
IEEE 1232 AND P1522 STANDARDS 

John Sheppard 
ARINC 

2551 Riva Road 
Annapolis, MD 21401 

jsheppar@nrinc.com 
4 10-266-2099 

Abstract - The 1232 famikj of standards were developed to 
provide standard exchange formats and somare services 
for reasoning systems used in system test and diagnosis 
The exchange formats and services are based on a model 
of information required to support test and diagnosis The 
standards were developed by the Diagnostic and 
Maintenance Control (D&MC) subcommittee of IEEE 
SCC20. The current efforts by the D&MC are a combined 
standard made up of the 1232 family, and a standard on 
Testability and Diagnosability Metrics, P1522. The 1232 
standards describe a neutral exchange format so one 
diagnostic reasoner can exchange model information with 
another diagnostic reasoner. In addition, software 
interfaces are defined whereby diagnostic tools can be 
developed to process the diagnostic information in a 
consistent and reliable way. The objective of the Testability 
and Diagnosability Metrics standard is to provide 
notionally correct and mathematically precise definitions 
of testability measures that may be used to either measure 
the testability characteristics of a system, or predict the 
testability of a system. The end purpose is to provide an 
unambiguous source for definitions of common and 
uncommon testability and diagnosability terms such that 
each individual encountering it can know precise& what 
that term means. This paper describes the 1232 and P1522 
standards and details the recent changes in the 
in formation models, restructured higher order services 
and simplified conformance requirements. 

INTRODUCTION 

Tools such as Computer Aided Design (CAD), Computer 
Aided Manufacturing (CAM), and Automatic Test 
Equipment (ATE) are generating large collections of 
product data. One characteristic of product data is object- 
like structure. Product databases are large due to the 
complexity of the products themselves and the detail of the 
information. Product databases are often difficult to 
maintain because “corporate knowledge” often evaporates as 
the product transitions from design to manufacturing, from 
manufacturing to the market, and finally to repair. Product 
description at one phase of the lifecycle must be useable by 

Mark Kaufman 
W A S  

PO Box 5000 
Corona, CA 91718 

kaufmanma@corona.navy.mil 
909-273-5725 

tools at subsequent phases to avoid re-entering data. 
Information is expensive to obtain. Each phase of the 
product cycle has unique information needs and makes 
unique information contributions. Better decision-making 
requires better information in a timely manner. Data mining 
warehousing, XML, information systems, all add value. This 
trend has been accelerating and now touches our everyday 
lives. Do you have a grocery club card? 

The Artificial Intelligence Exchange and Service Tie to All 
Test Environments (AI-ESTATE) standards are product 
information exchange standards for test and diagnosis. The 
original standards, the 1232 series, developed a means of 
exchange of information between diagnostic reasoners. As 
the information models for the 1232 standards were 
developed, it became apparent that these models could be 
used for standardizing testability and diagnosability metrics. 

IEEE Std 1232-1995 defines the architecture of an AI- 
ESTATE-conformant system and has been published as a 
“full-use” standard;. However, this standard was published 
before the vision of AI-ESTATE was fully developed. IEEE 
Std 1232.1-1997 defines a knowledge and data exchange 
standard and was published as a “trial-use” standard. Trial- 
use indicates that it is preliminary in nature, and the 
standards committee is seeking comments from 
organizations attempting to implement or use the standard. 
In 1998, IEEE Std 1232.2-1998 was approved. This 
standard formally defines a set of standard software services 
f3 be provided by a diagnostic reasoner in an open- 
architecture test environment. Since IEEE Std 1232.2-1998 
is also’ a trial-use standard, comment and feedback are 
solicited. These standards were developed using information 
modeling. Five information models addressing static and 
dynamic aspects of the diagnostic domain were developed. 
The IEEE 1232 AI-ESTATE series of standards also 
provide the foundation for precise and unambiguous 
testability and diagnosability metrics. 

As systems became more complex, costly, and difficult to 
diagnose and repair, initiatives were started to address these 
problems. The objective of one of these initiatives, 

0-7803-5868-6/00/ $10.00 0 2000 EEE 388 

mailto:jsheppar@nrinc.com
mailto:kaufmanma@corona.navy.mil


testability, was to make systems easier to test. Early on, this 
focused on having enough test points in the right places. As 
systems evolved, it was recognized that the system design 
had to include other characteristics to make the system 
easier to test. As defined in MIL-STD-2165, testability is “a 
design characteristic which allows the status (operable, 
inoperable, or degraded) of an item to be determined and the 
isolation of faults within the item to be performed in a timely 
manner.” [l]. The purpose of MIL-STD-2165 was to 
provide uniform procedures and methods to control 
planning, implementation, and verification of testability 
during the system acquisition process by the.Department of 
Defense @OD). It was to be applied during all phases of 
system development-from concept to production to 
fielding. MIL-STD-2165, though deficient in some areas, 
provided usell  guidance to government suppliers. Further, 
lacking any equivalent industry standard, many commercial 
system developers have used it to guide their activities 
although it was not imposed as a requirement. 

A VISION FOR TEST AND DIAGNOSIS 
STANDARDS 

Diagnosis 

The vision of AI-ESTATE standards is to provide an 
integrated, formal view of diagnostic information as it exists 
in diagnostic knowledge bases and as it is used (or 
generated) in diagnostic systems. We assert that the whole 
purpose of testing is to perform diagnosis [2]. In ju s t iwg  
this assumption, we rely on a very general definition of 
diagnosis, derived fiom its Greek components 
(&a ylyvwcm~rv) meaning, “to discern apart.” Given such a 
broad definition, all testing is done to provide information 
about the object being tested and to differentiate some state 
of that object from a set of possible states. 

In support of this vision, the Diagnostic and Maintenance 
control @&MC) committee has been working on 
combining the existing 1232 standards into a single, 
cohesive standard. This “unified” standard provides formal 
specifications of all of the information models (both for file 
exchange and for diagnostic processing), from which the 
service specifications are then derived. The architectural 
framework is retained at the conceptual level to emphasize 
that a wide variety of implementation models are possible 
that still support standard exchange of information as long as 
the definition of that information is clear and unambiguous, 
Thus, in a sense, the models define the architecture, and the 
implementation is leR entirely to the implementer. 

With this vision in mind, we expect AI-ESTATE to play a 
central role in any test environment (thus the “All Test 
Environments” part of the name). To date, the focus of the 

standards has been the development of specifications 
supporting diagnosis in the traditional sense of the word 
(i.e., fault isolation). The broader AI-ESTATE vision 
involves tying diagnostic information to explicit product 
behavior descriptions, assessments of the ability of testing to 
satisfy its requirements, and maturation of the diagnostic 
process through test and maintenance information feedback. 

Testability and Diagnosability 

In 1997, the AI-ESTATE committee began to work on a 
new standard to take over where the cancelled ME-STD 
2165 left off. The military standard focused on specifying 
the essential elements of a testability program and explained 
the elements needed to define a testability program plan. In 
addition, MIL-STD 2165 contained the “definition” of 
several testability metrics, and included a testability 
checklist to be used to determine overall system testability. 
The approach being taken to develop this new standard 
involves defining testability and diagnosability metrics 
based on standard information models. The updated models 
in the combined 1232 standard provide a solid basis for the 
development of testability and diagnosability metrics. 

THE AI-ESTATE ARCHITECTURE 

According to IEEE Std 1232-1995, the AI-ESTATE 
architecture is “a conceptual model” in which “AI-ESTATE 
applications may use any combination of components and 
intercomponent communication” [3]. Another “view” of the 
AI-ESTATE architecture is provided by IEEE Std 1232.2- 

1998. IEEE Std 1232.2-1998includes explicit definitions of 
information services to be provided by a diagnostic 
reasoner, where the services “can be thought of as responses 
to client requests from the other components of the system 
architecture” [4]. More specifically, “each of the elements 
that interface with the reasoner will interact through [an] 
application executive and will provide its own set of 

0-7803-5868-6/00/ $10.00 0 2000 lEFE 389 



encapsulated services to its respective clients" [4]. Figure 1 
illustrates this architecture. 

Although not necessarily obvious from the standards 
themselves, these two "views" of the AI-ESTATE 
architecture present an interesting dichotomy. Specifically, 
the architecture standard provides a concept of AI-ESTATE 
that permits any communication mechanism to be used 
between components of a test environment in support of the 
diagnostics provided by that environment. The service 
speiificatioi on the other 
hand, seems to cast the 
communication mechanism in 
the form of a client-server 
architecture. We note that the 
service specification did not 
intend to require a client- 
server approach but presented 
this as an example 
architecture that fits within 
the component orientation. 

We note that the intent of AI- 
ESTATE is to provide a 
formal, standard fiamework 
for the exchange of diagnostic 
information (both static and 
dynamic) in a diagnostic 
environment. This exchange 
occurs at two levels. At the 
first level, model data and 
knowledge are exchanged 
through a neutral exchange 
format, as specified by lEEE 
Std 1232.1-1997 [5]. At the 
second level, specified by 

information is exchanged as 
needed between s o h a r e  
applications within the 
diagnostic environment. This 
information includes entities 
from a model or information 
on the current state of the 
diagnostic process. 

IEEE Std 1232.2-1998 [4] 

provide a more detailed discussion of the exchange and 
service elements of the architecture. 

Data and Knowledge Exchange 

IS0  10303-11 (EXPRESS) and I S 0  10303-21 (STEP 
Physical File Format) are used to define information models 
and exchange formats for diagnostic knowledge [6] ,  [7]. 
These two international standards are being maintained by 

t 

I, 
d. 
I I 

. . . . . . . . . . . . 

Figure 2 Dynamic Context Model 
To facilitate encapsulation of 
the information and the the STEP (Standard for the Exchange of Product model 
underlying mechanisms Providing that encapsulation, AI- data) c o ~ ~ i t y .  The cment approach to static information 
ESTATE assumes the presence of an "aPPliCatiOn exchange N-ESTATE is to derive the exchange 
executive." We emphasize that this application executive format the formal information as specified in 
need not be a physically separate process but can be the 1~~ standads. 
identified as a ''view" of the process when it involves the 
communication activity. In the following sections, we will 

0-7803-5868-6/00/ $10.00 0 2000 IEEEi 390 



The purpose of information modeling is to provide a formal 
specification of the semantics of information that is being 
used in an “information system.” Information models 
identify the key entities of information to be used, their 
relationships to one another, and the ‘%behavior” of these 
entities in terms of constraints on valid values [8]. The intent 
is to ensure that defdtions of these entities are 
unambiguous. 

IEEE 1232.1 was published as a “trial-use” standard to 
provide a period for people to study it, attempt to implement 
it, and provide feedback to the AI-ESTATE committee on 
the ability of the standard to satisfy the stated requirements. 
Since publication, comments have been received to indicate 
that ambiguity still exists in the information models. 
Because of the concern that the information models are still 
ambiguous, the models have undergone close examination 
and modification. 

Diagnostic Services 

The approach taken in defining services in AI-ESTATE has 
been based on the traversal (i.e., the following of the 
relationships defined between model entities to access 
specific pieces of information in the models) of the 
information models. The “simplest” services involve 
traversing the models defined in IEEE 1232.1 (i.e., the 
exchange models); however, these models provide little 
functionality in terms of actual diagnosis. 

In IEEE 1232.2, a novel use of information modeling was 
applied in that a dynamic information model was specified 
to support dynamic services. This model, called the 
“dynamic context model” (DCM) relied on dynamically 
creating entities that populate the model during a diagnostic 
session. In fact, as suggested by “dcm.session” and 
“dcm.step” in the model shown in Figure 2, a diagnostic 
session is modeled as a sequence of steps instantiated from 
the set of possible values specified in the static model. 
Details of how the service specification is expected to be 
implemented can be found in [9], [lo]. 

One of the concerns raised by a member of the AI-ESTATE 
committee was whether the standard specifies a set of 
services or simply an Application Programming Interface. 
The claim w s that the service specification must include a 
behavior spe ification as well and that this can only be 
accomplishe by defining a set of baseline behaviors, 
perhaps thro gh some sort of test bed. I 
The committee observed that there are different opinions 
over the difference between a service specification and an 
API specification. Many, in fact, took issue with the claim 
that they were different. Further, it was determined that 

0-7803-5868-6/00/ $10.00 0 2000 EEE 391 

including test cases to specie standard behavior was not 
desirable due to the wide variety of diagnostic approaches 
using common diagnostic knowledge. Rather, it was 
believed that it was more important for the information itself 
to be standardized and the specific behavior to be left to the 
implementation. 

In the original definition of the services, the list was limited 
to the set of “primitive accessor” services corresponding to 
elements in the information models. Recently, the services 
have been redefmed to provide a naming convention 
covering the primitives in the models (thus reducing the 
number of services to be defmed from over 400 to 
approximately 160). In addition, two new classes of services 
have been added: utility services and higher-order services. 
The utility services provide methods for determining if 

model attributes exist and for countinghndexing 
elements within aggregate attributes (i.e., sets and lists). The 
higher-order services provide convenient methods for 
performing reasoning within the AI-ESTATE fiamework. 
These services include, for example, uppZy-test-outcome 
which puts an outcome to the active test associated with the 
current step in the DCM. It then spawns the inference 
process within the attached reasoner. When the inference is 
complete, it proceeds to put inferred outcomes for related 
tests and diagnoses within the current step. As an option, it 
may also update the current hypothesis (if the reasoner is 
capable of generating a hypothesis). 

Conformance 

The published standards provide very strict rules for 
conformance. Specifically, data exchange must conform to 
the published models. No subsets are permitted (except by 
dropping optional attributes), and extensions must be 
handled via the EXTEND schema. In addition, all services 
must be specified (i.e., no extensions and no subsets). 

Currently, the D&MC is debating about a more manageable 
and flexible approach to conformance. The current proposal 
requires an application to include a conformance “matrix” 
with associated documentation to identify those areas 
claiming to be conformant. 

To claim minimal conformance to IEEE Std 1232 for model 
development, a conformance matrix containing at least the 
following must be provided: the core model elements of the 
common element model (CEM) plus at least one of either 
the Fault Tree Model (FTM), Diagnostic Inference Model 
(DIM) or Enhanced Diagnostic Model (EDIM). Further, for 
each Enhanced Model Element the capability of the 
application to either read or write the element must be 
specified. 



To claim minimal conformance to IEEE Std 1232 for the 
application runtime environment (i.e., services), a 
conformance matrix containing at least the following must 
be provided: the Core Primitive Services for the CEM and 
DCM and at least one of the Fault Tree Model (FTM), 
Diagnostic inference Model (DIM) or Enhanced Diagnostic 
Model (DIM). Also the Enhanced Primitive Services for the 
CEM and the DCM must be specified. The Core Higher- 
Order Services for the DCM are required and the Enhanced 
Higher-Order Services must be specified. 

TESTABILITY AND DIAGNOSABILITY 
METFUCS 

Testability has been broadly recognized as the ‘‘41itf’ that 
deals with those aspects of a system that allow the status 
(operable, inoperable, or degraded) or health state to be 
determined. Early work in the field primarily dealt with the 
design aspects such as controllability and observability. 

Almost f?om the start this was applied to the manufacturing 
of systems where test was seen as a device to improve 
production yields. The concept slowly expanded to include 
the aspects of field maintainability such as false alarms, 
isolation percentages, and other factors associated with the 
burden of maintaining a system. 

In the industry, many terms such as test coverage and 
Fraction of Fault Detection (FFD) are not precisely defined 
or have multiple definitions. Further, each diagnostic tool 
calculates these terms differently and therefore the results 
are not directly comparable. Some measures, such as false 
alarm rate, are not measurable in field applications. Other 
measures such as Incremental Fault Resolution, Operational 
Isolation, and Fault Isolation Resolution appear different, 
but mean nearly the same thing. 

Lacking well-defined testability measures, the tasks of 
establishing testability requirements, and predicting and 
evaluating the testability of the design are extremely 
difficult. This in turn makes effective participation in the 
design for testability process difficult. These dificulties will 
be greatly diminished by the establishment of standard 
testability metrics. An immediate benefit will come with a 
consistent, precise, and measurable set of testability 
attributes that can be compared across systems, tools, and 
within iterations of a system’s design. 

As we strive to establish concurrent engineering practices, 
the interchange between the testability function and other 
functions becomes even more important. To create 
integrated diagnostic environments, where the elements of 
automatic testing, manual testing, training, maintenance 
aids, and technical information work in concert with the 

testability element, we must maximize the reuse of data, 
information, knowledge, and software. Complete diagnostic 
systems include Built-In-Test (BIT), Automatic Test 
Equipment (ATE), and manual troubleshooting. It would be 
desirable to be able to predict and evaluate the testability of 
systems at these levels. 

It is not an accident that the P1522 standard contains both 
the words testability and diagnosability. The distinction is 
not always easy to maintain, especially in light of the 
expansion of the use of the testability term. Diagnosability is 
the larger term and encompasses all aspects of detection, 
fault localization, and fault identification. Testability is a 
design characteristic of the system. The boundary is fuzzy 
and often it is not clear when one term applies and the other 
does not. The PI522 standard is meant to encompass both 
aspects of the test problem. Because of the long history of 
the use of the testability term, we will seldom draw a 
distinction. However, the use of both terms is significant in 
that testability is not independent of the diagnostic process. 
The writing of test procedures cannot and should not be 
done separately fiom testability analyses. To do so, would 
be meeting the letter of the requirements without considering 
the intent. 

The objective of the P1522 standard is to provide notionally 
correct, inherently usell, and mathematically precise 
definitions of testability metrics and characteristics. It is 
expected that the metrics may be used to either measure or 
predict the testability of a system, . Notionally correct means 
that the measures are not in conflict with intuitive and 
historical representations. Beyond that, the measures must 
be either measurable or predictable. The former may be used 
in the specification and enforcement of acquisition clauses 
concerning factory and field-testing, and maintainability of 
complex systems. The latter may be used in an iterative 
fashion to improve the factory and field-testing and 
maintainability of complex systems. The most usell  of all 
are measures that can be used for both. Because of the last 
point, the emphasis will be on measurable quantities 
(metrics). 

Things that can be enumerated by ObSeNatiOn and folded 
into the defined figures-of-merit will be developed into 
metrics. However, a few measures are inherently useful on 
the design side even if they are not measurable in the field 
and they are defined in a separate section in P1522. The end 
purpose is to provide an unambiguous source for definitions 
of common and uncommon testability and diagnosability 
terms such that each individual encountering the metric can 
know precisely what that metric measures. 

0-7803-5868-6/00/ $10.00 0 2000 IEEE 392 



Testability and Disposability Metrics and the 
1232 Standards 

information, the primitives, is counts of something. The 
number of faults, components, and functions are obtainable 
from the information services of the 1232 models. For 

number of faults and then ask for the number of faults 
detected. The tool would then calculate the fraction of faults 
detected. This example is extremely simplified. 

M&cs me a measwe of Some identifiable quantity. The a too1 would ask for the total 
metrics of p1522 are derived from 
from the models in IEEE 1232. The very basic 

0-7803-5868-6/00/ $10.00 0 2000 EEE 393 



variable const 
I 

A predicate 

effect S[O:?] 

Figure 3 ComnElernent ModelPage4 Of4 

In the revised CEM, shown in Figure 3, each diagnosis has a criticality. This relationship allows the testability analysis 

0-7803-5868-6/00/ $10.00 0 2000 BEE 394 



tool to generate metrics that are based on Failure Effects 
Mode and Criticality Analysis (FEMCA). Adding this 
information to the previous example would generate the 
fraction of catastrophic faults detected. A further variation 
on this would be to determine the percentage of failed 
components that would lead to a catastrophic failure 
detected by Built-in-Test (BIT). 

Metrics Issues 

MIL-STD-2165 defined Fraction of Faults Detected (FFD) 
two ways. The first is the fraction of all faults detected by 
BITExtemal Test Equipment (ETE). The second is the 
fraction of all detectable faults detected by BITETE [l]. 
False alarms were excluded from the def~t ion .  From these 
two variations grew many others. As noted in 
“Organizational-Level Testability” [ 1 13 FFD has been 
defined as: Fraction of all faults detected or detectable by 
BITETE, Fraction of all detectable faults detected or 
detectable with BITETE, Fraction of all faults detected 
through the use of defined means, Percentage of all faults 
automatically detected by BITETE, Percentage of all faults 
detectable by BITBTE, Percentage of all faults detectable 
on-line by BITETE, Percentage of all faults and out-of- 
tolerance conditions detectable by BITETE, and Percentage 
of all faults detectable by any means. 

One problem with traditional metrics is that they are 
“overloaded.” Overloaded in this case means that due to 
“common understanding” of the terms, fine variations are 
not specified. Consequently, users of the term do not 
necessarily know the implications of a precise definition. 
Discussions of overloaded terms go on at length, in part 
because everyone in the discussion has brought along a lot 
of mental baggage. Often, progress is only made when a 
neutral term is chosen and the meaning is built from the 
ground up. This overloading is so severe, for example, that 
there was no definition of FFD in System Test and 
Diagnosis [2], the authors preferring to use Non-Detection 
Percentage (NDP). FFD is the negative of NDP and is equal 
to 1-NDP. 

Even the number of faults counted in the field requires a 
more precise definition. The “overloaded” version is simply 
a count of all the things that failed. The quantity of all faults, 
as usually defined in the industry, is different. The quantity 
of faults detected by BITETE, and the quantity of faults 
detected exclude the occurrence of false alarms. Intermittent 
faults are classified as a single fault. Temporary faults, those 
caused by extemal transients of noise, are not classified as 
faults. 

Another aspect of the challenge is that many metrics sound 
different but are not. For example, Ambiguity Group 

0-7803-5868-6/00/ $10.00 0 2000 JEm 395 

Isolation Probabilities, Fault Isolation Resolution, Isolation 
Level, and System Operational Isolation Level mean nearly 
the same thing. 

OTHER PRODUCT DATA APPLICATIONS 

Ties to Maintenance Feedback 

In 1993, a Project Authorization Request (PAR) was 
submitted to the IEEE for new standards project related to 
specifying information and services for test and maintenance 
information feedback. The Test and Maintenance 
Information Management Standard (TMIMS) project was 
approved by the IEEE in early 1994. The focus of this 
project was to define exchange and service standards 
(similar to AI-ESTATE) which support the test and 
diagnostic maturation process. In 1998, due to a lack of 
progress, the TMIMS PAR was cancelled. The revised AI- 
ESTATE models make development of the TMIMS 
standard achievable. 

AI-ESTATE continues to require definition of exchange and 
service standards related to test and maintenance 
information. In 1998, shortly after the cancellation of the 
TMIMS PAR, the D&MC committee decided to include test 
and maintenance information in its scope. The approach will 
be consistent with AI-ESTATE (i.e., the definition of 
information models and EXPRESS-level services derived 
fiom traversing the models). The starting point for the new 
models will be the dynamic context model in IEEE 1232.2. 
By keeping track of the sequence of events during a 
diagnostic session, much of the historical information is 
identified and captured that can be used for later diagnostic 
maturation. 

As a result of ongoing work by members of the D&MC, a 
proposal for a new information model addressing TMIMS 
issues is in preparation. The model begins with a 
representation of the information contained‘within IEEE Std 
1545 [12] . This standard captures parametric test 
information. The TMIMS information includes parametrics, 
test events, maintenance events, and explicit ties to AI- 
ESTATE. The Dynamic Context Model defined in AI- 
ESTATE is forming the foundation for capturing a 
diagnostic session and will be the primary starting point for 
any connections to the historical data. 

Ties to Product Descriptions 

Through the 1990s, the IEEE has been developing a family 
of standards under the umbrella of “A Broad Based 
Environment for Test’’ (ABBET) [13][14]. An early 
architecture of ABBET, based on information modeling, 
presented ABBET as five layers: 1) product description, 2) 



test requirementdstrategy, 3) test methods, 4) test resources, 
and 5 )  instrumentation. Since then, standards for the “lower 
layers” of ABBET (Le., layers 3-5) have been defined; 
however, it has long been recognized that the major benefit 
fiom standardization will come from the “upper layers” (i.e., 
layers 1 and 2). 

AI-ESTATE satisfies many of the requirements related to 
layer two of ABBET (however, AI-ESTATE has never been 
considered part of the ABBET family). Further, a recent 
proposal for a new information model-based standard, called 
the Test Requirements Model (TeRM), will address specific 
concerns of test requirements [15], [16]. Standards for the 
product description layer have always been problematic due 
to issues related to the revelation of intellectual property. In 
mid-2000, a PAR will be presented to the IEEE to cover the 
TeRM work. With the combination of TeRM, AI-ESTATE, 
and TMIMS, it is anticipated that intellectual property can 
be hidden from information provided in standard form while 
still supporting the test engineer fully. 

CONCLUSION 

Reasoning system technology has progressed to the point 
where electronic and other complex systems are employing 
artificial intelligence as a primary component in meeting 
system test and verification requirements. This is giving rise 
to a proliferation of AI-based design, test, and diagnostic 
tools. Unfortunately, the lack of standard interfaces between 
these reasoning systems has increased the likelihood of 
significantly higher product life-cycle cost. Such costs arise 
fiom redundant engineering efforts during design and test 
phases, sizeable investment in special-purpose tools, and 
loss of system configuration control. 

The AI-ESTATE standards promise to facilitate ease in 
production testing and long-term support of systems, as well 
as reducing overall product life-cycle cost. This will be 
accomplished by facilitating portability, knowledge reuse, 
and sharing of test and diagnostic information among 
embedded, automatic, and stand-alone test systems within 
the broader scope of product design, manufacture, and 
support. AI-ESTATE was first conceived in 1988 as a 
standard for representing expert-system rule bases in the 
context of maintenance data collection. Since that time, AI- 
ESTATE has evolved to be embodied in three published 
standards related to the exchange of diagnostic information 
and the interaction of diagnostic reasoners within a 
diagnostic environment. The three standards have been 
recommended for inclusion on the US DoD ATS Executive 
Agent’s list of standard satisfling requirements for ATS 
critical interfaces. In looking to the next generation, AI- 
ESTATE is expanding to address issues of testability, 

diagnosability, maintenance data collection, and test 
requirements specification. 

Further information on the AI-ESTATE standards and the 
activities of the D&MC can be found at: 
httu://erouuer.ieee.ord~rou~s/1232/. 

ACKNOWLEDGMENTS 

In many ways, it is unfortunate that a paper such as this 
includes only the names of two authors. The work reported 
here is the result of efforts of a committee of devoted 
volunteers who have supplied their expertise in system test 
and diagnosis to develop strong, sound standards supporting 
the diagnostics community. We would like to thank Les 
Orlidge, Randy Simpson, Tim Bearse, Tim Wilmering, Greg 
Bowman, Dave Kleinman, Lee Shombert, Sharon Goodall, 
Len Haynes, Jack Taylor, Amanda Giarla, Bill Simerly, and 
Helmut Scheibenzuber for their efforts in developing the 
standards and promoting their use in industry. 

REFERENCES 

[l] MIL STD 2165. 1985. Testability Program for 
Electronic Systems and Equipment, Washington, DC: 
Naval Electronic Systems Command (ELEX-8 1 1 1) 

[2] Simpson, W. and Sheppard, J. 1994. System Test and 
Diagnosis, Boston, MA: Kluwer Academic Publishers. 

[3] lEEE Std 1232-1995. IEEE Standard for Artificial 
Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE): Overview and 
Architecture, Piscataway, NJ: Ek5E Standards Press. 

[4] E E E  Std 1232.2-1998. IEEE Trial-Use Standard for 
Artificial Intelligence Exchange and Service Tie to All 
Test Environments (AI-ESTATE): Service 
Specification, Piscataway, NJ: IEEE Standards Press. 

[5] IEEE Std 1232.1-1997. IEEE Trial-Use Standard for 
Artificial Intelligence Exchange and Service Tie to All 
Test Environments (AI-ESTATE): Data and Knowledge 
Specification, Piscataway, NJ: IEEE Standards Press. 

[6] IS0 10303-1 1:1994. Industrial Automation Systems 
and Integration-Product Data Representation and 
Exchange-Part 11 : Description Methods: The 
EXPRESS Language Reference Manual, Geneva, 
Switzerland: International Organization for 
Standardization. 

0-7803-5868-6/00/ $lO.OO@ 2000 IEEE 396 



IS0 10303 -2 1 : 1994. Industrial Automation Systems 
and Integration-Product Data Representation and 
Exchange-Part 21: Implementation Methods: Clear 
Text Encoding of the Exchange Structure, Geneva, 
Switzerland: International Organization for 
Standardization. 

Schenk, D. and Wilson, P. 1994. Information Modeling: 
The EXPRESS Way, New York: Oxford University 
Press. 

Sheppard, J. and Maguire, R. 1996. “Application 
Scenarios for AI-ESTATE Services,” AUTOTESTCON 
’96 Conference Record, New York: IEEE Press. 

[lolsheppard, J. and Orlidge, L. 1997. Artificial 
Intelligence Exchange and Service Tie to All Test 
Environments (AI-ESTATE)-A New Standard for 
System Diagnostics,” Proceedings of the International 
Test Conference, Los Alamitos, CA: IEEE Computer 
Society Press. 

[l 11 Simpson, W., Bailey, J., Barto, K. and Esker, E., 1985 
‘’Organization-Level Testability Prediction”, ARINC 

0-7803-5868-6/00/ $10.00 0 2000 IEEE 397 

Research Corporation Report 151 1-01-3623 Prepared 
for the Rome Air Development Center. 

[12]IEEE Std 1545-1999. 1999. Standard for Parametric 
Data Log Format, Piscataway, NJ: IEEE Standards 
Press. 

[13]IEEE Std 1226-1993. IEEE Trial-Use Standard for A 
Broad Based Environment for Test (ABBET): 
Overview and Architecture, Piscataway, NJ: IEEE 
Standards Press. 

[14]IEEE Std 1226.6-1996. IEEE Guide to the 
Understanding of A Broad Based Environment for Test 
(ABBET), Piscataway, NJ: IEEE Standards Press. 

[ 151 Shombert, L. 1998. Test Requirements Model Language 
Reference Manual, Draft 0.1, Technical Report CAE- 
1998-07-01, Vienna, VA: Intermetrics. 

[16]Shombert, L. and Sheppard, J. 1998. “A Behavior 
Model for Next Generation Test Systems,” Journal of 
Electronic Testing: Theory and Applications, Vol. 13, 
No. 3 


