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Abstract—As new approaches and algorithms 
are developed for system diagnosis, it is 
important to reflect on existing approaches to 
determine their strengths and weaknesses. Of 
concern is identifying potential reasons for 
false pulls during maintenance. Within the 
aerospace community, one approach to 
system diagnosis—based on the D-matrix 
derived from test dependency modeling—is 
used widely, yet little has been done to 
perform any theoretical assessment of the 
merits of the approach. Past assessments 
have been limited, largely, to empirical 
analysis and case studies. In this paper, we 
provide a theoretical assessment of the 
representation power of the D-matrix and 
suggest algorithms and model types for which 
the D-matrix is appropriate. Finally, we relate 
the processing of the D-matrix with several 
diagnostic approaches and suggest how to 
extend the power of the D-matrix to take 
advantage of the power of those approaches. 
 

INTRODUCTION 
 
Within the aerospace community and similar 
communities producing large, complex systems 
(e.g., the Department of Defense), considerable 
attention has been given to developing diagnostic 
systems based on a specific modeling paradigm—
dependency modeling. Many available tools map 
their models into the so-called “D-matrix” (from 
“dependency” matrix) and derive diagnostic 
strategies from this matrix. Recent research has 
even demonstrated a functional “equivalence” 
between a variety of graphical diagnostic models 
such as the behavioral Petri net, the bipartite 
Bayesian network, and the multi-signal flow model 
[13]. The multi-signal flow model is of particular 
interest because it is one of those examples 

where tools have been developed that use the D-
matrix [5]. Motivated by the widespread use of 
models based on the D-matrix, the derivative 
“diagnostic inference model” has been proposed 
by the IEEE as a standard representation of this 
kind of model in IEEE Std 1232-2002 [11], and 
this standard is a candidate for inclusion in the 
DoD’s automatic test system framework [7] and 
the associated Automatic Test Markup Language 
(ATML) initiative [2]. 
 
Previously, Sheppard and Kaufman asserted that 
false alarms generally arise from multiple sources: 
human error, unpredictable or unmodeled 
environmental conditions, instrument uncertainty, 
or test design issues [20], and such false alarms 
can lead to false pulls and unnecessary 
maintenance actions. The test community’s desire 
to identify causes for false pulls during system 
maintenance motivates the work in this paper. In 
addition to false alarms, false pulls can be 
attributed to ineffective diagnostics arising from 
incomplete models, inaccurate models, or 
erroneous reasoning. We focus on incomplete 
diagnostic models in this paper. 
 
In the following, we will consider the diagnostic 
problem from the perspective of pattern 
classification [8] and prove a significant result on 
the representation power of models based on the 
D-matrix. We believe this result is well known in 
the pattern classification community, but for some 
reason, the result is not as well known within the 
automatic test community. Specifically, we will 
prove that a diagnostic model that is based upon 
the D-matrix instantiates a linearly separable 
classification problem. Given this characteristic, 
we will then assess a number of diagnostic 
inference algorithms that, when applied to the D-
matrix, either indicate limitations in diagnostic 



 

 

power or suggest approaches to mitigate the 
limitations due to linear separability.  
 

DIAGNOSTIC INFERENCE MODELS 
 
A common form of model used in diagnostic 
systems is the dependency model. This model 
can be identified by alternative labels such as the 
signal flow model, information flow model, the 
causal model, and the bipartite graphical model. 
One of the more complete descriptions of the 
model can be found in [23], and we summarize 
that description here. In the following, we will use 
the IEEE-standard term—the Diagnostic Inference 
Model, or DIM. 
 
A DIM is built upon two fundamental model 
objects—the test (and its associated outcomes) 
and the diagnosis (or diagnostic conclusion). 
Tests include any source of information that can 
provide an indication of the health state of the 
system (including symptoms, safe-to-turn-on 
tests, readiness tests, and diagnostic tests), and 
diagnoses include any diagnostic conclusion one 
wishes to draw about the system (including no 
fault found).  
 
Inference relationships between tests and 
diagnoses as well as among tests are represented 
with a directed graph capturing information “flow” 
through the system. Specifically, let = ∪V T D  be 
a set of vertices, where T represents the set of 
tests and D represents the set of diagnoses. We 
define the set of directed edges E to be 
dependence relationships between tests and 
diagnoses (di, tj) indicating a logical relationship 
corresponding to di ⇒ tj. In other words, if 
diagnoses di is true, then test tj will also be true 
and thereby detect the diagnosis. The directed 
graph corresponding to the logical relationships 
between tests and diagnoses can be represented 
in a bit-wise adjacency matrix, and this matrix has 
been named the D-matrix. An example of such a 
matrix is given in Figure 1. In this matrix, a cell 
having a value of 1, indicates the corresponding 
logical relationship. For example, this matrix show 

1 1d t⇒  but 1 2d t⇒ .1 
 

                                                
1 Similar implications can be specified between tests. Due to a 
subsumption property defined within [23] that enables 
derivation of these relationships from the edges (di, tj), we will 
ignore those relationships in this paper. 

DIAGNOSTIC ALGORITHMS 
 
A wide variety of inference algorithms have been 
proposed for fault diagnosis, many of which 
operate (or can operate) on the D-matrix. In the 
following, we will provide a brief overview of four 
such algorithms—rule based inference, set 
partitioning, Bayesian inference, and case based 
reasoning. 
 

Rule Based Inference 
 
Given the D-matrix representation for a diagnostic 
model, several types of algorithms have been 
used to process the models to perform diagnosis. 
When operating on the fundamental relationships 
where diagnosis-to-test and test-to-test 
relationships are specified, traditional rule-based 
inference methods have been used. In these 
cases, the rule di ⇒ tj is reversed using the 
logically equivalent form ¬tj ⇒ ¬di, and algorithms 
such as forward chaining and backward chaining 
are applied [18]. If we let tj denote test j failing and 
¬tj denote test j passing then the challenge comes 
from considering the effect of multiple tests. 
Specifically, we find 
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This becomes tricky for a chaining-type inference 
system and must be coupled with corresponding 
rules of the type tj ⇒ (di ∨ dk ∨ …), which fall out 
from the complete set of rules by disjuncting the 
rules with common consequents. 
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Figure 1. Bit-wise Adjacency Matrix—D-Matrix. 



 

 

Set Partitioning 
 
The most widely used algorithm for processing D-
matrices is based on set partitioning and set 
intersection [23]. Usually, these algorithms impose 
a single fault assumption to reduce the 
computational complexity; however, recent tools 
(e.g., TEAMS and DSI eXpress). relax this 
requirement. Fundamentally, diagnosis operates 
by observing that tests indict or clear the 
diagnoses attached to them, as indicated by 
entries in the D-matrix. Sets of cleared and 
suspected diagnoses are maintained and updated 
as tests are performed. Whenever a test fails, the 
set of candidate diagnoses is updated as follows: 
 
Let S be the set of suspect diagnoses already 
identified. Let C be the set of cleared diagnoses 
(identified when prior tests have passed). Let Ij be 
the set of diagnoses indicted by a test tj failing. 
Then we update the set of suspect diagnoses 
using ( )j← ∩ −S S I C . The set of cleared 
diagnoses is updated when test tj passes as 

j← ∪C C c . The process continues until some 
termination criterion is met such as reducing S to 
a set of diagnoses sufficient to apply a 
maintenance action. 
 
Many model-based tools construct decision trees 
or paths based on test results. The most common 
approach to constructing such a tree is by 
choosing tests that maximize information gain 
[16], [23]. By considering the possible test 
outcomes, the set of possible diagnoses is 
partitioned, and a new subtree is constructed for 
each partition. This process continues recursively 
until some termination criterion is satisfied, and 
the result is a fault tree. 
 
Recent approaches in constructing decision trees 
have also considered performing multiple tests at 
a particular node of the tree to reduce the size of 
the overall tree. Constructing such “oblique” trees 
also has advantages for building general decision 
trees because of the ability to consider tests that 
are correlated in some way [15]. 
 

Bayesian Inference 
 
Recently, Bayesian methods have gained 
popularity, and a widely used Bayesian model is 
the bipartite network [20], [22]. Using this model, 
we assume the random variables in D (i.e., the 
diagnoses) are independent, as are the random 

variables in T (i.e., the tests). Now the 
characteristics of conditional independence allow 
for simple propagation of the probabilities from the 
tests to the diagnoses.  
 
Given the conditional independence of the 
diagnoses, one can compute the posterior 
probabilities of each of the diagnoses given the 
test results as follows. First, we will assume that 
we are using the network form presented in Figure 
2 and partition the random variables into three 
sets: D (the diagnoses), T (the true test states), 
and O (the test observations). The evidence 
variables will be restricted to O. 
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Here, α is a normalizer over the set D, equal to  
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Assuming we are able to generate the probability 
distributions for nominal and faulty behavior, we 
consider the effects of locating the decision 
boundaries. For this discussion, we will draw on 
results from Bayes decision theory and its 
derivative, signal detection theory [8].  
 
Observe that Pr(o(Tj) | Di) ∈ {0, 1}, so the 
members of the sum are restricted only to those 
tests that observe Di. Because this corresponds 
exactly to the D-matrix, we only need to consider 
two things: Pr(Di), which corresponds to the prior 
probability for Di based on failure rate, and 
Pr(o(Tj) | Tj), which corresponds to the confidence 
value assigned to the observed test result. Using 
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Figure 2. Bipartite Diagnostic Bayesian Network 



 

 

the Bayes’ maximum a posteriori hypothesis, we 
determine the most likely diagnosis simply as 
 

arg max{Pr( | )}
i

MAP i
D

D D
∈

=
D
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Case Based Reasoning 
 
Case based reasoning (CBR) is a method of 
reasoning that combines elements of instance-
based learning and data base query processing 
[1]. Test and diagnosis can use CBR in several 
ways. The simplest method involves defining a 
case as a collection of test results and attempting 
to determine an appropriate diagnosis given these 
results. The retrieval process is very simple. All of 
the cases are nothing more that feature vectors 
with an associated diagnosis 1 2, , , ;n it t t d… . The 
features in the feature vector correspond to test 
results and may be unknown. Retrieval then 
consists of “matching” the new case with all of the 
cases stored in the case base and selecting the 
most similar case. 
 
When considering possible similarity metrics, 
numerical features are frequently compared using 
a member of the family of Lp norms. Let ′x  and 

′′x  be two feature vectors where any given ix′  
corresponds to the ith feature in ′x  (similarly for 

′′x ). These features could correspond, for 
example, to test results. An Lp norm is defined to 
be 
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The most common values for p are 1, 2, and ∞ 
and yield Manhattan distance, Euclidean distance, 
and max-norm distance respectively. Specifically, 
these metrics can be computed as: 
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If we were using pass/fail results for testing, we 
would use either L1 or L2 (which would be 
equivalent). Note this is exactly what is done with 
fault dictionary-based diagnosis. With real values, 
we would most likely use L2. Symbolic results are 

a bit more complicated and would require 
something like Stanfill and Waltz’s “value 
difference metric” [24]. Regardless of the metric, 
retrieval would be done relative to test case x as 
 

_
arg min { ( , )}p
c

L x c
∀ ∈

=
CASE BASE

case . 

 
As alluded to above, the digital fault dictionary is 
an application of the case based approach that 
matches the D-matrix representation explicitly 
[21]. Fault dictionaries define a mapping from 
combinations of input vectors and output vectors 
to faults. Formally, this is represented as 

:FD I O F× →  where FD is the fault dictionary, I 
is the space of input vectors, O is the space of 
output vectors, and F is the space of faults. At a 
more basic level, this can be represented as 

:{0,1} {0,1}n mFD F× → .  
 
We can convert the fault dictionary into a D-matrix 
by comparing test results in the presence of a 
fault to expected test results when the circuit is 
not faulty. We place a 1 in the corresponding cell 
of the matrix if these values are different and a 0 
in the cell if they are the same. If the value in the 
cell is one, we claim the associated failure mode 
“causes” the given test to fail. If the value is zero, 
the presence of the associated failure mode will 
not be detected by the given test. Given a 
complete row in the matrix, we say that if the 
associated failure mode is present, then all of the 
tests associated with the failure mode (i.e., whose 
cells have a value of one) must fail. Conversely, if 
any of those tests pass, then the failure mode 
must not be present. 
 
As an example, consider the simple circuit in 
Figure 3. The corresponding fault dictionary is in 
Table 1. In this case, the fault dictionary is simply 
the transpose of the D-matrix. 
 

LINEAR SEPARABILITY 
 
As we will show, diagnosis can be posed as a 
classification problem. A common concern arises 
when constructing any classifier of whether the 
underlying concept to be learned is linearly 
separable. If the underlying concept is linearly 
separable, then a variety of “simple” classifiers 
can be constructed to learn the concept, ranging 
from naïve Bayes classifiers [12] to single-layer 
perceptrons [14]. On the other hand, if the 
underlying concept is not linearly separable, then 



 

 

more complex classifiers must be used (e.g., 
decision trees [16], augmented Bayes classifiers 
[9], [19], or multi-layer perceptrons [17]) to learn 
the concept. 
 
In the following, we will discuss the relationship 
between linear separability and diagnostic 
systems based on the D-matrix. First, we will 
define formally what a D-matrix is. 
 
Definition 1: Let D be a set of diagnoses. Let T 
be a set of tests. Assume each di ∈ D is a 
Boolean variable such that eval(di) ∈ {0,1}. 
Assume each tj ∈ T is also a Boolean variable 
such that eval(tj) ∈ {0,1}. Then a diagnostic 
signature is defined to be the vector  
 

1[ ( ), , ( )]i eval t eval t= Td … , 

 
where 
 

1 if  detects 
( )

0 otherwise.
j i

j

t d
eval t


= 


 

 
Definition 2: A D-matrix is defined to be the set of 
diagnostic signatures di for all di ∈ D. 
 

Note that the diagnostic problem can be posed as 
a classification problem. Formally, we define a 
Boolean classifier as follows. 
 
Definition 3: Let C be a set of concepts (or 
classes). Let A be a set of attributes (or features) 
of some object or concept. Assume each ci ∈ C is 
a Boolean variable such that eval(ci) ∈ {0,1}. 
Assume each aj ∈ A is also a Boolean variable 
such that eval(aj) ∈ {0,1}. Then a feature vector is 
defined to be the vector  
 

1[ ( ), , ( )]i eval a eval a= Ac … , 

 
where 
 

1 if  is an attribute of 
( )

0 otherwise.
j i

j

a c
eval a


= 


 

 
Definition 4: A Boolean classifier is a mapping 

:f →A C . 
 
By combining the definitions above with the 
following assignments 
 

A = T, C = D, and ci = di 
 
the diagnosis problem is shown to be equivalent 
to a classification problem. 
 
There are some very specific restrictions in the 
above definition, however. First, we are assuming 
all attributes are Boolean (i.e., we are not 
permitting nominal or real-valued attributes at this 
point). Second, we are assuming there is a single 
feature vector sufficient to characterize each 
class. 
 

Table 1. Fault Dictionary for Sample Circuit. 
 

  Test Fault Signatures 

 a0 a1 b1 c1 d1 f0 f1 g1 i0 i1 j1 k0 k1 m0 nf 
t1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 
t2 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 
t3 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 
t4 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 
t5 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 
t6 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 
t7 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 
t8 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 
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 Figure 3. Sample Combinational Circuit. 



 

 

We will see that the restriction on feature vectors 
is a significant restriction that rarely, if ever, 
occurs in practice. In fact, the general 
classification problem does not assume a 
corresponding “D-matrix” but generates the 
classifier from a set of training instances where 
multiple, varying feature vectors can exist for each 
concept class. Nevertheless, most graphical 
model-based diagnostic systems (e.g., 
dependency models, multi-signal flow models, 
and fault dictionary models) are based on the D-
matrix formalism. 
 
From this point forward, we will use the language 
of diagnosis rather than classification unless we 
need to apply a result from classification theory. 
At that point, the association to diagnosis will be 
made explicit. 
 
First, consider the case where we have only two 
diagnoses. Arguably, this is the simplest 
diagnostic problem since only one diagnosis 
would be trivially true (assuming a closed set). 
 
Definition 5: Two concept classes are linearly 
separable if and only if there exists a linear 
function wTa – θ  = 0 such that one concept is 
identified when wTa – θ  > 0 and the other concept 
is identified when wTa – θ  ≤ 0, where w is a 
column vector of weights, a is a column vector of 
attributes, and θ is a threshold. 
 
Theorem 1: Given two diagnoses d1 and d2 with 
distinct diagnostic signatures d1 and d2 (i.e., d1 ≠ 
d2), then d1 and d2 are linearly separable. 
 
Proof: The logical representation of the 
associated Boolean classifier is given as 
 

( ( ) [ ])i j
j

d eval t j⇔ =∏ d  

 
where the product symbol, Π corresponds to 
logical AND. We can convert this into a linear 
expression as follows. First, let w = [1 … 1]T 
(which basically removes w from the function). 
Next, let  
 

1 ( ) [ ]j ja eval t j ε= − − +d , 
 
where ε is any positive constant. Now  
 

( ( ) [ ])j jj j
eval t j a= =∏ ∏d , 

 

and this product is maximized if and only if the 
signature di is matched by the set of test 
outcomes T = [eval(t1), …, eval(t|T|)] for some set 
of actual test evaluations ti. Then define the 
following: 
 

( ) log logj j
jj

C T a a θ= = >∑∏ . 

 
We can use this linear function describing 
diagnosis di as a discriminant by setting 

( 1) log(1 ) log( )θ ε ε= − + +T . Specifically, when 
C(T) > θ, the test vector T will be classified as 
diagnosing di. Thus, for a pair of diagnostic 
signatures, classification (i.e., diagnosis) is 
linearly separable.  
 
What happens when there are more than two 
distinct diagnostic signatures? As we will see, the 
result is the same. 
 
Corollary 1: Given a set of diagnoses D with 
distinct diagnostic signatures d1, …, d|D|, then the 
set D is linearly separable. 
 
Proof: This is evident from the fact that our linear 
discriminant C(T) > θ is satisfied whenever T 
matches the corresponding vector. Given the way 
θ was defined, even one mismatch will cause C(T) 
to be less than θ.  
 

IMPLICATIONS FOR DIAGNOSTIC 
ALGORITHMS 

 
The immediate conclusion to be drawn from the 
above analysis is that the D-matrix provides a 
simplistic view of the diagnostic problem. As 
defined, the D-matrix is a “conjunctive” model in 
that it specifies the logical-AND of the test results 
associated with a particular diagnosis. The 
advantage is that most diagnostic algorithms are 
able to process such models easily. 
 
Now, if such a simple model can address real-
world fault diagnosis requirements, then the 
underlying concept so modeled must be linearly 
separable. In such cases, a variety of “simple” 
classifiers can be constructed to learn the 
concept, ranging from naïve Bayes classifiers [12] 
to single-layer perceptrons [14]. On the other 
hand, if such a simple model cannot address real-
world fault diagnosis requirements, then the 
underlying concept is probably not linearly 
separable. This means a more complex model 



 

 

and associated classifier must be used (e.g., 
decision tree [16], augmented Bayes classifier [9], 
[19], or multi-layer perceptron [17]) to represent 
the concept. 
 
To illustrate the limitations of linearly separable 
models, suppose we wish to construct a system-
level model where each signature in the D-matrix 
corresponds to a single subsystem that might be 
faulty.2 As a specific example, suppose we are 
attempting to fault isolate the stability 
augmentation system (SAS) of a helicopter. The 
SAS consists (at a minimum) of three gyros (one 
each for roll, pitch, and yaw), three servos (again, 
one each for roll, pitch, and yaw), and a mixing 
circuit. Fischer and Sivahop describe a SAS 
design consisting of redundant gyros feeding a 
mixing circuit to drive the servos [9]. The purpose 
of the mixing circuit is to compare digital and 
analog inputs and to determine the appropriate 
mix of roll, pitch, and yaw corrections. Consider 
the mixing circuit, which one could argue serves 
as a potential single-point failure for the SAS. The 
mixing circuit will determine differential corrections 
based on offset from a target orientation and 
apply, for example, PID control laws to signal the 
appropriate controls to the effectors.3  
 
In keeping with the Fischer and Sivahop design, 
we have six gyros (due to redundancy in the three 
axes). Further, three of the gyros provide analog 
signals, and three provide digital signals to the 
mixing circuit. Finally, suppose that tests are 
constructed that only compare the aircraft 
orientation as inputs to the corrections generated 
by the servos. Three tests, one for roll, pitch, and 
yaw, are assumed. This, of course, yields an 
underspecified diagnostic model in that the three 
tests are only capable of differentiating at most 
eight diagnoses. Our SAS has 11 diagnoses (six 
gyros, three servos, the mixing circuit, and no-
fault) and considerable ambiguity. 
 
In spite of the fact the model is under-specified, let 
us focus on failure of the mixing circuit. Clearly, 
this mixing circuit embodies several possible 
failure modes; however, our assumptions have 

                                                
2 The D-matrix has long been proposed as an excellent 
candidate for hierarchical, system-level modeling. The point of 
this discussion is to identify a necessary condition for this to 
proposal hold. 
3 PID control refers to a control system utilizing corrections 
“proportional” to the error with corrections dampened through a 
“derivative” term and stability maintained through an “integral” 
term. Thus, PID-control refers to “Proportional-Integral-
Derivative” control. 

reduced the model to consider a single, global 
failure mode of the mixing circuit as a whole. 
Consider the D-matrix in Table 3. There are two 
different approaches to using this matrix for 
performing fault diagnosis—1) perform all of the 
tests and compare the result to the fault 
signatures or 2) run the tests incrementally and 
reduce the space of possible faults as we go 
(analogous to the set-partitioning approach).  
 
Consider the first approach. The problem with this 
matrix is that failure of the mixing circuit requires 
all three tests to detect that failure to correctly 
diagnose the problem. Unfortunately, it is possible 
that the mixing circuit may, as suggested above, 
fail in several ways that do not involve all three 
dimensions of control. Indeed, certain failure 
modes could result in canceling effects between 
the redundant gyros and the associated servo, 
thus leading to complex dependence relationships 
between the components of the SAS that are not 
linearly separable. In fact, if we only have two 
tests that fail, the best we could do is find the 
nearest match (except all other faults are equally 
distant), guess based on failure rate information, 
or declare an error. Notice also that removing any 
of the tests from the signature would end up 
missing failure modes involving the associated 
axis. 
 
The other approach involves an incremental 
evaluation of the tests. This approach shows 
some promise. For example, suppose we run the 
Roll Test and the Pitch Test and they both fail. At 
this point, an incremental diagnostic system would 
halt and declare the mixing circuit as faulty, and 
this is probably correct. On the other hand, 
suppose the fault involves an incorrect mixing of 

Table 2. D-Matrix for Stability Augmentation System 

 
 Roll Test Pitch Test Yaw Test 
Roll Gyro 1 1 0 0 
Roll Gyro 2 1 0 0 
Pitch Gyro 1 0 1 0 
Pitch Gyro 2 0 1 0 
Yaw Gyro 1 0 0 1 
Yaw Gyro 2 0 0 1 
Roll Servo 1 0 0 
Pitch Servo 0 1 0 
Yaw Servo 0 0 1 
Mixing Circuit 1 1 1 
No Fault 0 0 0 

 



 

 

roll and yaw corrections. This time, the Roll Test 
fails but the Pitch Test passes. At this point, the 
diagnostic system would halt and declare the roll 
section (one of the roll gyros or the roll servo) as 
being faulty. Thus a single diagnostic signature is 
insufficient to differentiate the mixing circuit from 
other diagnoses in the model. 
 
Consider a seemingly simple extension to the 
model where we do not require the diagnoses to 
have one and only one signature. Without loss of 
generality, assume a particular diagnosis di. If we 
permit two (or more) signatures to appear in the 
D-matrix, each labeled with diagnosis di, we have  
 

1 1 1
1[ ( ), , ( )]i eval t eval t= Td …  

 
as well as  
 

2 2 2
1[ ( ), , ( )]i eval t eval t= Td … . 

 
This is equivalent to  
 

1 1
1

2 2
1

[ ( ), , ( )]

[ ( ), , ( )].

i eval t eval t

eval t eval t

=

∨
T

T

d …

…
 

 
Thus we are now able to represent disjunctive 
concepts as well. Notice that by permitting 
“disjuncted” test signatures, any model we build 
will be able to represent a full disjunctive normal 
form (DNF). Since DNF can represent any 
propositional logic expression, this “simple” 
extension introduces considerable complexity into 
such models, including the ability to represent 
nonlinearly separable concepts (i.e., diagnoses).  
 
Returning to the example of the stability 
augmentation system, note that this extension is 
exactly what is required to refine the diagnosis. In 
this case, multiple signatures would be added to 
the D-matrix, all with the same class label. This is 
contrary to the traditional D-matrix, but addition of 
these signatures a) improves the “resolution” of 
diagnosis by modeling the relevant failure modes 
and b) enables that improved “resolution” to cover 
potential interdependencies between the failure 
modes. In other words, the D-matrix is no longer 
limited to modeling linearly separable classes. 
 
Can the four inference algorithms we discussed 
previously handle this increased complexity? 
Looking at each in turn, we see that they can or 
are able to be suitably modified to do so.  

 
Rule-Based Inference: Combinations of rules can 
be combined and converted into clause form (or 
even Horn clause form) for diagnosis. Diagnostic 
signatures are simply rules, so incorporating 
additional signatures simply adds rules to the rule 
base. In addition, rules covering multiple 
diagnoses might be able to be simplified for more 
efficient inference. Therefore, current rule-based 
systems and satisfiability solvers can adapt to 
cover the more complex rules [6].  
 
Set Partitioning: Decision trees inherently form a 
partitioning of the set of diagnoses as tests are 
performed. Incorporating additional signatures into 
the D-matrix offers no increased difficulty in 
constructing decision trees and can, in fact, 
provide useful information for simplifying the 
structure of the tree. Alternative splitting criteria 
and the use of oblique and nonlinear splits also 
increase the power of the overall approach [15]. 
 
Bayesian Inference: The mapping of the D-matrix 
to a Bayesian model reduces to applying the 
naïve Bayes assumption to the dependencies. 
This is a natural fit for the D-matrix since naïve 
Bayesian inference is only able to solve linearly 
separable problems. Extending the Bayesian 
approach can be handled like the set partitioning 
approach; however, this is not efficient. An 
alternative approach is to augment the naïve 
Bayes network to capture resulting dependencies 
in the model [8], [19]. 
 
Case Based Reasoning: CBR naturally handles 
non-linearly separable concepts. The primary 
deficiency with the CBR approach relative to fault 
dictionaries or the D-matrix representation (even 
augmented with additional signatures) is the 
compactness assumption. Specifically, CBR 
requires the case base to approximate the 
underlying distribution of the data; otherwise, 
noisy or missing data will lead to misclassification 
[8]. 
 
In concluding this section, notice that by 
permitting “disjuncted” test signatures, we have 
permitted a full disjunctive normal form 
representation to be included in each of the 
models discussed above.4 Since DNF can 
                                                
4 We could include these separate signatures with distinct diagnoses 
in the current D-matrix and then use a management application to 
differentiate them. At issue is the fact that we now need to consider 
all of the combinations with which a system might fail. The 
advantage to pattern classification-based approaches is their ability to 
“generalize” and not require all combinations. 



 

 

represent any propositional logic expression, this 
“simple” extension introduces considerable 
complexity into the model, including the ability to 
represent nonlinearly separable concepts (i.e., 
diagnoses). 
 
As a final comment, we should point out that the 
approach described for expanding the D-matrix 
seems to solve our problem, but potentially that 
solution is at a great cost. Specifically, we are 
suggesting that all we need to do is introduce 
another layer of specificity in the model where 
diagnosis di has more than one signature 
(corresponding to each of the failure modes of di). 
Unfortunately, it is possible that the more detailed 
failure mode may also have nonlinearities being 
rolled into the signature. This would suggest 
further refinement. In the limit, we would see a 
system level model being required to include all 
possible failure modes, thus eliminating any 
benefit attributed to the D-matrix for creating 
hierarchical models. 
 
In each of the algorithms discussed above, with 
the possible exception of set partitioning, it is 
possible that models can be constructed based on 
available performance data to capture these 
nonlinearities in a more compact fashion. This, in 
fact, is the primary area of current and future 
research for the authors. See [3] and [19] for 
related work on this topic. 
 

CONCLUSION 
 
Throughout this paper, we considered the 
applicability of several diagnostic inference 
strategies to a common diagnostic model based 
on the D-matrix. We examined the theoretical 
properties of the D-matrix and proved that, under 
normal assumptions, the D-matrix inherently 
supports only linearly separable diagnostic 
signatures. 
 
We are interested in identifying potential causes 
for test and diagnostic error in the maintenance 
process. Tools based on D-matrices are pervasive 
and provide the foundation for determining 
diagnostic strategies for maintenance manuals 
and test programs. Given our conclusions, if 
models have been constructed such that only a 
single conjunctive fault signature is provided for 
generating these strategies, even though 
associated inference techniques can support 
nonlinearly separable diagnoses, the model 

effectively cripples these techniques by hiding 
additional nonlinear dependencies in the system. 
 
Significantly, the D-matrix can be extended quite 
easily to model nonlinearly separable diagnoses. 
We noted that such nonlinearities arise whenever 
there are multiple correct signatures that lead to 
the associated diagnosis. By permitting each of 
these signatures to be included in the model, the 
ability to find efficient diagnostic strategies is now 
much more difficult. Nevertheless, these 
diagnostic strategies can be constructed using 
existing heuristic techniques, and the result is we 
now have the ability to account for the deficiency 
of the traditional D-matrix. 
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