been problematic due to
issues related to the revelation of intellectual property.
With the combination of TeRM, AI-ESTATE, and
TMIMS, it is anticipated that intellectual property can

be hidden from information provided in standard form
while still supporting the test engineer fully.

CONCLUSION

Reasoning system technology has progressed to the
point where electronic and other complex systems are
employing artificial intelligence as a primaly
component in meeting system test and verification
requirements. This is giving rise to a proliferation of
AI-based design, test, and diagnostic tools.
Unfortunately, the lack of standard interfaces between
these reasoning systems has increased the likelihood
of significantly higher product life-cycle cost. Such
costs arise from redundant engineering efforts during
design and test phases, sizeable investment in
special-purpose tools, and loss of system
configuration control.

The AI-ESTATE standards promise to facilitate ease
in production testing and long-term support of
systems, as well as reducing overall product life-cycle
cost. This will be accomplished by facilitating
portability, knowledge reuse, and sharing of test and
diagnostic information among embedded, automatic,

16

and stand-alone test systems within the broader scope
of product design, manufacture, and support.

AI-ESTATE was first conceived in 1988 as a standard
for representing expert-system rule bases in the
context of maintenance data collection. Since that
time, AI-ESTATE has evolved to be embodied in
three published standards related to the exchange of
diagnostic information and the interaction of
diagnostic reasoners within a test environment. The

Representation and Exchange-Part 11:
Description Methods: The EXPRESS Language
Reference Manual, Geneva, Switzerland:
International Organization for Standardization.

[5] IS0 10303-12:1997. lndustrial Automation
Systems and Integration-Product Data
Representation and Exchange-Part 12:
Description Methods: The EXPRESS4 Language
Reference Manual, Geneva, Switzerland:

three standards have been recommended for inclusion
on the US DoD ATS Executive Agent's list of standard

International Organization for Standardization

satisfying requirements for ATS critical interfaces. In
looking to the next generation, AI-ESTATE is
expanding to address issues of testability,
diagnosability, maintenance data collection, and test
requirements specification.

ACKNOWLEDGMENTS

In many ways, it is unfortunate that a paper such as
this includes only the names of two authors. The work
reported here is the result of efforts of a committee of
devoted volunteers who have supplied their expertise
in system test and diagnosis to develop strong, sound
standards supporting the diagnostics community. We
would like to thank Les Orlidge, Randy Simpson, Tim
Bearse, Tim Wilmering, Greg Bowman, Dave
Kleinrnan, Lee Shombert, Sharon Goodall, Len
Haynes, Jack Taylor, and Helmut Scheibenzuber for
their efforts in developing the standards and
promoting their use in industry.

REFERENCES

[l] IEEE Std 1232-1995. /€E€ Standard for Artificial
lntelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE): Overview and
Architecture, Piscataway, NJ: IEEE Standards
Press.

[2] IEEE Std 1232.2-1998. /€E€ Trial-Use Standard
for Artificial lntelligence Exchange and Service Tie
to Al l Test Environments (AI-ESTATE): Service
Specification, Piscataway, NJ: IEEE Standards
Press.

[3] IEEE Std 1232.1-1997. /E€€ Trial-Use Standard
for Artificial Intelligence Exchange and Service Tie
to All Test Environments (AI-ESTATE): Data and
Knowledge Specification, Piscataway, NJ: IEEE
Standards Press.

[4] IS0 10303.1 1:1994. Industrial Automation
Systems and Integration-Product Data

[6] Schenk, D. and Wilson, P. 1994. lnformation
Modeling: The EXPRESS Way, New York: Oxford
University Press.

[7] Sheppard, J. and Maguire, R. 1996. "Application
Scenarios for AI-ESTATE Services,"
AUTOTESTCON '96 Conference Record, New
York: IEEE Press.

[8] Sheppard, J. and Orlidge, L. 1997. Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE)-A New Standard for
System Diagnostics," Proceedings of the
International Test Conference, Los Alamitos, CA:
IEEE Computer Society Press.

[9] Simpson, W. and Sheppard, J. 1994. System Test
and Diagnosis, Boston, MA: Kluwer Academic
Publishers.

[IOIMIL STD 2165. 1985. Testability Program for
Electronic Systems and Equipment, Washington,
DC: Naval Electronic Systems Command (ELEX-
8111).

[I I] Perry, William. 1994. "Specifications and
Standards-A New Way of Doing Business," US
Department of Defense Policy Memorandum.

[12]Kaufman, M. and Sheppard, J. 1999. "IEEE
P1522-A New Standard in Testability and
Diagnosability Assessment, AUTOTESTCON '99
Conference Record, New York: IEEE Press.

[I31 IEEE Std 1226-1993. /€€E TriaCUse Standard for
A Broad Based Environment for Test (ABBET):
Overview and Architecture, Piscataway, NJ: IEEE
Standards Press.

[14]lEEE Std 1226.6-1996. /E€€ Guide to Nle
Understanding of A Broad Based Environment for
Test (ABBET), Piscataway, NJ: IEEE Standards
Press.

17

[15]Shombert, L. 1998. Test Requirements Model [IG]Shombett, L. and Sheppard, J. 1998. "A Behavior
Language Reference Manual, Draft 0.1, Technical Model for Next Generation Test Systems," Journal
Report CAE-1998-07-01, Vienna, VA: of Electronic Testing: Theory and Applications,
Interrnetrics. Vol. 13, No. 3.

18

