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Abstract–How can diagnosis and prognosis 
systems be improved in the presence of un-
certainty in test results? How can these uncer-
tainties be identified and modeled? Can diag-
nosis be improved as a result of understand-
ing these uncertainties? These questions rep-
resent the core problems to be explored in this 
paper. Specifically, we explore the process by 
which instrument uncertainty can be used to 
determine conditional probabilities of potential 
diagnoses given test results generated by 
these instruments. We then use that informa-
tion to construct “Bayesian belief networks” 
with specific goal of maximizing diagnostic 
accuracy while minimizing construction com-
plexity, and computational complexity. We 
then extend the ideas presented for Bayesian 
diagnosis to the prognostic, or predictive di-
agnostic, problem. 
 

INTRODUCTION 
 
Significant emphasis is being placed on develop-
ing new approaches to analyzing test results and 
isolating faults by procurers of complex systems. 
The field of Bayesian reasoning has been provid-
ing successful approaches to solving complex 
problems such as diagnosis since the eighteenth 
century; however, the computational complexity 
and data requirements associated with Bayesian 
techniques have tended to stifle their use in sys-
tem diagnosis. 
 
Our objective is to describe a general approach to 
applying Bayesian techniques to the system diag-
nosis problem. Key to this approach is a) develop-
ing technology-independent techniques for collect-
ing the data required for creating Bayesian mod-
els (i.e., Bayesian networks) and b) identifying 
efficient techniques for reasoning with these mod-
els. For most complex systems, sufficient data to 

model probabilities to high levels of accuracy do 
not exist, either because the systems have limited 
field data available or the systems implement new 
designs. In addition, general reasoning in Bayes-
ian networks is known to be intractable (techni-
cally NP-hard); therefore, if the desire is to 
achieve “exact” reasoning with Bayesian net-
works, then it is necessary to constrain the mod-
els to fit particular topological forms for which effi-
cient computation is possible. 
 
In this paper, we propose an approach to captur-
ing probability information from data collected on 
test instruments during the calibration process, 
combined with data required to set decision 
thresholds when designing the tests that use 
these instruments. We then describe a general 
diagnostic model that is efficient to process com-
putationally. We review the fundamentals of 
Bayes decision theory to demonstrate how to use 
these models in a computational setting and illus-
trate the approach with a numerical example. We 
end by extending the model to address issues in 
predictive diagnosis (i.e., prognosis) as well.  

 
ASSUMPTIONS 

 
Test equipment uncertainty is believed to be a 
significant predictable source of uncertainty in our 
model. We differentiate between the power source 
uncertainty (i.e., the probability that power levels 
applied as input to the UUT are at the intended 
levels) and instrument uncertainty (i.e., the prob-
ability that measurements and stimuli are within 
some specified tolerance). When considering 
power source uncertainty, we assume that if the 
power system integrity check passes (with some 
confidence level associated with it), then either we 
can factor power uncertainty out of the model, or 
the resulting confidence can be used as input to 
an overall probability of error. We will assume 
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power uncertainty is negligible due to the fact the 
power source is verified or calibrated prior to any 
measurement being made [2]. 
 
For instrument uncertainty, the calibration process 
is designed to a) minimize error in the instrument, 
as well as b) determine the level of uncertainty (by 
reading as opposed to by scale) of the instrument. 
Thus, assuming the instrument is calibrated, 
probability of error can be determined based on 
this specified uncertainty. Assuming that the 
causes for power source uncertainty and instru-
ment uncertainty are independent and the level of 
uncertainty due to power source integrity is not 
negligible, the resulting probabilities can simply be 
multiplied together. 
 
We are assuming that loading effects due to the 
test set and the switching matrix, up to the 
connectors on the test set side of the interface 
device (ID), are factored out as a result of 
metrology specifications relative to the test 
equipment and that the measurement uncertainty 
associated with a particular measurement device 
is specified at the interface rather than at the 
device itself. Thus we only need to consider 
loading effects arising from the pathways between 
the ID and the point of measurement on the UUT. 
Further, we assume that any loading effects will 
result in a simple shift in the measurment. As with 
any other factor, there will be some level of 
uncertainty associated with this offset. We 
assume that the resulting probability of error for 
the offest is independent of error due to 
measurement and is also negligible. If the error is 
significant, then we can include its probability as 
another multiplier in the model. 
 
Finally, we analyze the effects on setting the 
PASS/FAIL threshold. The task of setting the 
threshold is one of optimizing risk, where fre-
quently this is further subdivided into consumer 
and producer risk. Consumer risk refers to the 
effects of missed detection, and producer risk re-
fers to the effects of false alarm. 

 
INSTRUMENT UNCERTAINTY 

 
In support of diagnosis, our interest is in determin-
ing the probability of some observation, given the 
underlying state of the system. For example, 
Pr(o(P) | P) and Pr(o(F) | F) would tell us the prob-
ability of observing PASS given the unit is fault free 
and the probability of observing a FAIL given the 

unit is faulty respectively1. Note that these prob-
abilities work from the discrete random variables 
of unit state and test outcome; however, the test 
outcome, ultimately, depends on the underlying 
measurement. So consider the case where a 
measurement y is taken and y ∈ ±z (i.e., the 
measurement indicates a PASS observation). The 
probability of the test actually PASSing given the 
measurement y is given as, 
 

Pr(P | y) = Pr(P | o(P)) Pr(o(P) | y)  
 + Pr(P | o(F)) Pr(o(F) | y).  (1) 

 
However, when conditioning on observing a PASS, 
we note that the second term drops out since 
Pr(o(F) | y) = 0. Also, since Pr(o(P) | y) = 1, we have, 
 
 Pr(P | y) = Pr(P | o(P)).  (2) 
 
Similarly, 
 
 Pr(F | y) = Pr(F | o(F)).  (3) 
 
Continuing in this line of reasoning, observe that 
the probability of taking a particular measurement 
y given the unit passes can be computed by con-
sidering the distribution around y limited to the 
nominal range.2 In other words, 
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From the principles of probability, we also know 
that Pr( y | P) = 1 – Pr(y | F). 
 
Note that these equations assume the availability 
of a specific measured value (i.e., y) that would 
vary the associated probabilities; however, fixed 
probabilities are usually used in a Bayesian 
model. One approach is to use the expected value 
for the appropriate range. Another (and the one 

 
1 In our mathematical formulation, we make assumptions on 

the interpretation of events P/F and o(P)/o(F) that may be dif-
ferent from traditional “measurement-based” assumptions. 
Specifically, we assume a P or F event corresponds to the 
Boolean event of the unit being fault-free or faulty respectively 
and do not tie this event to any specific “performance-based” 
value. In addition, we assume an o(P) or o(F) event corre-
sponds to the Boolean event of mapping a specific, known 
measurement value (which we denote by the variable y) to a 
test outcome of PASS or FAIL respectively. 

2 Usually, this would be restricted to the dynamic range of 
the instrument; however, we assume the tests have been de-
fined properly such that the measurements of a particular test 
are of consistent accuracy. Therefore, the number of in-
tolerance measurements having different accuracy would be 
insignificant. This allows us to “ignore” the tails of the distribu-
tion as being negligible in cumulative probability. 



we adopt) is to select a “worst-case” value. In this 
case, such a value would correspond to one that 
is coincident with one of the limits3, z (since this 
would maximize probability of false alarm (false 
detection) or non-detection).4 Without loss of gen-
erality, focus on Pr(P | y) = Pr(P | o(P) (from Equa-
tion 2). If we apply Bayes rule and reduce, we get, 
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Following a similar line of reasoning, we can then 
derive Pr(F | o(F)) as  
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In Equations 5 and 6, we note that Pr(F) is derived 
from the failure rate of the unit and is assumed to 
be driven by an exponential distribution. Given 
this, we now have all of the pieces required to de-
termine test confidence for Bayesian diagnosis. 
 
An alternative approach to deriving these prob-
abilities is to note that the probabilities of the state 
of the UUT and the measurement of the test both 
follow normal distributions that can be modeled 
jointly using the bivariate normal distribution [5], 
[9].  
 
If we consider the distribution around x1 to be the 
expected value of the state of the UUT under 
nominal conditions, and the distribution around x2 
to be the expected value of the instrument regard-
less of which UUT is being measured, then we 
note that these distributions are independent. 
Thus, P(x1, x2) = P(x1) P(x2) and the bivariate distri-
bution reduces to the form of Equations 5 and 6. 
 

BAYESIAN NETWORKS 
 

Previously, we provided a detailed derivation of a 
simple model for Bayesian diagnosis [8] and [9]. 
Here we summarize these results by pointing to 
two specific issues in Bayesian networks. First, 
determining the appropriate structure of the net-
work can be difficult in that it requires a detailed 
understanding of the random variables of the 

                                                 

                                                

3 Technically, since we do not know a priori which limit 
would be exceeded, we should take the expected value, i.e., 
the average in this case, of the two limit values. With symmet-
ric distributions, however, this is not necessary, and we can 
work with one of the limits chosen without loss of generality. 

4 Should historical data be available, it might be possible to 
refine these probabilities based on that history, but such issues 
of diagnostic “maturation” are beyond the scope of this paper. 

problem to be solved and the conditional probabil-
ity relationships between those random variables. 
In fault diagnosis, the random variables corre-
spond to the tests and diagnoses, so the first step 
of identifying the random variables is relatively 
straightforward. 
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Fig. 1. Diagnostic Bayesian network structure. 

 
Determining the appropriate conditional probabili-
ties has been more problematic. Note that we as-
sume we are able to determine which fault is de-
tected by which test and that the tests were de-
signed with such detection in mind. Thus we do 
not need to determine the actual relationships. We 
only need to consider the probabilities on those 
relationships. But that is exactly what the discus-
sion on instrument uncertainty above provided. 
Applying the method described above for deter-
mining probability of false alarm or probability of 
missed detection, we can use these probabilities 
directly. 
 
The second problem to be addressed is the com-
putation required for performing diagnosis with 
these networks. In general, exact inference in 
Bayesian networks is NP-hard, meaning that no 
efficient algorithm is known to exist. However, we 
proposed a specific architecture to the network 
that reduces the computational problem with poly-
nomial complexity. Specifically, we assume the 
random variables in D (i.e., the diagnoses) are 
independent, as are the random variables in T 
(i.e., the tests). Now the characteristics of condi-
tional independence allow for simple propagation 
of the probabilities from the tests to the diagno-
ses.5  

 
5 In the event additional dependence relationships need to 

be defined, then propagation of probabilities along these de-
pendence links must also be accounted for. The theory of 
Bayesian networks allows for this; however, such additional 
dependencies may lead to large internal cycles, which are 



 
Given the conditional independence of the diag-
noses, we can then compute the posterior prob-
abilities of each of the diagnoses given the test 
results as follows. First, we will assume that we 
are using the network form presented in Fig. 1 
and partition the random variables into three sets: 
D (the diagnoses), T (the true test states), and O 
(the test observations). The evidence variables 
will be restricted to O. 
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Here, α is a normalizer over the set D, equal to  
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Assuming we are able to generate the probability 
distributions for nominal and faulty behavior, we 
consider the effects of locating the decision 
boundaries. For this discussion, we will draw on 
results from Bayes decision theory and its deriva-
tive, signal detection theory [4]. In particular, we 
consider each diagnosis to be a separate classifi-
cation. In this case, diagnosis reduces to assign-
ing the class label corresponding to the maximum 
a posteriori probability. More formally, 
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where ω represents the “actual state” of the unit 
being tested and λω is the loss associated with ω 
being the incorrect classification. The resulting 
classification is referred to as the maximum a pos-
teriori hypothesis. In other words, the diagnosis 
yielding the highest posterior probability is pro-
posed as the most probable fault. 
 
Observe that Pr(Tj | Di) ∈ {0, 1} as described ear-
lier, so the members of the sum are restricted only 
to those tests that observe Di. Then we only need 
to consider Pr(Di), which corresponds to the prior 
probability for Di based on failure rate, and Pr(o(Tj) 
| Tj), which corresponds to the confidence value 
assigned to the observed test result. Using the 
Baye’s maximum a posteriori hypothesis, we de-
termine the most likely diagnosis simply as 
 

                                                                            
conditions under which the NP-hardness of Bayesian inference 
becomes problematic. 

)}|{Pr(maxarg O
D

i
D

MAP DD
i∈

= . (9) 

Accel Gyro Ctrl

AG AC GC
 

 
Fig. 2. Simple stability augmentation system BBN. 

 
In other words, we provide the most probable di-
agnosis as a means of minimizing expected error 
(i.e., risk) in the diagnostic process. 
 

A NUMERICAL EXAMPLE 
 
In the following, we present a small numerical ex-
ample. Suppose, for the sake of discussion, that 
we are considering the Built-in Test (BIT) from the 
stability augmentation system (SAS) of a helicop-
ter. Stability augmentation systems provide stabil-
ity control for the three axes of the aircraft, namely 
roll, pitch, and yaw. Without loss of generality, we 
will consider just the roll axis. In evaluating the 
performance of the roll stability control in the SAS, 
we consider the health of at least three compo-
nents: the roll control unit, the roll gyro, and an 
accelerometer.  
 
For our test scenario, we note that if the expected 
output of the control unit agrees with the actual, 
derived roll outputs from the accelerometer and 
roll gyro, then the system is functioning properly. 
On the other hand, if any two of these three ele-
ments disagree, a fault exists in one of the two 
units involved in the disagreement. This scenario 
can be represented with the Bayesian network 
shown in Fig. 2. Note that we are using a simpli-
fied form of the network based on the assumption 
the tests are designed correctly to evaluate the 
indicated faults. 
 
For our network, Accel, Gyro, and Ctrl correspond 
to the diagnoses of whether the accelerometer, 
gyro, or control unit is faulty respectively. AG 
represents the observation associated with com-
paring the accelerometer output with the gyro out-
put. AC compares the accelerometer output with 
the control output, and GC compares the gyro 
output with the control output. 

 



Given this network structure, the
define the conditional probability
dependence links and the prior 
the diagnoses. The prior probabi
upon the failure probabilities of the
units. Suppose the SAS has been
out failure for 250 hours and the f
suming per thousand hours) for t
ter, gyro, and control unit are 30
spectively. Since we must also 
sence of a fault in our probability 
assign a “failure rate” of no-fault t
at this particular time, the relative 
ties [9] would be 0.301872, 0.277
and 0.302039 respectively.6
 
To determine the conditional p
must first consider the instrument 
the sake of simplicity, we will only
ditional probability table for AG. 
generality, let o(AG) represent an 
AG fails and ¬o(AG) represent 
that AG passes. Similarly, let Acce
resent the logic states that the a
gyro have failed, respectively. Thu
correspond to the accelerometer 
(likewise for ¬Gyro). 
 
Given the absence of a measure
constructing the model, we assu
urement occurs at the value of a d
the test (i.e., z). Thus, we set y 
“normalized” the distribution to ha
What is interesting about our as
ever, is that the mean of the distri
to the limit, so all probabilities of f
corresponding single faults reduc
when considering the combined fa
 
 Pr(o(AG) | Accel) = Pr(o(AG) | G
 

                                                 
6  The high number of significant digits 

onstrate the subtle differences in probabil
the analysis. 

Pr(o(AC) | Acc
Pr(o(AC) | Acce
Pr(o(AG) | Acce

Pr(o(AG) | Accel
Pr(o(CG) | Ctrl

Pr(o(CG) | Ctrl,
Table 1. SAS conditional probability table 
 

el, Ctrl) 0.975 Pr(o(AC) | ¬Accel, Ctrl) 0.867 
l, ¬Ctrl) 0.867 Pr(o(AC) | ¬Accel, ¬Ctrl) 0.292 
l, Gyro) 0.823 Pr(o(AG) | ¬Accel, Gyro) 0.756 
, ¬Gyro) 0.756 Pr(o(AG) | ¬Accel, ¬Gyro) 0.664 
, Gyro) 0.905 Pr(o(CG) | ¬Ctrl, Gyro) 0.787 
 ¬Gyro) 0.787 Pr(o(CG) | ¬Ctrl, ¬Gyro) 0.521 
 next step is to 
 tables on the 
probabilities on 
lities are based 
 corresponding 

 operating with-
ailure rates (as-
he accelerome-
, 10, and 2 re-
include the ab-
calculations, we 
o be 958. Then, 
failure probabili-
246, 0.118843, 

robabilities, we 
uncertainty. For 
 derive the con-
Without loss of 
observation that 
an observation 
l and Gyro rep-

ccelerometer or 
s, ¬Accel would 
being fault free 

ment when first 
me the meas-
ecision limit for 
= +z (since we 
ve zero-mean). 
sumption, how-
bution is shifted 
ailure given the 
e to 0.5. Then, 
ult, we have 

yro) = 0.579 

is provided to dem-
ities at this point in 

 Pr(o(AG) | Accel, Gyro) =  
 

1 – (1 – Pr(o(AG | Accel)) 
 (1 – Pr(o(AG) | Gyro)) = 0.823.  

 
These probabilities would need to be adjusted 
based on the measurement uncertainty (defining 
the shape of the distribution) if assumptions other 
than the limits were chosen. Using the above ap-
proach, we can construct the conditional probabil-
ity table given in Table 1. 
 
Using this approach of setting an expected meas-
ured value on the relevant side of the test limit, it 
is interesting to note that the probabilities of failure 
for each of the units (given no evidence) is {Accel: 
0.302; Ctrl: 0.277, Gyro: 0.119; NF: 0.216}, which 
correspond to the failure probabilities (except for 
No Fault—for the Bayesian network, the probabil-
ity for No Fault is given as Pr(NF | Accel, Ctrl, 
Gyro) and is derived from the fact that this prob-
ability is zero if any fault exists. Thus the probabil-
ity derived from the “failure rate” for No Fault is 
not required, except to determine the prior prob-
abilities for the faults in the system. Suppose, we 
indicate that AC and AG both fail but CG passes. 
Logically, we would expect Accel to be faulty, and 
indeed, we find revised probabilities of {Accel: 
0.539; Ctrl: 0.069, Gyro: 0.230; NF: 0.000}. Thus 
we would conclude from the tests that Accel is the 
most likely to have failed. 
 

DYNAMIC BAYESIAN NETWORKS 
 
The traditional approach to fault diagnosis as-
sumes tests are applied at a specific point in time 
from which one can infer the condition of the sys-
tem under test and make a diagnosis. The prob-
lem of prognosis, while essentially an extension of 
diagnosis, is complicated by the fact that time be-
comes a significant factor in the analysis. In fact, 
one can represent the prognosis problem as a 
time series prediction problem in which one at-
tempts to infer a future state from some sequence 
of past states. 
 



It turns out that the Bayesian approach to diagno-
sis can be generalized in a straightforward way to 
address prognosis as well. In the most basic case, 
consider the state of the system as if it can be 
represented at some time t as a single random 
variable st. Assume, further, that the state at time t 
+ 1 depends only upon the system state at time t. 
Then we can represent the time series corre-
sponding to the system state progression as a 
first-order Markov chain. 
 
Missing in our model is the fact that we do not 
have direct knowledge of the underlying state of 
the system. Specifically, we perform tests to ob-
serve conditions of the system, from which we 
infer the system state. Consequently, the basic 
Markov chain is not sufficient for our purpose—we 
need to differentiate between observable random 
variables and “hidden” (or unobservable) random 
variables. This leads the concept of a hidden 
Markov model (HMM) [7]. 
 
Formally, an HMM = 〈N, M, A, Bj, π〉, where N is the 
number of states in the model (denote the states 
as S = {s1, …, sN}), M is the number of distinct ob-
servation symbols per state (denote the symbols 
as V = {v1, …, vM}), A is the state transition prob-
ability distribution A = {aij} = Pr(qt+1 = sj | qt = si), Bj 
is the observation probability distribution in state 
sj, Bj = bj(k) = Pr(vk at t | qt = sj), and π is the initial 
state distribution, π = {πI} = Pr(q0 = si) [7]. 
 
The Markov chain and the HMM can be formu-
lated as special cases of a graphical model first 
formalized by T. Dean and K. Kanazawa called 
the “dynamic Bayesian network” [3]. DBNs have 
been studied further by Kevin Murphy who pro-

vided alternatives for representation, inference, 
and learning [6]. The purpose of a DBN is to 
model probability distributions over semi-infinite 
collections of random variables, Zi, that progress 
according to some temporal model. Typically, the 
random variables are partitioned into three sub-
sets indexed by time—Zt = (Ut, Xt, Yt) where Ut is 
the set of inputs at time t, Xt is the set of hidden 
(i.e., unobservable) variables at time t, and Yt is 
the set of outputs at time t. Then, given the set Z, 
a DBN is defined to be a pair 〈B1,B→〉, where B1 is 
a Bayesian network defining the prior distribution 
Pr(Z1), and B→ is a “two-slice” temporal Bayesian 
network defining the distribution Pr(Zt | Zt–1) such 
that 
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Fig. 3. Dynamic Bayesian network for prognosis. 
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To put this definition in the context of prognosis, 
we can construct a DBN for prognosis by “chain-
ing” successive BBNs together. Under the first-
order Markov assumption, we only need to repre-
sent two slices of the DBN and then “unroll” as 



necessary in processing the model. For example, 
Fig. 3 shows how to link the BBNs in sequence. 
Note that only the diagnoses are linked through 
time since they change state directly. Changes in 
observation state are derived from the underlying 
state changes in the system. This approach is 
distinct from the HMM that links observations to-
gether. 
 
To perform inference with the DBN (and thereby 
predict future states), first, infer the current state 
(i.e., the state in the current time slice) from the 
test observations. Next, “unroll” the DBN to the 
desired number of time slices (assuming the state 
progressions occur in discrete time steps—DBNs 
can handle continuous time, but the computation 
is more complex). Then, propagate beliefs 
through time by observing that  
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In fact, given the assumption that only diagnoses 
progress in state through time and that a diagno-
sis only depends upon itself in the previous time 
step, this part of the model reduces to a simple 
Markov chain, which can be either discrete time or 
continuous time. 
 
Key to constructing the DBN is defining the tem-
poral transition probabilities. In the simplest case, 
failure probabilities estimated from the failure 
rates can be used. When better information is 
available (e.g,. based on historical data), prob-
abilities derived from this information can be used. 
The point is that the DBN is fully general and can 
be adapted to available knowledge about the sys-
tem being analyzed. Theoretically, causal rela-
tionships between faults (i.e., a fault at time step t 
causes another fault to occur at time step t + 1) 
can be represented directly with the DBN as well 
(even though such models are rarely useful). 
 

SUMMARY 
 
In this paper, we developed a diagnostic approach 
based on Bayesian belief networks that incorpo-
rates information on failure probability, instrument 
uncertainty, and the predictions for false indica-
tion. Prognosis is performed using an extension of 
the Bayesian belief network, called a dynamic 
Bayesian network to model changes over time. 
The advantage to the discussed method is that it 

provides a formally consistent and theoretically 
sound approach to diagnosis and prognosis that 
can be adapted and matured as better estimates 
of the associated probabilities become available. 
By applying Bayesian inference based on reliabil-
ity information and instrument uncertainty, result-
ing diagnoses accurately reflect the current state 
of the underlying system. 
 

REFERENCES 
 
[1] Bolch, G., S. Greiner, H. de Meer, and K. 

Trivedi, Queuing Networks and Markov 
Chains, New York: John Wiley & Sons, 
1998. 

[2] Calibration Philosophy in Practice, 2nd edi-
tion, Fluke Corporation, Everett, WA, 1994. 

[3] Dean, T. & K. Kanazawa, “A Model for Rea-
soning About Persistence and Causation,” 
Artificial Intelligence, 93(1–2):1–27, 1989. 

[4] Duda, Richard O., Peter E. Hart, and David 
G. Stork, Pattern Classification, New York: 
John Wiley & Sons, 2001. 

[5] Jackson, Dennis, “Measurement Risk 
Analysis Methods,” Proceedings of the 
Measurement Science Conference, Ana-
heim, January 2005. 

[6] Murphy, K. Dynamic Bayesian Networks: 
Representation, Inference, and Learning, 
PhD Dissertation, Department of Computer 
Science, University of California, Berkeley, 
2002. 

[7] Rabiner, L., “A Tutorial on Hidden Markov 
Models and Selected Applications in 
Speech Recognition,” Proceedings of the 
IEEE, Vol. 77, No. 2, pp. 257–286, 1989. 

[8] Sheppard, John W., “Accounting for False 
Indication in a Bayesian Diagnostics 
Framework,” AUTOTESTCON 2003 Con-
ference Record, IEEE Press, September 
2003. 

[9] Sheppard, John W. and Mark Kaufman, “A 
Bayesian Approach to Diagnosis and Prog-
nosis Using Built In Test,” IEEE Transac-
tions on Instrumentation and Measurement, 
Special Section on Built-In Test, Vol. 54, 
No. 3, June 2005. 

[10] Sheppard, John W. and William R. Simp-
son, “Managing Conflict in System Diagno-
sis,” in Research Perspectives and Case 
Studies in System Test and Diagnosis, Klu-
wer Academic Publishers, 1998 

 


	A NUMERICAL EXAMPLE
	DYNAMIC BAYESIAN NETWORKS
	SUMMARY
	REFERENCES

