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Abstract–Recent advances in diagnostic tech-
nology have resulted in the need to examine 
these technologies for expanding current work 
in diagnostic standards. Specifically, the use 
of Bayesian networks for system diagnosis is 
becoming more common, thus warranting 
consideration of a Bayesian modeling within 
IEEE Std 1232 (AI-ESTATE). In the following, 
we present a discussion of Bayesian diagno-
sis as a basis for introducing a new informa-
tion model to support exchange Bayesian 
knowledge. We also describe a simple exten-
sion to the model to support system progno-
sis. Finally, we discuss recent initiatives 
within the IEEE to update their standard ex-
change mechanisms to support XML as “pre-
ferred” medium. 
 

INTRODUCTION 
 
Efforts by the Department of Defense to increase 
use of commercial or dual-use technologies have 
resulted in the levying of new requirements on 
automatic test systems. One of the areas where 
requirements are being levied is in the exchange 
of diagnostic information. The IEEE Standards 
Coordinating Committee 20 (SCC20) on Test and 
Diagnosis for Electronic Systems has been devel-
oping standards for diagnostic knowledge ex-
change and diagnostic services with their IEEE 
Std 1232-2002 Standard for Artificial Intelligence 
Exchange and Service Tie to All Test Environ-
ments (AI-ESTATE). Because of the new DoD 
requirements, it was determined that an amend-
ment to the AI-ESTATE standard was required. 
 
In addition to the new exchange requirements, 
members of the diagnostic community have indi-
cated an interest in defining a standard for Bayes-
ian diagnostics. Bayesian diagnostic models in-
volve specifying random variables corresponding 

to tests and diagnoses utilizing a network struc-
ture to relate the random variables to one another. 
With each node in the Bayesian network is the 
specification of a set of conditional probabilities, 
prescribing the conditional probabilities of each of 
the values of that node given the “parent” (or de-
pendent) nodes in the network. 
 
In a companion paper in this conference, details 
on the specification, population, and use of a 
Bayesian diagnostic model is provided. In this pa-
per, we expand upon that discussion and describe 
how the Bayesian diagnostic model is being stan-
dardized within SCC20. We describe the process 
of utilizing formal information models to capture 
the semantics of Bayesian diagnosis. We then 
provide a detailed discussion of the structure and 
definition of the AI-ESTATE Bayes model, relate 
the elements of the model to existing information 
models within AI-ESTATE, and explain how to use 
the Bayesian model in the context of an AI-
ESTATE conformant diagnostic reasoner. Given 
recent emphasis on prognostics, we also explain 
how to extend the AI-ESTATE Bayes model to 
incorporate constructs for prognosis based on the 
concept of a Dynamic Bayesian Network (DBN). 
Finally, we provide a discussion of the new XML-
based exchange format being incorporated into 
AI-ESTATE to satisfy exchange requirements un-
der the DoD and industry-led Automatic Test 
Markup Language (ATML) initiative. 
 

DIAGNOSTIC STANDARDS 
 
The SCC20 Diagnostic and Maintenance Control 
(DMC) subcommittee is developing a family of 
standards ([2], [3]) that are product information 
exchange standards for test, diagnosis, and main-
tenance. The original standards developed by the 
DMC, the 1232 series, provided a means of ex-
changing information between diagnostic reason-

mailto:mark.kaufman@navy.mil
mailto:john.sheppard@arinc.com


ers. The complete 1232 standard, which was pub-
lished in November 2002 as a full-use standard, 
contains the diagnostic information models and 
formally defines a set of standard software ser-
vices to be provided by a diagnostic reasoner in 
an open-architecture test environment. As the in-
formation models for the 1232 standards were 
developed, it became apparent that these models 
could be used for standardizing testability and 
diagnosability metrics as well as maintenance his-
tory information.  
 
In 1997, the DMC began to work on a new stan-
dard focusing on expanding the work of the can-
celled testability standard, MIL-STD 2165 [3]. The 
approach taken to develop this replacement stan-
dard involved defining testability and diagnosabil-
ity metrics based on standard information models. 
Specifically, it was found that the AI-ESTATE 
models provided an excellent foundation for defin-
ing these metrics. AI-ESTATE provides formal 
definitions of the same information required for 
determining the testability and diagnosability of a 
system. With these formal definitions, the con-
straint language of EXPRESS can be applied di-
rectly to define metrics and characteristics of test-
ability and diagnosability. This standard was re-
cently published by the IEEE Standards Associa-
tion as a “trial use” standard. 
 
The Management of Test and Maintenance Infor-
mation Standard (formerly IEEE P1389) is being 
re-worked and expanded as IEEE P1636 Soft-
ware Interface for Maintenance Information Col-
lection and Analysis (SIMICA). As a member of 
the SIMICA family, IEEE P1636.1 defines an ex-
change mechanism for test results using XML. 
This standard is intended to serve as a replace-
ment for the recently withdrawn IEEE Std 1545-
1999, Standard for Parametric Data Logging [4]. 
 

INFORMATION MODELS 
 
The purpose of an information model is to identify 
clearly the objects in a domain of discourse (e.g., 
diagnostics) to enable precise and unambiguous 
communication about that domain. Such a model 
comprises objects or entities, relationships be-
tween those objects, and constraints on the ob-
jects and their relationships. When taken together, 
these elements of an information model provide a 
complete, unambiguous, formal representation of 
the domain of discourse. In other words, they pro-
vide a formal language for communicating about 
the subject of interest or domain [5]. 
 

Using information models, information exchange 
can be executed in two ways. The first is through 
a set of exchange files. Specifically, information 
can be stored by one party in a file and read by a 
second party. The exchange file format is derived 
directly from the information model and defines 
the syntax of the message contained within it. The 
semantics of the message (i.e., the interpretation 
of the information contained within the file) is de-
rived from the semantics of the model. 
 
The second means of information exchange is 
through a set of services defined for a hardware 
or a software component as accessed via some 
communications infrastructure. The interface defi-
nition for the component is derived from the infor-
mation model and, once again, defines the syntax 
of the message. As before the interpretation of the 
message is derived from the semantics of the 
model. 
 
Three advantages to using standard information 
models to define the communications mechanism 
are evident. First, since standards are published 
documents, a large audience has access to the 
standard. By specifying standards in procurement 
documents or design documents, the designers 
know the basis for communication before detailed 
design begins. 
 
Second, a software standard defines a contract 
between an application and a user of that applica-
tion. This contract has the advantage of having 
been validated and legitimized by the fact that a 
community of experts in the domain have gath-
ered and agreed upon the content of the standard. 
Consequently, users of the standard can trust that 
a) the standard is technically correct, and b) the 
community of those using the standard believes 
the standard is useful; therefore, users of the 
standard have the added benefit that they need 
not re-invent the technology covered by the stan-
dard. 
 
Third, standards are typically endorsed and ac-
credited by an independent accrediting body. 
Such endorsement certifies that the standard was 
developed according to an open process de-
signed to keep the best interests of the community 
in mind. Examples of such accrediting bodies in-
clude IEEE, ANSI, ISO, and IEC. 
 
The EXPRESS information modeling language 
[5], standardized by ISO, was designed for for-
mally defining information in support of exchang-
ing that information between two or more parties. 



EXPRESS is object-oriented in flavor but focuses 
on defining the semantics of the information mod-
eled. In addition, rules have been defined for de-
riving exchange files and services for information 
exchange directly from the EXPRESS models. 
 

BAYESIAN NETWORKS 
 
There are many diagnostic systems that allow for 
reasoning under uncertainty; however, the natural 
approach that uses probabilities directly is the 
Bayesian Belief Network (BBN) [6]. Formally, a 
BBN = 〈V, E, C〉 is a Bayesian Belief Network, 
where  
 

• V is a set of vertices corresponding to 
random variables Vi ∈ V,  

• E is a set of directed edges eij ∈ E relating 
pairs of vertices Vi and Vj, where the 
source of the edge corresponds to Vi, the 
destination of the edge corresponds to Vj, 
and the edge represents a conditional de-
pendence relationship of Vj on Vi,  

• C is a set of conditional probability tables 
CPa(i) ∈ C where each entry provides the 
probability of Vi given the set of parents of 
Vi (Pa(i)). 

 
An example of a Bayesian network is given in Fig. 
1, taken from [11]. 
 
If we continue to assume that tests are performed 
independently from one another, then we connect 
tests (as random variables) to possible diagnoses 
(as random variables). Usually, we can also as-
sume that the diagnoses are independent from 
one another (i.e., the existence of one fault does 
not cause another fault to occur). Thus the only 
dependence relationships modeled are between 
tests and diagnoses. Note that these two assump-
tions are not necessarily true, and in general such 
dependence relationships, when known, can be 
modeled directly by the BBN by inserting appro-

priate edges between pairs of tests or between 
pairs of diagnoses. In addition, we must find a 
way to handle the relationships between the in-
tended states of the tests and the observations of 
those tests. 
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Fig. 1. Simple stability augmentation system BBN. 

 
The diagnostic problem consists of inferring the 
probability of each of the diagnoses in the BBN 
given the test results. Note that the joint probabil-
ity distribution over all of the variables in the BBN, 
Pr(V), is given as the product of the probability 
distributions of each over each of the vertices 
(random variables) conditioned on their parents, 
i.e., 
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Assume we subdivide the set of random variables 
V into two subsets, T and D corresponding to 
tests (e.g., BIT indications) and diagnoses respec-
tively. Further, assume that T ∪ D = V and T ∩ D 
= ∅ (i.e., T and D are disjoint but define the entire 
set of random variables V). Finally, assume T 
contains the set of observations (e.g., the evi-
dence from BIT) and D contains everything else 
(including, if needed, random variables represent-
ing the “true” states of the tests as if we were able 
to know the underlying state perfectly). Given a 
target set of test results,τ, we calculate Pr(T′ = τ) 
(where T′ ⊆ T) by marginalizing out the remaining 
variables given by V\T′. Marginalization is carried 
out by summing over all Pr(V\T′,T′ = τ), where “\” 
denotes set difference: 
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For this model, we note the prior probabilities for 
the diagnoses Di, are given by the probabilities 
derived from reliability estimates. The probabilities 
for Pr(Tj | Di) arise from constructing the appropri-
ate diagnostic model and reflect the causal nature 
of the faults. 
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where is the specific set of diagnoses (i.e., a 
subset of all diagnoses in the model), all of which 
must “pass” to observe the dependent test pass-
ing (i.e., 

iTD
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Given the conditional independence of the diag-
noses, we can then compute the posterior prob-
abilities of each of the diagnoses given the test 
results as follows. First, we partition the random 
variables into three sets: D (the diagnoses), T (the 
true test states), and O (the test observations). 
The evidence variables will be restricted to O. 
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Here, α is a normalizer (to restore the computed 
values to probabilities) over the set D, equal to  
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Observe that Pr(Tj | Di) ∈ {0, 1} as described ear-
lier, so the members of the sum are restricted only 
to those tests that observe Di. Then we only need 
to consider Pr(Di), which corresponds to the prior 
probability for Di based on failure rate, and Pr(o(Tj) 
| Tj), which corresponds to the confidence value 
assigned to the observed test result. Using the 
Baye’s maximum a posteriori hypothesis, we de-
termine the most likely diagnosis simply as 
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In other words, we provide the most probable di-
agnosis as a means of minimizing expected error 
(i.e., risk) in the diagnostic process. 
 

BAYESIAN INFORMATION MODEL 
 
The intent of the AI-ESTATE standard [2] is to 
provide a formal information model for the diag-
nostic domain to support unambiguous exchange 
of diagnostic information and a consistent soft-
ware interface for diagnostic systems [12]. Cur-
rently SCC20 is amending AI-ESTATE to include 
a model to cover Bayesian diagnosis. In Fig. 2, we 
present a new information model that extends the 
AI-ESTATE standard such that Bayesian net-
works can be represented. This figure depicts the 
model using a graphical modeling language called 
EXPRESS-G [5], which corresponds to a subset 
of EXPRESS. 
The Bayesian network model information model 
captures information necessary for creating diag-
nostic Bayesian networks. Assumptions made 

with this model include that random variables cor-
responding to tests can only depend on diagnosis 
variables and other test variables. Diagnoses 
have no dependencies. In addition, the probability 
tables are to be fully explicated (including closure, 
i.e., summing to one across dependent joint distri-
butions), and array position in the probability array 
corresponds to array position in the dependence 
array.  
 
Tests and diagnoses are incorporated from the AI-
ESTATE Common Element Model with two types 
of attributes added to these entities. First, prob-
abilities are associated with test outcomes (e.g., 
PASS and FAIL) and diagnosis outcomes (e.g, 
GOOD, CANDIDATE, and SUSPECT). These probabili-
ties, defined as a set, provide the conditional 
probability tables for the respective random vari-
ables. These tables go with the second attribute—
the “depends_on” attribute—that identifies the 
dependence relationship between random vari-
ables. Note that The original confidence attribute 
on these entities corresponds to Pr(o(P)) (or 
Pr(o(F))) and Pr(Di) respectively, all of which are 
specified in the full lexical EXPRESS model. 
 
AI-ESTATE (i.e., IEEE Std 1232-2002) also de-
fines several “standard services” for a diagnostic 
reasoner to use within a larger test environment. 
The reason for defining such services is to facili-
tate “plug-and-play” compatibility across reason-
ers. These standard services work directly with 
the extended model [2]. First, all “accessor” ser-
vices are defined relative to any entity or attribute 
within the AI-ESTATE information model (includ-
ing extended models). Second, the higher-order 
services, related to reasoner control and diagnos-
tic inference, do not depend on the specifics of the 
underlying model. In other words, the services do 
not specify whether the inference process is using 
a fault tree, a diagnostic inference model, or a 
Bayesian network; therefore, the same services 
will work directly with the new model. 
 
Note that the model shown in Fig. 2 is slightly dif-
ferent from that discussed above. Specifically, the 
model presented assumes there are no depend-
ence relationships between tests where the model 
in Fig. 2 allows for such dependencies (by includ-
ing the attribute “depends_on_test S[0:?]” 
on bayes_test). One can argue that such de-
pendence relationships are not required. In fact, 
including them could add unnecessary computa-
tional burden to any inference algorithm that proc-
esses the network; however, SCC20 decided to 
include the relationships to provide a more gen-



eral structure in the event some tests within the 
system are not conditionally independent. 
 

A MODEL FOR PROGNOSIS 
 
Using the ideas discussed in the companion pa-
per in this conference [11], the model shown in 
Fig. 2 can be extended to include prognosis as 
well. The idea is to extend the Bayesian network 
such that diagnoses depend on other diagnoses 
in a temporal relationship and construct what is 
called a “Dynamic Bayesian Network” [6], [10]. 
Capturing prognostic (i.e., temporal) relationships 
can be done simply by including a new depend-
ence relationship in the model, as shown in Fig. 3. 
What is interesting to note is that the only change 
is the specification of this new relationship on the 
entity “bayes_diagnosis” (i.e., the attribute 
“previous_time S[1:?]”). 
 
As described in [11], prognosis can be performed 
using the DBN structure by “chaining” successive 
diagnosis BBNs together in this manner. Under 
the first-order Markov assumption, we only need 
to represent two slices of the DBN and then “un-
roll” as necessary in processing the model. Note 
that only the diagnoses are linked through time 
since they reflect change in state directly. 
Changes in observation state are derived from the 
underlying state changes in the system.  
 
To perform inference with the DBN (and thereby 
predict future states), first infer the current state 
(i.e., the state in the current time slice) from the 
test observations using any Bayesian inference 
algorithm. Next, the DBN is “unrolled: to the de-
sired number of time slices (assuming the state 
progressions occur in discrete time steps—DBNs 
can handle continuous time, but the computation 
is more complex). Then, beliefs are propagated 
through time by observing that  
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In fact, given the assumption that only diagnoses 
progress in state through time and that a diagno-
sis only depends upon itself in the previous time 
step, this part of the model reduces to a simple 
Markov chain, which can be either discrete time or 
continuous time. 
 
Key to constructing the DBN is defining the tem-
poral transition probabilities (i.e., the probabilities 

of transitioning from a given state to its next 
state). In the simplest case, failure probabilities 
can be used. When better information is available 
(e.g,. based on historical data), probabilities de-
rived from this information can be used. The point 
is that the DBN is fully general and can be 
adapted to available knowledge about the system 
being analyzed. Theoretically, causal relationships 
between faults (i.e., a fault at time step t causes 
another fault to occur at time step t + 1) can be 
represented directly with the DBN as well (even 
though such models are rarely useful). 
 

MODEL EXCHANGE THROUGH XML 
 
Recent work within the IEEE has embraced de-
veloping exchange formats based on the eXtensi-
ble Markup Language (XML). This work is being 
supported through an industry consortium feeding 
XML schemata to IEEE SCC20 known as the 
Automatic Test Markup Language (ATML) consor-
tium. The mission of ATML is to “define a collec-
tion of XML schemas that allows ATE and test 
information to be exchanged in a common format 
adhering to the XML standard [1].” The XML 
schemata are being provided as part of the new 
IEEE P1232a, an amendment to IEEE 1232-2002. 
This amendment will incorporate both the new 
Bayesian model (Fig. 2) and the specific XML 
schemata for the Bayesian model as well as all 
information models currently defined in [2]. 
 
As stated in the above “mission statement,” the 
principal goals of the ATML project focus on in-
formation exchange [1]. Specifically, to goals re-
lated to diagnostics that ATML seeks to achieve 
are: 
 
1. Establish an industry standard for test infor-

mation exchange  
2. Allow for managed extensibility of test infor-

mation 
3. Ensure compatibility with other ATE informa-

tion-based standards  
4. Allow for information exchange with legacy 

systems  
5. Create modular descriptions for test environ-

ments  
6. Leverage existing technologies in creating test 

environments 
7. Allow for the use of dynamic test sequences 

that can change with historical data  
8. Allow for the use of optimization techniques 

such as artificial intelligence  



 
The focus of the P1232a amendment is on goals 
1–8 with particular emphasis placed on 7 and 8 
(the scope of the Diagnostic and Maintenance 
Control subcommittee of SCC20). 
 

SUMMARY 
 
The IEEE SCC20 has been creating of informa-
tion exchange standards in system test and diag-
nosis and automatic test equipment for almost 30 
years. The Diagnostic and Maintenance Control 

(DMC) subcommittee of SCC20 is chartered with 
defining information standards in the areas of sys-
tem diagnosis and diagnostic maturation. Recent 
work within the DMC has been in response to re-
quirements to extend their models to more mod-
ern methods of system diagnosis (namely, Bayes-
ian diagnosis) as well as requirements to update 
their information exchange medium through 
widely-used standards such as XML. 
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Fig. 2. New AI-ESTATE model to provide for Bayesian diagnosis. 

 
In this paper, we focused on the new information 
model for exchanging information in support of 



Bayesian diagnosis. This model extends other 
work in Bayesian diagnosis as described in [10] 
and [11]. In addition, we presented a simple ex-
tension to the Bayesian model that would support 
use in Bayesian prognosis. This model extension 
is based on the application of Dynamic Bayesian 
networks to model system changes through time. 
Finally, we discussed recent work within the 
ATML consortium and SCC20 to specify informa-
tion exchange through XML schemata. The speci-
fication of XML for model exchange provides a 
widely available medium for information exchange 
coupled with a formal semantic model (not typi-
cally provided by XML schemata) to ensure data 
integrity. 
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