
Information-Based Standards and
Diagnostic Component Technology

John W. Sheppard
ARINC Incorporated

2551 Riva Road
Annapolis, MD 21401
jSheDDar@,”IC.COm

Abstract: Software development methods have
evolved over the years from structured design of
procedural code, to object oriented design, to
component-based design. Recent requirements by
industry and government have resulted in the
development of interface specifications and
standards designed to facilitate acquisition of
large systems based on the concepts of component
technology. In this paper, we discuss the
development of information-based standards for
diagnostic information and diagnostic reasoning
intended to provide the definition of diagnostic
components within a larger test or health
management envir onmen t.

Introduction

Modem systems are growing in complexity, making
the problem of system development and system
maintenance increasingly difficult. This trend has
become apparent especially when dealing with
modern software systems. Comparing the capabilities
provided by “simple” word processing systems today
compared to just ten years ago illustrates the
magnitude of the problem. New capabilities abound.

Besides the growing complexity of the systems
being developed, the means by which the systems are
being utilized is complicated design, development,
and maintenance. Specifically, more and more
problems require access to distributed resources for
them to be solved. To access these distributed
resources, the means of communication between
components utilizing the resources needs to be
clearly defined.

In an attempt to manage the growing complexity
of complex systems, design methodologies have
changed fkom traditional top-down, hierarchical
design to object-oriented design to component-based

Amanda Jane Giarla
Hamilton Software Inc.

2270 Northpoint Parkway
Santa Rosa, CA 95407
agiarla@hamsoft.com

design (Szyperski, 1998). The idea behind
component-based design is that a system can be
subdivided into groups of interchangeable
components with well-defined interfaces between
those components. For a particular problem, relevant
components can be “plugged” into a -“component
framework” (Szyperski, 1998), and information can
be shared between the components to facilitate
solving the problem. With this philosophy in mind,
one can envision modern systems as being defined
through composition and configured “on-the-fly”
based on the requirements imposed by a particular
problem or class of problems to be solved.

In this paper, we discuss the definition of
interfaces to a particular type of component-the
diagnostic component of a test or health management
system. We will focus on the role of information-
based specifications and a particular information-
based standard to define these interfaces.
Specifically, we will examine the Artificial
Intelligence Exchange and Service Tie to All Test
Environment (AI-ESTATE) standards, published by
the IEEE, and their role in the definition of diagnostic
components (IEEE, 1995; IEEE, 1997; IEEE, 1998).

Component Technology

The vision of modern component-based systems is to
be ‘%ompose&’ of a set of “re-usable” components
that work together in providing the same capabilities
that custom software solutions provide but at a lower
price along with a shorter construction period and a
reduction in problem solution complexity. The
equipment test or health management environment is
a domain that requires both software and hardware
type components.

Within the context of a test system a data bus
embedded within a VXI or PXI chassis along with
the bus software drivers is a form of a component

0-7803-5868-6/00/ $10.00 0 2000 IEEE 425

mailto:jSheDDar@,�IC.COm
mailto:agiarla@hamsoft.com

Figure 1. Component-Based Architecture

framework. This type of framework is better
understood as a communications infrastructure or a
backbone that contributes to overall performance of a
task or solution to a problem. We can then consider
components such as the unit under test (UUT), the
test executive, several instruments, and the diagnostic
reasoner. Figure 1 depicts such an architecture as a
set of puzzle pieces.

The primary challenge for making component
technology work is well-defined, unambiguous
communication between the components in the
architecture. For communication to be unambiguous,
the entities that are communicating must agree before
they attempt to communicate on the characteristics of
the message. In other words, they must speak a
common language.

Within the context of a computer-based system,
this lamage must be defined such that both the
syntax (Le., the structure or format of the language)
and the semantics (i.e., the meaning of the messages
constructed using the language) are understood.
Natural languages are wrought with ambiguity based
on cultural differences, idioms, and exceptions.
Formal languages eliminate the ambiguity by
providing mathematical definition of both syntax and
semantics.

For component-based systems, the language is
defined relative to communication over the backbone,
or framework. Note this backbone need not be a
physical backbone but may be conceptual. The
important element of this backbone is the way the
components connect to it, for example COM,
CORBA, DCERPC, Java RMI, data bus drivers. In

other words, key to the definition of the
communications infi-astructure for a component-
based system is the definition of the language used
relative to the interface of the component with the
backbone. Specifically, the structure of the interface
defines the syntax of the language by constraining, the
format of the message carried across the interface.
The meaning of information contained within a
message, which corresponds to the semantics, is
defined by agreement between the components
communicating.

It should now be evident that the key element in
communication is formal definition of the
information exchanged between the parties
communicating. According to Schenk and Wilson,
information can be defined as “knowledge of ideas,
facts, and/or processes (1 994).” Key to understanding
the role and importance of information is recognizing
that it is information that is exchanged befiveen
parties during communication. Further, this exchange
is something that can be real-time (e.g., a spoken
message over a telephone) or delayed (a witten
message sent by email).

The Role of Information

All processes depend on the sharing of information.
For information to be shared, it must be
communicated. A process can be modeled as a
decision cycle in which information is received and
analyzed, a decision is made about what to do, and
some action is taken.

This decision cycle has been represented is the
command-and-control community as an “OODA-
loop” (Figure 2). The OODA loop correspondL, 68 to a
cycle of repeating for distinct phases:

1.

2.

3.

4.

In

Observation: Collecting information about
the current state of a problem.
Orientation: Interpreting the informatl’on to
evaluate the current state relative to some
objective.
Decision: Evaluating the information to
determine a course of action.
Action: Taking an action based on the
decision made to modify the state of the
problem.

the context of test and diagnosis, the
diagnostic process can be mapped to the OODA loop

0-7803-5868-6/00/ $10.00 0 2000 BEE 426

I & G-0 Decide

Figure 2. OODA Loop

as follows. First, the results of one or more tests are
examined to capture information about the health-
state of the system. This corresponds to observing the
health-state. Second, the test results are mapped to a
set of outcomes and associated inferences to refine
the current understanding of the health-state relative
to the goal of the test process (e.g., fault isolation).
This corresponds to orienting the diagnostic system
based on its current set of observations and its
objective. Third, the test system decides what to do
next in terms of announcing a fault has been isolated
or M e r testing is required. If further testing is
required, a test is chosen. Fourth, given a test has
been chosen, the test is performed, thus defining how
the system acts.

Information Modeling

One approach to defining the interfaces for a
component of a larger system is to model, formally,
the information being passed across the interface.
Such a model is known as an “information model.”
An information model is “a formal description of
types (classes) of ideas, facts, and processes that
together form a model of a portion of interest of the
real world (Schenk and Wilson, 1994).

The purpose of an information model is to
identify clearly the objects in a domain of discourse
(e.g., diagnostics) to enable precise communication
about that domain. Such a model comprises objects
or entities, relationships between those objects, and
constrains on the objects and their relationships.
When taken together, elements provide a complete,
unambiguous, formal representation of the domain of

discourse. In other words, they provide a formal
language for communicating about the domain.

Ambiguous definition of syntax can lead to
miscommunication such as the following. For
example, what does the date “1-3-91” represent? In
the United States, this would represent January 3,
1991; however, in Europe, it would represent March
1, 1991.

Failure to agree upon definitions (Le., semantics)
can also lead to miscommunication. For examples,
what are “braces?” In the United States, one use of
the word braces is to represent a device for adjusting
one’s teeth; however, in the United Kingdom, one
use of the word braces is to represent a device for
holding up one’s trousers.

Key to determining semantics is an
understanding of the underlying context. For
example, in the following two sentences, the role of
the phrase “flies like” is determined by how the
phrase is used in the sentence.

0 Timeflies like an arrow.
0 Fruitflies like a banana.

Even within a specific domain, terminology can
be ambiguous. For example, what is a test? If we
ignore domain, one logical response is that a test is “a
set of questions used to assess the level of
achievement and comprehension of a student.”
However, it we limit the context to the domain of
equipment test and diagnosis, we are no better off.
For example, a test to a digital test engineer is “a set
of vectors used to determine if a digital circuit is
working properly,” but a test to a diagnostician is
“any combination of stimulus, response, and basis for
comparison that can be used to detect or isolate a
fault.’’

Similarly, answering the question, “What is a
diagnosis?” is equally complex. Without considering
context, a diagnosis may be “a disease or condition
identifiable through clinical means.” On the other
hand, if we limit our context once again to the
domain of equipment test and diagnosis, a test
engineer might define a diagnosis as “an identifiable
and isolatable fault within a system.’’ A
diagnostician, on the other hand, might define a
diagnosis as “any conclusion that can be drawn about
the health-state of the system, including the absence
of a fault.’’

From these examples, it should be evident that
the definition of the language used for

0-7803-5868-6/00/ $10.00 0 2000 IEJE 427

communication is critical. Information modeling is a
tool for providing that definition. Specifically,
information models define classes of ideas, facts, or
hypotheses, and can be populated with instances of
these ideas, facts, and hypotheses. If the model is
defined using a computer processable language, e.g.,
EXPRESS (ISO, 1994a), then that model has the
benefit of determining the syntax for information
exchange, as well as the semantics of the information
modeled.

Using information models, information exchange
can be facilitated in two ways. The first is through a
set of exchange files. Specifically, information can be
stored by one party in a file and read by a second
party. The file format is derived directly from the
information model and defines the syntax of the
message contained within it. The semantics of the
message (i.e., the legal content of the file) is defined
by the semantics of the model.

The second means of information exchange is
through a set of services defined for a hardware
component or a software component as accessed via
the communications backbone. The interface
definition for the component is derived from the
information model and defines the syntax of the
message. Once again, the legal content of the
message is defined by the semantics of the model.

Standard Information Models

For component-based technology to work when a
variety of organizations are developing components
to work together, the nature of the communication
between the components (i.e., the language) must be
agreed upon beforehand, such as through a contract.
Contracts contain two parts, interface definition or
syntax and specification or semantics. For component
markets to form and sustain commerce these
contracts must be immutable (Szyperski, 1998). Such
advance contracts are typically defined through
standards.

Three advantages to using standard information
models to defining the communications mechanism
are evident. First, since standards are published
documents, a large audience has access to the
standard. By specifying standards in procurement
documents or design documents, the designers know
before detailed design begins the basis for
communication.

0-7803-5868-6/00/ $10.00 0 2000 IEEE

Second, the contract defined by a standard has
been validated and legitimized by the fact thait a
community of experts in the domain have gathered
and agreed upon the content of the standard.
Consequently, users of the standard can trust that a)
the standard is technically correct, and b) the
community of those using the standard believe the
standard is useful.

Third, standards are typically endorsed and
accredited by an independent accrediting body. Such
endorsement certifies that the standard was
developed according to an open process designed to
keep the best interests of the community in mind.
Examples of such accrediting bodies include IEEE,
ANSI, ISO, and IEC.

Several formal languages are available for
defining information models. The four most
prominent languages are UML, IDL, IDEF lx, and
EXPRESS. The Unified Modeling Language (UIrlL)
was standardized by the Object Management Group
and provides a set of tools for constructing object
models and information models relative to object-
oriented systems. The primary disadvantage to UML
for defining information-based standards is that there
is no defined process for creating or interpreting
these models. As such, the underlying contract for
communication would be incomplete.

The OMG also defined and standardized an
Interface Definition Language (IDL) within the
context of its Common Object Request Broker
Architecture (COMA). IDL provides formal
specification of interfaces to methods within an
object-oriented framework; however, once again, no
process has been defined to ensure the underlying
information contract is complete.

The US Air Force defined a method for
specifLing information to be stored in a relational
database called Integrated Definition for information
Modeling (IDEF). Under the auspices of the
International Federation of Information Processing
Standards (IFIPS), this method was standardized as
IDEF lx. The advantage of IDEF l x over UML and
IDL is that a formal implementation can be derived
from the model. The primary disadvantages include
limitation to relational databases an no definition of
the semantics of the data.

EXPRESS, standardized by ISO, was designed to
focus on the problem of formally defining
information in support of communication. EXPFSSS
is object-oriented in flavor but focuses on forrnally
defining the semantics of the information modeled. In

428

addition, rules have been defined for deriving
exchange files and services for information exchange
directly from the EXPRESS models.

AI-ESTATE

The Artificial Intelligence Exchange and Service Tie
to All Test Environments (AI-ESTATE) standards
are information exchange standards for test and
diagnosis. The original standards, the 1232 series,
developed a means of exchange of information
between diagnostic reasoners. As the information
models for the 1232 standards were developed, it
became apparent that these models could be used for
standardizing testability and diagnosability metrics.

IEEE Std 1232-1995 defines the architecture of
an AI-ESTATE-conformant system. IEEE Std
1232.1-1997 defines a knowledge and data exchange
standard. In 1998, IEEE Std 1232.2-1998 was
published. This standard formally defines a set of
standard software services to be provided by a
diagnostic reasoner in an open-architecture test
environment. The standards were developed using
information modeling as described above, resulting in
the definition of four information models addressing
static and dynamic aspects of the diagnostic domain.
Further, the IEEE 1232 AI-ESTATE series of
standards provide the foundation for precise and
unambiguous testability and diagnosability metrics.

The vision of AI-ESTATE is to provide an
integrated, formal view of diagnostic information as
it exists in diagnostic knowledge bases and as it is
used (or generated) in diagnostic systems. We assert
that the whole purpose of testing is to perform
diagnosis (Simpson and Sheppard, 1994). In
justifllng this assumption, we rely on a very general
definition of diagnosis, derived from its Greek
components (6ta ~ ~ ~ V O O K O) meaning, “to discern
apart.” Given such a broad definition, all testing is
done to provide information about the object being
tested and to differentiate some state of that object
from a set of possible states.

In support of this vision, the AI-ESTATE
committee has been working on combining the
existing standards into a single, cohesive standard.
This “unified” standard provides formal
specifications of all of the information models (both
for file exchange and for diagnostic processing), from
which the service specifications are then derived and
specified. The architectural framework is retained at

0-7803-5868-6/00/ $10.00 0 2000 JEEE 429

the conceptual level to emphasize that a wide variety
of implementation models are possible that still
support standard exchange of information as long as
the definition of that information is clear and
unambiguous. Thus, in a sense, the models define the
architecture, and the implementation is left entirely to
the implementer.

With this vision in mind, we believe AI-ESTATE
plays a central role in any test environment (thus the
“All Test Environments” part of the name). To date,
the focus of the standards has been the development
of specifications supporting diagnosis in the
traditional sense of the word (i.e., fault isolation).
However, the broader context within which AI-
ESTATE is envisioned to participate involves tying
diagnostic information to explicit product behavior
descriptions, assessments of the ability of testing to
satis@ its requirements, and maturation of the
diagnostic process through test and maintenance
information feedback.

The Al-ESTA TE Architecture

According to IEEE Std 1232-1995, the AI-ESTATE
architecture is “a conceptual model” in which “AI-
ESTATE applications may use any combination of
components and intercomponent communication
(IEEE, 1995)” On the other hand, according to IEEE
Std 1232.2-1998, AI-ESTATE includes explicit
definitions of services to be provided by a diagnostic
reasoner, where the services “can be thought of as
responses to client requests from the other
components of the system architecture (IEEE,
1998).” More specifically, “each of the elements that
interface with the reasoner will interact through [an]
application executive and will provide its own set of
encapsulated services to its respective clients (IEEE,
1998).”

Although not necessarily obvious from the
standards themselves, these two “views” of the AI-
ESTATE architecture present an interesting apparent
dichotomy. Specifically, the architecture standard
provides a concept of AI-ESTATE that permits any
communication mechanism to be used between
components of a test environment in support of the
diagnostics provided by that environment. The
service specification, on the other hand, seems to cast
the communication mechanism in the form of a
client-server architecture.

Figure 3. AI-ESTATE Embedded in Client/Server
Based Architecture

In 1998 Hamilton Software, Inc., (HSI) was
awarded an Air Force SBIR contract to implement
AI-ESTATE within a new component based
approach to ATS construction. Giarla proposed an
approach that utilizes the original notions of AI-
ESTATE components and inter-component
communications (Giarla 1999). Giarla's approach
uses both the AI-ESTATE service interface
definitions and service specifications to define the 2
part component contract for the Diagnostic Engine
Co=mponent.

We note that the intent of AI-ESTATE is to
provide a formal, standard framework for the
exchange of diagnostic information (both static and
dynamic) in a test environment. This exchange
occurs at two levels. At the first level, data and
knowledge are exchanged through a neutral exchange
format, as specified by IEEE Std 1232.1-1997 (IEEE,
1997). At the second level, specified by IEEE Std

Engine I Componc

I I l ~ ,.......

A L

Figure 4 AI-ESTATE Embedded in Component
Based Architecture

0-7803-5868-6/00/ $10.00 0 2000 JEEE

1232.2-1998 information is exchanged as needed
between software applications within the test
environment (IEEE, 1998). This information includes
entities from a model or information on the cun:ent
state of the diagnostic process.

To facilitate encapsulation of the information and
the underlying mechanisms providing that
encapsulation, AI-ESTATE assumes the presence of
an "application executive." We emphasize that this
application executive need not be a physically
separate s o h a r e process but can be identified is a
"view" of the software process when it involves the
communication activity. This view of the architecture
is shown in Figure 3 & Figure 4. In the follovving
sections, we will provide a more detailed discussion
of the exchange and service elements of the
architecture.

Data and Knowledge Exchange

IS0 10303-11 (EXPRESS) and IS0 10303-12
(EXPRESS-I) are used to define information models
and exchange formats for diagnostic knowledge
(ISO, 1994a; ISO, 1994b). The STEP (Standard for
the Exchange of Product model data) community is
maintaining these international standards. The current
approach to static information exchange within AI-
ESTATE is to derive the exchange format from the
formal information models as specified in the IS0
standards.

When IEEE 1232.1 was published, it was
published as a "trial-use" standard to provide a period
for people to study it, attempt to implement it, and
provide feedback to the AI-ESTATE committee on
the ability of the standard to satisfy the stated
requirements. Since publication, comments have been
received to indicate that ambiguity still exists in the
information models.

Because of the concem that the information
models are still ambiguous, the models are
undergoing close examination and modification. It is
interesting to note that much of the ambiguity has
been identified in connection with a related standard
being developed by the AI-ESTATE committee-
P 1522 Standard for Testability and Diagnosability
Metrics and Characteristics. AI-ESTATE'S approach
to developing this new standard involved defining the
metrics based on the information models within the
P1232 standard. As we were identifjmg metrics to be

430

successor
(INV) predecessor

description
‘ - l ~ ~ p (~ ? b e r level description-type S[O:?] ,

at-indenture-level S[l :?I (INV) parent S[O:?‘j

repair

Figure 5. Revised Common Element Model

standardized, we discovered that the current models defined to eliminate ambiguity that may arise from
were incapable of supporting their definition.

A conceptual view of the revised common
element model is shown in Figure 5. Of note in the
revised model is the addition of a context entity and
the differentiation between fault and function. Many
diagnostic tools are highly context dependent (e.g.,
different procedures are suggested based on the
environmental conditions of the test or the skill levels
of the maintenance technicians). In addition, several
tools focus on modeling function rather than physical
faults to support modeling at the system level. Since
the distinctions among context and type of analysis
were not previously made explicit, new entities were

0-7803-5868-6/00/ $10.00 0 2000 EEE 43 1

different approaches and contexts for modeling.

Diagnostic Services

The approach taken to defining services in AI-
ESTATE has been based on the traversal (Le., the
following of the relationships defined between model
entities to access specific pieces of information in the
models) of the information models. The “simplest”
services involve traversing the models defined in
IEEE 1232.1 (Le., the exchange models); however,
these models provide-little functionality in terms of
actual diagnosis.

In IEEE 1232.2, a novel use of information
modeling was applied in that a dynamic information
model was specified to support dynamic services.
This model, called the “dynamic context model,”
relied on dynamically creating entities that populate
the model during a diagnostic session. In fact, as
suggested by “dcmsession” and “dcmstep” in the
model shown in Figure 5, a diagnostic session is
modeled as a sequence of steps instantiated from the
set of possible values specified in the static model.
Details of how the service specification is expected to
be implemented can be found in (Sheppard and
Maguire, 1996; Sheppard and Orlidge, 1997).

One of the concems raised by a member of the
AI-ESTATE committee was whether the standard
specifies a set of services or simply an Application
Programming Interface. The claim was that the
service specification must include a behavior
specification as well and that this can only be
accomplished by defining a set of baseline behaviors,
perhaps through some sort of test bed.

The committee observed that people have
different opinions over the difference between a
service specification and an API specification.
Further, it was determined that including test cases to
specify standard behavior was not desirable in this
context due to the wide variety of diagnostic
approaches using common diagnostic knowledge.
Rather, it was believed that it was more important for
the information itself to be standardized and the
specific behavior to be left to the implementation.

Summary

In this paper, we argued that ensuring unambiguous
communication within a component-based
architecture requires formal definition of the
information communication. This formal definition is
accomplished through the creation of information
models. From these models, standard information
exchange can be accomplished via exchange files and
software services.

The AI-ESTATE family of standards was
presented as an example of an information-based
standard used to define the way a diagnostic
component interacts with a test system or health-
management system. The benefits afforded
diagnostic components built using these standards
include:

Communication of the information between
parties is reliable because the syntax and
semantics of the information is agreed upon
beforehand.
Diagnostic components constructed
according to the standard facilitate
competition in the marketplace, this reducing
cost and driving advancement in capability.
The availability of reusable compontnts
provides flexibility to those building complex
system, thereby reducing the overall
complexity and cost of those systems.
Providing information according to standard
models increases the pool of information
resources available, for example in terms; of
available models.
Standards indicate a level of maturity in the
underlying technology, thus increasing
confidence and reducing risk.

Information is the key to communication in .my
process, including computer-based processes and the
development of commercial component contracts.
Complex systems being built today require the
interaction of a large number of processes, often
distributed both logically and geographically. For
these distributed processes to interact properly, the
processes must be able to connect and communicate
in such a way that the parties of the communication
understand the shared information.

Acknowledgments

In many ways, it is unfortunate that a paper such as
this includes only the names of two authors. ‘The
work reported here is the result of efforts of a
committee of devoted volunteers who have supplied
their expertise in system test and diagnosis to develop
strong, sound standards supporting the diagnostics
community. We would like to thank Les Orliclge,
Randy Simpson, Tim Bearse, Tim Wilmering, Greg
Bowman, Mark Kaufman, Bill Simerly, Dave
Kleinman, Lee Shombert, Sharon Goodall, Len
Haynes, Jack Taylor, and Helmut Scheibenzuber for
their efforts in developing the standards and
promoting their use in industry.

0-7803-5868-6/00/ $10.00 0 2000 IEEE 432

References

IEEE Std 1232-1 995. IEEE Standard for Artificial
Intelligence Exchange and Service Tie to AN Test
Environments (AI-ESTATE): Overview and
Architecture, Piscataway, NJ: IEEE Standards
Press.

IEEE Std 1232.1 - 1997. IEEE Standard for Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE): Data and
Knowledge Specification, Piscataway, N J IEEE
Standards Press.

IEEE Std 1232.2-1998. IEEE Trial-Use Standard for
Artificial Intelligence Exchange and Service Tie
to AN Test Environments (AI-ESTATE): Service
Specification, Piscataway, NJ: IEEE Standards
Press.

stems and
inte ahon -product hta repesenta%n rmd
Ercgnge - Part 21: Desmpfion metho&: 7% EXPRESS
Ianguage re ence manuaI, Geneva, Switzerland
htematioalfkl Organization for Standardization.

IS0 10303-12:1997. Industrial Automation Systems
and Integration-Product Data Representation
and Exchange-Part 12: Description Methods:
The EXPRESS-I Language Reference Manual,

IS0 .10303; 1 1 : 1994. InausfnaI automahon

0-7803-5868-6/00/ $10.00 0 2000 IEEE 433

Geneva, Switzerland: Intemational Organization
for Standardization.

Giarla, A., 1999. “Implementing AI-ESTATE in a
Component Based Architecture, Phase-I,”
Proceedings of Systems Readiness Technology
Conference, Autotestcon 1999, IEEE 1999.

Press.Schenk, D., and P. Wilson. 1994. Information
Modeling: The IiXPRESS Way, New York:
Oxford University Press.

Sheppard, J., and R. Maguire. 1996. “Application
Scenarios for AI-ESTATE Services,”
A UTOTESTCON ’96 Conference Record, New
York: IEEE Press.

Sheppard, J., and L. Orlidge. 1997. Artificial
Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATEFA New
Standard for System Diagnostics,” Proceedings
of the International Test Conference, Los
Alamitos, CA: IEEE Computer Society Press.

Simpson, W., and J. Sheppard. 1994. System Test and
Diagnosis, Boston: Kluwer Academic Publishers.

Szyperski, C. 1998. Component Software : Beyond
Object-Oriented Programming, New York:
Addison-Wesley Publishing Company.

