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Abstract—Accounfing for the effects of test uncertainty is a
significant problem in test and diagnosis. Specifically, how does
one assess the level of uncertainty and then wtilize that
assessment to improve diagnostics? One approach, based on
measurement science, is to freat the probability of a false
indication (false alarm or inissed detection) as the measure of
uncertainty. Given the ability to determine such probabilities, a
Bayesian approach to diagnosis suggests itself. In the following,
‘we present a mathematical derivation for false indication and
apply it to the specification of Bayesian diagnosis. We draw from
measurement science, reliability theory, and the theory of
Bayesian networks to provide an end-to-end probabilistic
treatment of the fault diagnosis problem.

Index Terms—Bayesian inference, diagnosis, false indication,
measurement science.

1. INTRODUCTION

WHAT Is a false indication? How can false indications be
predicted? How can one use this prediction to aid

diagnosis rather than hinder diagnosis? These are the
questions that concern us in this paper. Further, given recent
efforts of the IEEE to standardize metrics for testability and
diagnosability, answers to these questions are particularly
relevant. The long-time bane of embedded diagnostics (such
as BIT), it is becoming increasingly important to be able to
predict and track false indications in test and diagnosis,
Unfortunately, it is generally accepted that, even if we are able
to predict false indications, verifying these predictions with
field data 1s problematic. At best, we might be able to measure
false-removal rates, cannot duplicate rates, or retest-OK rates,
but these rates can be attributed to multiple causes that include
false indications.

MIL-8TD-2165 (now MIL-HDBK 2165A) [5] defines a
false alarm as ““a fault indjcated by buili-in test (BIT) or other
monitoring circuitry where no fault exists.” The former MIL-
STD-1309C [4] defines false alarm the same way, limiting the
definition to BIT. The I[EEE standard dictionary is in
agreement, defining false alarm more generally as “an
indicated fault where no fault exists” [2]. A missed detection
cen be defined similarly as “an indication of no fault where a
fault exists.” Combining, we can then define a false indication
simply as “an erroneous test result,”

Work from the measurement science community provides a
means for predicting uncertainty in measurement that can be
used as the basis for predicting false indications. As long as
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we rely on calibration laboratories to validate these
uncertainties and we focus on applying the uncertainties to the
test results, we can control the impact of our limited ability to
verify false alarms. Specifically, we look to apply
measurement uncertainty as a component in the overall model
for predicting false indications, combined with probability of
failure and probability of observing failure. We then use these
probabulities in the context of a Bayesian Belief Network to
perform diagnosis. We recognize that there are other possibie
causes for false indications, including environmental factors,
human error, and systems operating near their functional
limits; however, we limit the discussion te measurement
uncertainty as a starting point in our exploration,

The remainder of this paper is organized as follows. Section
I provides basic background material from measurement
theory. Sections IH-V provide the main tools used in this
paper-—predicting probability of false indication, predictng
probability of failure, and predicting instrument uncertainty
respectively, We then provide the main result in Section VI,
showing how to combine these predictions in Bayesian
diagnosis. We provide concluding remarks in Section VIL

II. MEASUREMENT THEORY

Under ideal conditions, with “accurate” measurement
devices and full information about the system under test,
diagnostic errors will still occur. These are mathematical
residues that cannot be eliminated completely. It 1s important
to understand that some complicated elements of diagnosis
mvolve chasing these residues [9].

A prominent 1ssue in testing is the impact of precision and
accuracy of test resources on the certainty in the resulting test
outcome. Formalizing the impact of precision and accuracy on
test confidence comes from work in measurement theory.
Given the need to formalize these factors, we can consider
each of them in terms of probability distributions. The
precision of a resource characterizes the amount of “scatter”
one can expect when repeated measurements are made of the
same signal. Typically, precision is applied to the
measurement process or resource rather than the measurement
itself. Thus the precision of a resource can be characterized by
considering a probability distribution of measurements. A
precise resource would yield a narrow distribution of
measured values, while an imprecise resource would yield a
wide distribution of measured values.



On the other hand, the accuracy of a measurement
comesponds to the level of deviation from some reference
value. As with precision, accuracy can be modeled as a
probability distribution. Typically, accuracy is applied to the
measured value rather than the process or instrument used in
taking the measurement. Frequently, it is determined through
taking several independent measurements and computing the
mean deviation from the reference value.

Statistically, inaceuracy is evaluated in tenns of two
potential sources—referred to as random error and systematic
error. Systematic error is also called bias. Many consider
accuracy only in terms of random .error in which bias is
ignored or calibrated out (in which case the estimate becomes
an unbiased estimate of error). Others consider total error in
which the bias is included.

To determine the appropriate tolerances for a particular test,
and thereby determine relevant test outcomes, one must
consider the precision of the required resources. The precision
will be used to determine the associated bias of the instrument.
To determine the precision, typically, several independent
measurements are taken for that instrument under known
conditions and the resulting distribution determimed. Then the
width of the distribution is determined by using, for example,
variance (defined as the average deviation from the mean of
the distribution).

Next, measurement error is considered by examining the

" distribution characterizing accuracy. Given the system to be
tested and a measurement to be made, a distribution of
“nominal values” for that measurement can be determined.
From this distribution, in the simplest case, PASS/FAIL criteria
are established based on the probability of a measurement
oceurring within some set of defined limits applied to that
measurement.

Generally the PASS/FAIL criteria are determined by
considering expected values for a fault-free unit. “Significant”
deviation from these expected wvalues results in the FAIL
outcome for that test. The limits define what is meant by
“significant.” Ideally, conditions are considered in which a
similar distribution is determined in the presence of faulty
conditions, and the limits are set such that maximum
separation between the distributions (in terms of probability
density) is obtained. During testing, a measurement value is
typicaily mapped into a discrete outcome determined based
upen which side of these limits the measurement falls.

Once the measured value is mapped into a discrete
outcome, interpreting the test results becomes problematic.
Specifically, when considenng a single measurement, the
probability of that measurement being within the set limits
will be Pr(x), and the probability of it being out of the limits
will be 1 — Pr(x). {(Actually, these are conditional probabilities
since the actual probability depends on whether or not the unit
has failed, as we will see below.)

In determining the base confidence (eg., either the
expecled confidence or the maximum confidence) in the
outcome, we want to consider both the probability of
observing a PASS outcome given the test should pass and the
probability of observing a FAIL outcome given the test should
fail, i.e., Pr(o(P) } P) and Pr(o(F) | F) respectively. Problems
occur when a measurement for a good unit is out of tolerance

(referred to as a “Type I error”) or a measurement for a bad
unit is in tolerance (referred to as a “Type 1I error™). Given
that we consider a test outcome of FALL to be a “positive”
indication of a problem, Type I errors correspond to false
positives while Type II errors correspond to false negatives.
These two types of errors are depicted in Fig. 1.

IIl. DETERMINING PROBABILITY OF FALSE INDICATION

Based on the fact Type I and Type Il errors occur in
practice, we want to know the rate at which we will be faced
with such errors. Repeating the definitions of Section I, we
define a false alarm to be an indication of a fault where no
fault exists. Similarly, we define a missed detection as an .
indication of no fault when a fault does exist. Finally, a false
indication is either a false alarm or a missed detection. Each
of these concepts will be -defined mathematically in this
section.

Formally, a false indication occurs whenever a test result is
inconsistent with the underlying state of the unit being tested.
When determining the probability of a false indication
oceurring, we must consider these joint effects. Consider the
situation where we only have a single test, and 1t is possible
for that test to either PASS or FAILL. Further, assume that we
consider the possibility of a fault truly being present or not
being present. Thus we need to consider four combinafions as
follows:

¢ True pass: We observe the test passing (o(P)) and there is
no fault (P).

s  Missed detection: We observe the test passing (o(F)) and
there 1s a fault (F).

»  False alarm: We observe the test failing {o(#)) and there
is no fault (P).

e True fail: We observe the test failing (o(#)) and there is a

fault (F).

Now we want to consider the probabilities of these joint
events occurring. This corresponds to Pr{e(P) A P), Pr(o(P) A
F), Pr(o(F)y a P), and Pr(o(F) n F) respectively. Note that
these four situations cover all possible combinations, so we
can define the probability of false indication, Pr{FI), as
follows:

Pr(o(P), F) + Pr{o(F),P) D

P = By Py +Prlot),F) ¢ Pr(o(P), ) + ProF) P)

Note that, from a diagnostic perspective, this definition 1s
not particularly useful. This is because the process of
performing diagnesis corresponds to observing test results and
then inferring diagnoses {i.e., possible faults) within the
system. Thus, in reality we are interested in the conditional
probabilities of the state of the unit given the test results.
Reecall the definition of conditional probability that says

PH(A,B). @

Pr{A|B) = =0
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Fig. 1. Distributional sources of Type 1 and Type Il errors, respectively.

Using this definiticn, we can rewrite Equation 1 as follows:

PE(FI™) = PH(F | o(PYP1(o(PY) + PP | o(ENPa(F))  (3)
Unfortunately, tt s very difficult to determine the
probabilities, Pr(o(P)) and Pr(o(F)) respectively, so it is easier
to consider the equivalent form:

PR(Fi"} = Pr(o(P}| F)Pr(F)+ Pr{o(F) | P}Pr(P) (4)
This form will be particularly useful in diagnosis in that Pr(7)
15 derivable directly from the failure rate of the unit and
Pr(o(F) | F) = | = Pr(o(P) | F) is a measure of the ability of a
test 1o detect the associated failure which we will derive
below.

Now we will consider these alternative conditional
probabilities. Specifically,

*  Pr(o(F) | F) is the probability we observe a failure, given
the unit 1s faulty.

¢ Pr(o(P) | P) is the probability we observe no failure, given
the umit is not faulty.

*  Pr(o(F) | P) is the probability we do not observe a failure,
given the unit is not faulty.

e Pr(o(P) | F) is the probability we do not observe a failure,
given the unit is faulty. '

Then we can consider the confidence (or actually, the lack of
confidence) in our test, independent of the failure rate of the
unit tested, to be the following,

Pr(FT<) = Pr(o(F)| P) + Pr(o(P) | F) )
Pi(o(F) | PY+ Pr(o(F) | F) + Pr(o(P)| P) + Prio(P)| F)

This can be simplified by observing that the sum of the
conditional probabilities Pr{o(¥) | P) + Pr(o(f) | P) = 1 and
Pr(o(P) | F) + Pr(o(F) | F) = 1. Thus

PHCFL®) = S{PHOU) | P + PrCo(P) ) ©)

To make sure that we have not viclated the axioms of
probability (specifically, the axiom that states that the sum of
the probabilities over a domain must be 1), we note the
following, First, Pr{o(P) | Py = 1 — Pr(o(F) | P) and Pr{o(F) |
Fy=1 - Pr(o(P) | F). So the probability of a true indication
(Pr{TT)) can be computed similarly:

p— Pr(o(F)| F) & Pr(o(P)|P) 10
Pr(oF) | P) + Pr(o(F) | ) + PHo(P) | P) + Peco(P) [ )

Observe that, given the above axiom of probability, we must
have Pr(TF) = 1 — Pr(FF). Using the complementary of
probabilities defined above we have,

(1-Pr(o(F){ P}) + (1 - Pr(a(P}| F))

P Pr(o(F)| Py + Pr(e(F)| F) + Pi(o(P)| P) + Pro(P)| F)

=1 -%[Pr(o(Fﬂ P+ Pr(o(P)| )]
=1-Pr(FI°)

So we see that the axioms of probability hold as desired.

Thus, assuming independence in testing, we can derive
corresponding test accuracy probabilities from instrument
accuracy and reliability measures. Assuming 7" independent
tests, this can be given as
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Seen o
Pr(FI) = 51— =F2Pr(FI.-‘)
ZPr(FI,‘)+ PrIT)

®

When wanting to predict Pr(FI%), we can apply Bave’s Rule to
each of the respective terms where,

Pr(P | o(F ) Pr(a(F))
Pr(o(F)| Py =
o(o{F)| P) PrP) ©
Pr(F { o(P)) Pr(o(P))
Py| Fy = AT Do)
Prio(P)| F) Py
Notice that Pr(F) is simply a failure probability, which can be
derived from reliability models. Further, Pr(? | o(P)) can be
derived from the instrument uncertainty, and Pr{o(P))
corresponds to the prior probability of observing no fault (1.e.,
1 ~Pr{o(F)), 1.e., the confidence in the test result.

1V. DETERMINING PROBABILITY OF FAILURE

Traditional reliability theory determines probability of
failure based on the failure rate of an item. Failure rates are
determined using combinations of historical data and physical
models and are typically expressed in terms of numbers of
failures per million hours {or some other unit). Traditionally,
the failure rate i1s denoted A, and the mean time between
failures (MTBF) is 1A,

Usually, failure probability is computed under the
assumption of an exponential probability distribution, based
on a further assumption of constant failure rate [3]." In other
words, if we let D; denote faillure (or diagnosis) 7, the
probability of failure D, is computed as

Pr(D,) =} —exp[-A,] am
In performing diagnosis under uncertainty, it is common to
compute probability of failure over members of an ambiguity
group as a relative measure directly from the failure rates.
Specifically, we define an ambiguity group to be a set of
diagnoses for which no tests have been performed that
differentiate the set (perhaps because they do not exist).
Assume {for simplicity) that a diagnosis corresponds to a
single fault mode. Assume also that each fault mode has an
associated failure rate, Then given a set of diagnoses D, n an
ambiguity group A,

Ay an

PIEN

DyeA

PHD, | A) =

However, . the failure probability is time-dependent and
Markov in nature. In other words, the actual probability of a

! When the failure rate is not constant, it is common for the Weibull
distribution to be used instead. It is relevant to observe that, for the Weibull
distribution, when the shape parameter Fis sct to 0, the distribution reduces to
exponential.

fault depends upon the time since the last evaluation of that
unit. Since ambiguity group D corresponds (as defined above)
to a group of possible diagnoses that have not been
differentiated, they have not vet been evaluated; therefore, the
more accurate method for computing the relative probabilities
of the diagnoses in A is,

1-exp[—4,} (12)
(D) =mm———
"o Z(l-exp[—lD{f])
DeA

Suppese we have three possible diagnoses with failure rates
{assuming common units such as per million hours) set at
0.001, 0.005, 0.01, 0.05, and 0.1 respectively. Using Equation
11, we find the relative failure probabilities for these are
approximately (.006, 0.03, 0.06, 0.3, and 0.6 respectively.
However, if we use Equation 12, we find that due to the
dependence on time, these relative probabilities drastically
change, eventually converging with time to uniform. We can
then use this time-dependent view in the calculation of
probability of false indication, as defined above.

V. DETERMINING INSTRUMENT UNCERTAINTY

Consider now the task of determining uncertainty in a
measurement  from  some  instrument.  Typically, a
measurement £ is mapped to a PASS or FAIL outcome when
testing, however, based on the uncertainty of the
measurement, #,, the probability of observing the PASS or FAIL
outcome can be determined.

Note that when measuring the state of a unit under test, we
are not directly measuring that state but are measuring some
signal that depends on a number of independent variables
(inputs, internal state, fault conditions, environmental
conditions, etc.). Thus we can consider the measurement
process as one of estimating a function y = flx,... %)
Uncertainty in the dependent variable y ultimately depends on
the uncertainty in the independent vanables x;, (denoted u(x)
respectively).

Typically, the uncertainty is determined through one of two
methods: Type A uncertainty is based on statistical sampling,
and Type B uncertainty is based on the assumption of some
underlying distribution [10}. If.we assume a Gaussian
distribution, we find that, frequently, the Type A and Type B
uncertainties are approximately the same. Either way, the
objective is to identify standard wuncertainty, which is
typically treated as a standard deviation of the underlying
distribution.

More specifically, consider some measurement, x, that is
intended to observe some “true value” x. The uncertainty
associated with this measurement is then »,, and we say that x
= X, * u, Recognizing that the estimation process involves
combining multiple measurements, we get that we are seeking
some y = flxy, ..., x,). Given that the uncertainty u; of
independent variable x; can be determined either statistically
or analytically, the goal is to determine the uncertainty in the
dependent variable y. The “combined” standard uncertainty of
v, denoted u.{)), represents the estimated standard deviation in
the result, and is computed as
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e ) (3

2]

and is called the law of uncertainty propagation [1), [11].
Here, u(x;) denotes the estimated variance of x,, and u(x.x)
denotes the estimated covariance associated with x; and x;
This law is derived from a first-order Taylor series
approximation of the function ¥ = fix;, ..., x,). For many
functional forms, Equation 13 reduces to simple linear forms.
For complex cases where there is significant non-linearity,
higher-order approximations are required.

Interpreting the result of Equation 13, since we are treating
standard uncertainty as the standard deviation of the estimate y
and assuming a Gaussian (i.e, normal) distribution, we note
that the actual value ¥ =y + u, approximately 68% of the time
and Y = y + 2u, approximately 95% of the time. Note that this
uncertainty can also be interpreted as the amount of deviation
off of the irue value.

Consider now a test that has been “shifted” such that its
distribution 1s centered on zero with a nominal range of tz.
The probability of the test actually PASSing given the
measurement y i given as,

w(x, )+ZZZ

i=1 i=1 jei+i

uc(y)=JZ":

PeP {y) =

Pr(P | o(P)) Pr(o(P) | y) + Pr(P | o)) Pr(a(F} {3).  (14)

However, when conditioning on cbserving a PASS, we note
that the second term drops out since Pr{o(F) | 3) = 0. Also,
since Pr(o(F) | y) = 1, we have,

Pr(P | yy=Pr(P | o(P))- (15}

Similarly,

PF 3=

Pr(F | o) Pr{e(F) | ») + Pr(F | oF) Prio(PY [y} (16)

So by the same argument, when conditioning only on
observing a FAIL, we find that

PICF | ) = Pr(F | o(F)). an

Without loss of generality, focus on Pr(? | 3) = Pr(P | o(P).
If we apply Bayes rule, we get,

Pr(y | PYPr(P)

Pr(Ply)= i)

After exarmining the underlying distributions for cach of the

probabilities on the right hand side (where ¥ corresponds to
Pr(F), which is a constant), we get

PP | o(PY) = \P[Tz'lifj_z expl-% (%y)] d"} (18)

and
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Pr(F|o(F) = 1= ¥ + (1= })Pe(P| o(P))- 19
We now have all of the pieces required to determine test
confidence for Bayesian diagnosis.

It is interesting to note that repeated measurements enable
revision of uncertainty and can tend to reduce uncertainty. The
idea of “repeat polling” has been proposed as a technique for
reducing the probability of a false indication by allowing
transient signals and other sources of measurement uncertainty
o “dampen out” [7]. Specifically, using this idea of repeat
polling, uncertainty can be revised as

o~ )

Given constant uncerfainty (for a particular measurément

type), we see that
-1
I ] 7 u/ )
)= —| ="
“ [Z u:} %

Further, the best estimate of the measurand based on repeated
measurement can be determined by computing the weighted

surm,
¥ 1y,
=x{t -1y ——
y I()(1+72J+y( {l+72)

where x(f} is the current measurement, (¢ — 1} is the best

b, (1)
2,(0)

represents the ratio between uncertainty at the previous time
step and initial uncertainty (thus showing the amount of
relative reduction at this time step).

1
H, (0)

1
ul(t=1)

Qo)

@n

22

estimate through 7 — 1 measurements, and y =

VI. DiaGNosIS WITH BAYESIAN NETWORKS

Recall that Pr(77) = 1 — Pr(F]). We will use this as a
measure of confidence in our test results. Note that, if we have
measures for Pr{o(F) | P) and Pr{o(P) | F) for each of the
measured tests, then we can use Bayes Rule and break the
confidence into its respective parts for PASS or FAIL.
Specifically, our confidence in a PASS result becomes Pr(P |
o(P)) = | — Pr(F | o(P)). Similarly, our confidence in a FALL
result becomes Pr(7 | o(F)) =1 -Pr(P {o(F)).

Once we have formulated probabilities such as these, we
are in a position to use these probabilities as confidence values
in a diagnostic system. There are many diagnostic systems that
allow for reasorung under uncertainty; however, the natural
approach that uses probabilities directly is the Bayesian Belief
Network (BBN) [6]. Formally, a BEN =(V, E, C}, where
¢ Vs a set of vertices corresponding to random variables
VeV, )

E is a set of directed edges e; € F where the source of the
edge comresponds to F;, the destination of the edge



corresponds to I}, and the edge represents a conditional
dependence relationship of ¥, on IV,

e Cis a set of conditional probability tables Cpyy € C
where each entry provides the probability of ¥; given the
set of parents of V; (Pa(¥).

The structure of the BBN depends on the concept of
conditional independence. Given two random vanables, V)
and V3, V) is conditionally independent of V5 iff Pr(¥1 | ¥3) =
Pr(F1). Further, given random varables V1, V5, and Vs, V) is
conditionally independent of V; given Vs iff Pr(Vy | Vs, V3) =
Pr(¥1 | ¥3) and Pr(V; | ¥, V3) = Pr(Vz | V3). Within the BBN,
we say that a random variable V; is conditionally independent
of all other variables not connected to it given its parents
Pa(V).

If we continue to assume that tests are performed
independently from one another, then we connect tests (as
random variables) tc possible diagnoses (as random
variables). We can also assume that the diagnoses are
independent from one another (i.e., the existence of one fault
does not cause another fault to occur). Thus the only
dependence relationships modeled are between tests and
diagnoses.? In addition, we must find a way to handle the
relationships between the intended states of the tests and the
observations of those tests. Thus, we can define a causal
model such as the one illustrated in Fig, 2.

The diagnostic problem consists of infetring the probability
of each of the diaghoses in the BBN given the test results.
Note that the joint probability distribution over all of the
variables in the BBN, Pr(V), is given as the product of the
probability distnbutions of each over each of the vertices
(random vanables) conditioned on their parents, i.e.,

pe(v) = [ ] e, | Par ) @3

VeV

Assume we subdivide the set of random vanables V into
two subsets, T and D corresponding to tests and diagnoses
respectively, as discussed above. Further, assume that T« D
=Vand T ~nD =@ (i.e, T and D are disjoint but define the
entire set of random variables V). Finally, assume T contains
the set of observations (i.e., the evidence variables) and D
contains everything else (including, if needed, the true states
of the tests). Given a target set of test results, 7, we calculate
Pr(T’ = 1) (where T* = T) by marginalizing out the remaining
variables given by W\I'. This is dene by summing over alt
Pr(V\T*, T’ = 1), where “\” denotes set difference:

PA(T' =)= ) PH(VAT, T = 1) @y

ALY

When evaluating BBNs, there are several techniques for
deriving probabilities based on evidence values. For the

? These two assumptions are not necessarily true, and in general such
dependence relationships, when known, can be modeled directly by the BBN
by inserting appropriate edges between pairs of tests or between pairs of
diagnoses.

Fig. 2. Diagnostic Bayesian Network Structure

restricted set of BBNs corresponding to polytrees, exact
solutions exist. For general BBNs, computing the joint
probability distribution is NP-hard; therefore, a variety of
techniques existing ranging from constructing join-trees to
applying varions sampling techniques such as Markov Chain
Monte Cairlo (MCMC) and importance sampling.

Applying the method described above for determining
probability of false alanm or probability of missed detection,
we can then use these probabilities directly without the need
for stochastic sampling methods. By assuming independence
among the random variables in D (1.e., the diagnoses) as well
as independence among the random variables in T (i.e., the
test observations), the characteristics of direction-dependent
separation (i.e., d-separation) allow for simpte propagation of
the probabilities to the diagnoses. Specifically, we say that a
set of evidence nodes £ m a BBN (i.e., nodes that can be
observed) d-separates two sets of nodes X and ¥ if every
undirected path from a node x € X to a node y € ¥ 15
“blocked” given E. A path is blocked given E if there exists
some node z on the path for which one of the following three
conditions holds.

1. Ifz e E, z has one parent that is on the path, and z has one
child that is also on the path.

2. Ifz € E and z has two children, both of which are on the
path.

3. Ifze E Vxpa(x)=z ¢ E, and z has two parents, both of
which are on the path.

Then, we can assert the diagnoses are conditionaily
independent of each other given the test results because of the
third case, even though the diagnoses have no parents.
Specifically, taking the graph transpose of the network (ie.,
reversing the directions of the ares) results in the evidence
variables being the parents of the diagnoses, and none of the
diagnoses being evidence variables.

Given the conditional independence of the diagnoses, we
can then compute the posterior probabilities of each of the
diagnoses given the test results as follows. First, we will
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partition the random varniables explicitly into three sets: D (the
diagnoses), T (the true test slates), and O (the test
observations). The evidence variables will be restricted to O.

P(D; | O) =a Pr(O] D;)Pr(D))
=a[P«(0 | T)P(T | D,)PKD,)]
=aP(D)Y Pro(T,)IT)PHT, | D,)

T, T

@5)

Here, @ is a normalizer over the set D, equal to

a= ZPr(D,.)ZPr(o(TJHTJ)Pr(TJ. (D)

DeD Tpe¥

Observe that Pr(T; | D) € {0, 1}, so the members of the
sum are restricted only to those tests that observe D,. Then we
only need to consider Pr([);}, which corresponds to the prior
probability for D, and Pr(o(7}) | T)), which corresponds to the
confidence value assigned to the observed test result. Using
the Baye’s maximum e posferiori hypothesis, we determine
the most likely diagnosis simply as

Dy = argmax{Pr(D, | T)}" (26)

DeD

In other words, we provide the most probable diagnosis as a
means of mininnzing expected error in the diagnostic process.

VIE. SUMMARY

In this paper, we discussed a formal approach to predicting
probability of false indication and using this information as a
means of setting test uncerlainty in a diagnostic and
prognostic  system. Diagnosis was performed based on
Bayesian Belief Networks and incerporated information on
failure probability, instrurnent uncertainty, and the predictions
for false indication. This 1s the first time such a unified,
Bayesian view of the test and diagnosis problems has been
presented. The advantage to the discussed approach is that it
prévides a formally consistent and theoretically sound
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approach to diagnosis that can be adapted and matured as
better estimates of the associated probabilities become
available. :

ACKNOWLEDGMENT

We would like to thank the members of the IEEE SCC20
Diagnostic and Maintenance Control Subcommittee for
reviewing several critical parts of this paper. Specifically, we
thank Tim Wilmering, Mark Kaufman, Greg Bowman, Les
Orlidge, and Li Pi Su for their comments as the ideas were
formulated. This work was a direct ouigrowth of the
standardization work being performed under the DMC for
testability/diagnosability prediction and diagnostic maturation.

REFERENCES

[11 D’Agostini, Giulo, Probability and Measurement Uncertainty in
Physics—A Bayesian Primer, DESY 95-242, Deutsches Electronen
Synchnotron (DESY), December 1995.

[2] [IEEE Std 100-2000, The Awuthoritative Dictionary of JEEE Standard
Terms, Seventh Edition, IEEE Standards Association Press, Piscataway,
NJ, 2000.

[3] Klion, Jerome, Practical Electronic Relighility Engineering, Van
Nostrand Remnhold, New York, 1992,

4] MIL-STD 1309C, Definition of Terms, November 18, 1989

[51 MIL-STD 2163, Testability Program for Electronic Systems and
Equipments, January 26, 1985.

[6] Pearl, Judea, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible fnference, Morgan Kaofmann, 1991

[7] Phillips, S.D., W. T. Estler, M. S. Levenson, and K. R. Eberhardt,
“Caloulation of Measurement Uncertainty Using Prior Information,”
Journal of Research of the National Instinvte of Standards and
Technology, Vol 103, No., 6, November-December 1998, pp. 625-632.

(8] Sheppard, John W. and Mark Kaufman, “IEEE 1232 and P1522
Standards, AUTOTESTCON 2000 Conference Record, IEEE Press,
September 2000.

[9] Sheppard, John W. and William R. Simpson, “Managing Conflict in
System Diagnosis,” in Research Perspectives and Case Studies in
System Test and Diagnosis, Kluwer Academic Publishers, 1998,

{10] Taylor, Barry N. and Chris E. Kuyatt, “Guidelines for Evaluating and
Expressing the Uncertainty of NIST Measurement Resulis,” NIST
Technical Report 1297, 1994,

[11] Tnpp, John S. and Ping Tcheng, “Uncertainly Analysis of Instrument
Calibration and Application,” NASA/TP-1999-209545, Cctober 1999,



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


