
EXPERIMENTS IN BAYESIAN DIAGNOSTICS WITH  
IUID-ENABLED DATA 

 
 

 Stephyn G. W. Butcher Mark A. Kaufman, Hanh Ha 
 John W. Sheppard Craig MacDougall 
 Department of Computer Science NSWC Corona Division 
 The Johns Hopkins University US Navy 
 3400 N. Charles Street PO Box 5000 
 Baltimore, MD 21218 Corona, CA 91718 
 {sbutche2,jsheppa2}@jhu.edu {first.last}@navy.mil 
 
 
Abstract—The Department of Defense (DOD) 
has recognized the importance of improving 
asset management and has created Item 
Unique Identification numbers (IUIDs) to 
improve the situation. IUIDs will be used to 
track financial and contract records and obtain 
location and status information about parts in 
DoD inventory. IUIDs will also support data 
collection for weapon systems from build, 
test, operations, maintenance, repair, and 
overhaul histories. In addition to improving 
the overall logistics process, IUIDs offer an 
opportunity to utilize asset-specific data to 
improve system maintenance and support. An 
Office of the Secretary of Defense (OSD) Pilot 
Project to implement IUID on a Navy weapon 
system presents an immediate opportunity to 
evaluate this use of IUID data. This paper 
reports on experiments conducted to see if a 
set of asset-specific diagnostic classifiers 
trained on subsets of data is more accurate 
than a general, composite classifier trained on 
all of the data. In general, it is determined that 
the set is more accurate than the single 
classifier given enough data. However, other 
factors play an important role such as system 
complexity and noise levels in the data. 
Additionally, the improvements found do not 
arise until larger amounts of data are 
available. This suggests that future work 
should concentrate on tying the process of 
data collection to the estimation of the 
associated probabilities. 

I. INTRODUCTION 

As a method to improve its asset management 
capabilities, the DoD has instituted the IUID 
program where unique identification numbers are 
associated with DoD assets. These unique 

identification numbers are asset specific and 
through their consistent usage, responsible 
parties will be able to account for the DoD’s 
massive inventories. However, the IUID program 
will not only be a boon to logistics; the IUID 
program will also support data collection from 
build, test, operations, maintenance, repair and 
overhaul histories. This data in turn will be able to 
support improved system maintenance, diagnosis 
and prognosis. 

One of the interesting possibilities this data 
collection offers is the opportunity to improve 
models for diagnosis and prognosis by providing 
asset-specific data. Generally speaking, when 
constructing a classifier such as a diagnostic 
system, the more closely the distribution of the 
sample data and the distribution of the target 
population match, the more accurate the model 
will be. It follows that if the behavior of some 
assets deviates substantially from the average, 
asset-specific models for those assets should be 
more accurate than a composite model that 
covers all of the assets. 

Fortunately, modern assets have large mean time 
between failure (MTBF). Unfortunately this means 
that large quantities of asset-specific data are not 
immediately forthcoming. This raises questions 
about how to develop models prior to the 
availability of the needed data. Are there 
advantages to aggregating the data we have until 
more specific data is available? How do we know 
when we should be aggregating data to make 
composite models and when should we start 
segregating the data to make (possibly more 
accurate) asset-specific models? Is quantity of 
data the only important factor or are there others? 
Although the experiments in this paper do not 



specifically address all of these questions, the 
results suggest future directions of research. 

This paper is but one in a set that discusses 
theoretical and experimental issues associated 
with applying Bayesian approaches to diagnostics 
and prognostics in an IUID enabled environment. 
The ultimate aim is to apply these results to the 
IUID data provided under an OSD Pilot Project for 
a US Navy weapon system. 

The paper starts in section II by describing the 
IUID program. Section III discusses Bayesian 
approaches to diagnosis as a special case of 
classification. Section IV then describes the 
experimental design and Sections V and VI 
provide experimental results and a discussion of 
the results respectively. Section VII details plans 
for future work, and section VIII provides 
concluding remarks. 

II. DIAGNOSIS AND IUID 

The DoD has a significant concern about the 
tracking and support of individual systems within 
their inventory. With the conclusion of Desert 
Storm, it was found that 35,000 large shipping 
containers of supplies had gone unused and 
needed to be redeployed. The task of returning 
these containers (and their contents) to the supply 
system or redeploying them to other theaters was 
monumental. The Government Accounting Office 
(GAO) concluded that visibility and accountability 
over the $3.4 billion worth of material was lost in 
the process [4]. Incomplete tracking of DoD 
hardware location and history was the primary 
reason for the loss of accountability. In addition, 
valuable location, maintenance, reliability, and 
diagnostic information was not properly obtained, 
analyzed, or retained. The inability to access and 
use this information presented a significant 
obstacle to making effective program decisions, 
reducing maintenance and support costs, and 
enabling next-generation approaches to system 
support (e.g. advance diagnostics, reliability 
centered maintenance, and prognostics). 

The DoD began several initiatives to get more 
effective control over its logistics. Two of these 
initiatives, Item Unique Identification (IUID) and 
Radio Frequency Identification (RFID) are of 
interest in this paper. Both IUID and RFID are 
DoD requirements [13], [14]. In short, between 
these two initiatives the location and history of 
individual items will be tracked worldwide.  

RFID uses radio frequency tags on pallets, 
shipping containers, etc. to track a unique 
number. That number is in the supply database 
and is linked to the contents, destination, and 
origin of the package. IUID uses a data matrix 
(which is not RF) to identify individual items. The 
data matrix is similar to a two-dimensional 
representation of a bar code, is scalable, can 
range in size from a few tenths of an inch to up to 
14 inches, and can represent up to 2,000 
characters. A crucial part of IUID is the unique 
number—the Unique Item Identifier (UII). The UII 
is not just assigned by the manufacturer or depot. 
There is a protocol followed to generate the UII 
[12]. The number is then uploaded to a DoD 
registry where it is checked for uniqueness and 
logged into the system. The IUID that encodes the 
UII is then linked to a particular part for the lifetime 
of the part. IUIDs can be applied as labels, plates, 
laser etched directly, and through a variety of 
other techniques [1]. Proper identification of an 
asset is essential to correlating pedigree and 
reliability prediction of the asset as well as 
enabling reliability centered maintenance, 
advanced diagnostics and prognostics.  

III. BAYESIAN APPROACHES TO 
DIAGNOSTICS 

Developing system models for diagnosis is 
complex and often depends on a detailed 
understanding of system performance and test 
engineering. Learning diagnostic models from 
field maintenance data offers considerable 
potential to develop or refine diagnostics for 
fielded systems. Simulation can also be used to 
generate data for purposes of learning. Several 
approaches exist for learning such models 
including case based reasoning, decision tree 
induction, neural networks, and Bayesian 
methods. We suggest applying Bayesian methods 
to diagnosis because they derive classification 
“rules” based on sound mathematical principles 
(namely, probability theory), they can adapt easily 
as more data is obtained, and they have been 
empirically demonstrated to perform well on a 
broad range of classification problems. 

Previously, we provided a detailed derivation of a 
simple model for Bayesian diagnosis [10]. We 
have also demonstrated how both the Naïve 
Bayesian Network and what we have called the 
“Not So Naïve” Bayesian Network or Tree-
Augmented Bayesian network perform on a small 
sample of IUID-enabled data for a US Navy 



weapon system [9]. However, for the purposes of 
this paper, the Naïve Bayesian Network will be 
sufficient for the experiments we are going to 
perform. Therefore, we will concentrate on naïve 
Bayesian Networks. 

The primary assumption for naïve Bayesian 
networks is that the evidence variables in the 
network (i.e., the tests) are conditionally 
independent of each other given the class (i.e., 
diagnosis). To start our discussion on the 
implications of this assumption, let us define our 
diagnostic networks as if they contain only one 
diagnosis variable with n possible values 
(corresponding to each of the diagnostic 
conclusions Di). Thus, we will apply a simple 
network structure corresponding to the form 
shown in Figure 1. Note that this structure can be 
modified where there is a separate node Di for 
each diagnosis rather than a single composite 
diagnosis node. This leads to the so-called naïve 
Bayes “multi-net” [2], [3]. 

Under the naïve Bayes model, we consider the 
diagnosis problem as finding the class label (i.e., 
diagnosis) that maximizes the a posteriori 
probability of the specific class given the set of 
observations: 
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But the problem remains that the joint distribution 
over the tests is exponential in the number of 
tests. The naïve Bayes assumption states that we 
can treat each of these observations as if they are 
conditionally independent given the diagnosis, 
and this leads to the classification rule: 
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Given a set of training data mapping test results 
(outcomes) to actual faults repaired, we can 
“learn” the naïve Bayes network by observing that 
Pr(Di) is simply the frequency of occurrence of a 
particular fault in the data set and similarly, 
Pr(o(Tj) | Di) is the frequency of test outcome o(Tj) 
considering only the particular diagnosis Di. What 
is remarkable about this simple model is the 
considerable effectiveness it has demonstrated in 
numerous experiments and implementations [5]. 

In considering the computational complexity of 
naïve Bayes networks, we must account for the 
complexity to learn the models as well as to use 
the models for diagnosis. The complexity of 
learning depends on deriving the probability 
estimates for Pr(Di) and Pr(o(Tj) | Di). Let n be the 
number of examples, δ = |D|, and τ = |T|. It is 
reasonable to assume δ < n. Then the complexity 
for deriving Pr(Di) for all Di ∈ D is O(n + δ) = O(n), 
and the complexity for deriving Pr(o(Tj) | Di) for all 
Tj and Di is O(τ × n + τ × δ) = O(τ × n). Classification 
involves multiplying τ + 1 probabilities for each 
diagnosis and maximizing, so the complexity of 
classification is O(τ × δ). 

An important ramification of the classification rule 
above is that if any Pr(o(Tj) | Di) should happen to 
be zero then the entire value of the expression for 
that particular Di zeroes out. This is not generally 
what we want but may happen if our training data 
was missing low probability observations. The 
Bayesian solution is to resort to some sort of prior 
probability to keep the formula from “breaking.” 
Although we will have more to say about this later, 
the approach we use is an m-estimate (or Dirichlet 
prior) calculated as follows [7]: 
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where nc is the number of instances in the data 
pairing particular values for o(Ti) and Dj, n is the 
total number of instances in the data 
corresponding to diagnosis Dj, p is a prior 
estimate for the probability, and m is the number 
of “virtual” examples in the data. 

IV. EXPERIMENTS 
 
The central hypothesis of this paper is that 
segregating data to train asset-specific networks 
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Figure 1. Naïve Bayes diagnostic network. 



creates a set of networks with a greater accuracy 
than aggregating the data to train a single 
composite network. Unfortunately, it isn’t that 
simple. Although the Naïve Bayesian Network 
(NBC for Naïve Bayesian Classifier) has been 
shown to train well on relatively few examples [6], 
consider an aggregated data set of 100 samples. 
If there are ten assets, this leaves, on average, 
only ten instances per asset. If there are ten 
possible diagnoses, this leaves, on average, only 
one diagnosis per asset. At this point, we may not 
even be able to determine if assets actually have 
substantially different fault distributions. While the 
question is easy to answer for this contrived 
example, clearly when to segregate is as much an 
important part of the hypothesis as should we 
segregate. 
 

To test our hypothesis, we decided first to 
generate some synthetic data. We imagine a 
hypothetical system having eight components that 
can be arranged in various ways. Each 
component is subject to failure and that failure is 
detected by a combination of eight tests. Each 
individual test is considered to pass if it detects 
4.9 volts or more at the test point; alternatively, if it 
detects less than 4.9 volts, the test fails.1 
Depending on how the components are arranged, 
the diagnostic characteristics of each system are 
captured by a corresponding D-Matrix [11]. For 
these experiments, three systems were selected: 

                                                
1 One can also consider an equivalent upper limit where 
voltage greater than 5.1 volts yields failure; however, we 
decided to limit our synthetic data to failure modes where 
voltage was low. 
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Figure 2. Sample systems. a) Diagnoses are in a one-to-one relationship with the tests. b) Diagnoses are in a serial 
configuration. c) Diagnoses correspond to some hypothetical “functional” relationship with the tests. 



“one-for-one,” “serial," and “functional” which 
gives rise to three D-Matrices (Figure 2). 
 
Because the main point of these experiments is to 
examine whether it is better to build asset-specific 
or composite models, the experiment is only 
interesting if the data exhibit some variability at 
the asset level. For our purposes, we represent an 
asset as a particular distribution of component 
failures. For example, “Asset A” might always 
have trouble with component 1. In this case, the 
probability of component 1 failing will be relatively 
higher than the probability of components 2—8 
failing. For these experiments, we created ten 
such hypothetical failure distributions each 
expressing a different behavioral quirk such as 
“one bad actor”, “two bad actors”, “three bad 
actors”, “non-uniform” and “uniform”. Table 1 
shows the distributions as well as the overall, 
composite, distribution. 
 
These D-Matrices (systems) and component 
failure distributions (assets) form the foundation 
for generating the synthetic data. For any given 
data set size, N, there are N data points created 
for each asset given a particular system. For 
example, if N = 100 and the system is “one-for-
one”, creating data for the “one bad actor #1” 
asset involves creating data that includes seven 
each of signatures 0–2 and 4–7 but 53 of 
signature 3. This process is repeated for each 
system, each asset and each N value: 25, 50, 
100, 250, 500, 1000, 2500 and 5000. 
 

An NBC can easily learn the concepts 
represented by the D-matrices to 100% accuracy 
–regardless of whether the data is aggregated or 
segregated—because the concepts represented 
are all linearly separable [8]. In order to test our 
hypothesis we require at least the possibility that 
these can diverge. In order to do so, we note that 
copying the diagnostic signature over and over to 
create the data implies an assumption that the 
data is noise free. In the real world, measurement 
is rarely noise free, so a final pass is made over 
the data to introduce noise. 
 
As mentioned above, a test passes if it measures 
4.9 volts or more and it fails if it measures less 
than 4.9 volts. Using various standard deviations, 
noise is introduced into the data in the following 
manner. If the result of a particular test is 
supposed to indicate a “pass” (a “0” in the data), a 
random voltage reading is generated with 5.0 
mean and the specified standard deviation using a 
Gaussian distribution. If the resulting value is 4.9 
or more, the test is kept as a pass. If it is lower 
than 4.9, the test result is changed to a “failure”. 
Similarly, if the result of a particular test is 
supposed to indicate a failure, a random voltage 
reading is generated with 4.8 mean and the 
specified standard deviation. A resulting value of 
4.9 or more changes the test result to a “pass”. If 
it is lower than 4.9, it is kept as a failure. Using 
this process, the data generated above is 
“perturbed” with random noise. Standard 
deviations of 0.00 to 0.1 in 0.01 increments are 
used for a total of 11 different noise distributions. 
 
Taking all possibilities into account, we ran 
experiments on three systems, ten assets, eight 
possible data set sizes, and 11 noise levels for a 
total of 2,640 data sets. Using this data, 
experiments were run to create NBCs for each of 
ten assets using asset-specific data for a 
particular system, N, and noise level as well as a 
composite NBC using aggregated data. This 
means that the composite NBC was trained and 
tested with 10N data whereas the asset-specific 
classifiers were each trained with N. This 
comports well with real world experience—if one 
had data for ten assets and had the option of 
creating ten classifiers or one aggregate classifier, 
one wouldn’t throw 90% of the data away. 
 
For all experiments, the NBC learning algorithm 
was repeated over 30 runs with 66% of the data 
used to train the NBC and 34% of the data used 
to test the NBC. New data was generated for each 
run. Where random selection is required, all 
randomization is stratified first by system (if 
necessary) and then by diagnosis (class). The 

Table 1. Sample distributions used in experiments. 
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Dirichlet prior is set with p = 0.001% and m = 1. 
The intention with setting p so low is to make sure 
that the classification rule doesn’t degenerate on 
the one hand but, on the other hand, the 
classification is not influenced. Choosing a 
diagnosis at random breaks all classification ties. 
 

V. RESULTS  
 
The results are presented for each system in 
tables of the following form. For each value of N 
and noise-level, there are 10 asset-specific 
classifiers based on segregated data and one 
composite classifier based on all of the data. The 
counts in each table are for the number of asset-
specific classifiers that were as good as or better 
than the composite classifier. The asset-specific 
classifiers not in the counts are those with a 
statistically significant accuracy lower than the 
composite’s accuracy at the 0.05 level using a test 
of difference of means. If more than five asset-
specific classifiers are at least as good as the 
composite classifier then the count is bold face. If 
fewer than five are at least as good, then the 
count is shown in italics (Tables 2–4). Some of the 
tables only show the count of asset-specific 
classifiers that were better than the composite 
classifier, using the same significance test. Bold 
face and italics have the same interpretation 
(Tables 5–7). 
 
The tables for relative accuracies are based on 
simple averages of the differential accuracy 
between the ten asset-specific classifiers and the 
composite classifier. If the difference is less than 
0.0%, (i.e., if the set of asset-specific classifiers is 
less accurate on average than the composite 
classifier), then the percent is shown in italics. If 
the difference is greater than 0.0%, then the 
difference is shown in bold face (Tables 8–10). 
 
Table 2 shows the “as good as” counts for the 
“one-for-one” system. As expected, all the asset-
specific classifiers were at least as good as the 
composite classifier when the noise level was 
0.00. In fact, all of the classifiers were 100.0% 
accurate. This accuracy continues up until a noise 
level of 0.03 when some of the asset-specific 
classifiers begin to lose accuracy and are no 
longer as good as or better than the composite. 
This can be seen in Table 5 where the “better 
than” counts are shown and in Table 8 where the 
difference in accuracy is 0.0% exactly. 
 
However after noise level 0.03, more of the asset-
specific classifiers begin to lose accuracy relative 
to the composite classifier. These are mostly for N 
= 50 and 100 with noise levels between 0.06 and 

0.09. For most of the other combinations of N and 
noise, a majority of the specific classifiers are at 
least as good as the composite classifier. The 
patch of lowered accuracy, most visible in Table 5 
is very close to what one would expect. It appears 
to show that for the “one-to-one” system, when N 
is relatively small and the noise is relatively high—
but not too high—composite classifiers are better 
than a set of asset-specific classifiers. 
 
It should be noted that when N = 25 with eight 
components and a uniform distribution, this 
translates into approximately three examples per 
fault for that asset-specific classifier. With a 
train/test split of 66/34, this means that two of the 
examples are used for training and one for testing. 
This is probably not the best train/test 
methodology for such a small N but we wanted to 
keep the methodology the same for all of the 
experiments. 
 
As Table 3 shows, very similar results were 
obtained for the slightly more complicated “serial” 
system. As before, all of the classifiers are equally 
accurate—and 100% accurate—with no noise or 
low noise. There is a threshold point in the noise 
level after which some asset-specific classifiers 
become less accurate than the composite 
classifier. Looking at Table 6, however, where just 
those classifiers that were strictly better than the 
composite classifier are shown, an interesting 
pattern emerges. Leaving aside N = 25, for a 
given noise level, the number of asset-specific 
classifiers that are better than the composite 
classifier increases as N increases. What is 
interesting to note is that the lower the noise level, 
the larger N must be before the asset-specific 
classifiers are better than the composite classifier. 
Put a different way, the higher the noise level, the 
sooner, in terms of N, a set of asset-specific 
classifiers outperforms a single composite 
classifier created from aggregated data. 
 
Finally, Table 4 displays the “as good as” results 
for the “functional” system. The functional system 
is arguably the most complicated of the three and 
is most like the type of D-matrix one might 
encounter in practice. Here again there are no 
surprises with no or almost no noise. All of the 
classifiers are 100% accurate and so there is no 
advantage for asset-specific classifiers. But once 
again, there is a point reached, noise = 0.06, 
where the larger N is, given a noise level, the 
more accurate the set of asset-specific classifiers 
is relative to the composite classifier. Table 7, 
which shows only those asset classifiers that were 
better than the composite classifier, tells a similar 
story. 



 

Table 2. Number of Asset Specific Classifiers out of 10 
that are as good or better than the Composite Classifier, 
One-For-One System
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Table 3. Number of Asset Specific Classifiers out of 10 that 
are as good or better than the Composite Classifier, Serial 
System.
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Table 4. Number of Asset Specific Classifiers out of 10 that 
are as good or better than the Composite Classifier, 
Functional System
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Table 5. Number of Asset Specific Classifiers out of 10 
that are better than the Composite Classifier, One-For-
One System
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Table 6. Number of Asset Specific Classifiers out of 10 that 
are better than the Composite Classifier, Serial System.

 

Table 7. Number of Asset Specific Classifiers out of 10 that 
are better than the Composite Classifier, Functional 
System.
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Table 8. Average Differential Accuracy of all Asset Specific Classifiers compared to the 
Composite Classifier, One-For-One System
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Table 9. Average Differential Accuracy of all Asset Specific Classifiers compared to the 
Composite Classifier, Serial System.
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Table 10. Average Differential Accuracy of all Asset Specific Classifiers compared to the 
Composite Classifier, Functional System.
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This does not, however, seem to be the end of the 
story. As the systems have become more 
complicated another interesting pattern has 
emerged. First, at low levels of noise, 0.00 to 
0.02, no classifier is better than any other 
classifier. Second, a transitional range is entered 
where some asset-specific classifiers are more 
accurate than the composite classifier and, 
depending on the noise, some asset-specific 
classifiers are less accurate than the composite 
classifier. This noise range is approximately 0.03 
to 0.05. Finally, a third range of noise shows a 
pattern of increasing accuracy for asset-specific 
classifiers as N increases but increased accuracy 
is attained sooner, the more noise the data has. 
 

VI. DISCUSSION 
 
The purpose of these experiments was to test the 
hypothesis that a set of asset-specific classifiers 
would be more accurate, on average, than a 
single classifier created from all of the data. The 
results reported clearly show that this is 
sometimes the case. If there is no or low noise in 
the data, it appears that whether one uses a set of 
asset-specific classifiers or a single composite 
classifier doesn’t matter for accuracy because 
they should all have approximately the same 
accuracy. Even for noise level 0.04, the average 
accuracy differential only ranged from -0.8% to 
0.0%, which was not statistically significant. 
 
On the other hand, when there was “medium” 
noise, it was difficult to predict how much data 
would be required before the set of classifiers 
would outperform the single classifier, especially 
for complicated systems. Except for the largest 
datasets, even though some of the asset-specific 
classifiers were better than the composite 
classifier, overall the accuracy was still less than 
that of the composite classifier. 
 
At “high” levels of noise, the set of asset-specific 
classifiers were definitely more accurate than the 
composite classifier provided enough data was 
available. The lesson here seems to be that the 
noisier the data, the sooner asset-specific 
classifiers will be beneficial as long as the data is 
noisy enough. 
 
Looking at the largest N, however, it appears to 
be clear that given enough data, no matter what 
the noise level, a set of asset-specific classifiers 
will always be at least as good as a composite 
classifier built from the same data and possibly 
better, the higher the noise level. All of the other 
trends merely suggest that under certain 

circumstances one can take advantage of this 
increased accuracy earlier (with smaller N). 
 
These experiments appear to reveal a threshold 
of data that must be reached for asset-specific 
models to be beneficial. As a practical matter, 
specific assets do not fail everyday—in fact, the 
most commonly observed state of affairs is “no 
failure”. Even for the smallest N of 25 used here, it 
may take some time to gather sufficient data to 
even determine if the assets have significantly 
different failure distributions and thus warrant 
asset-specific classifiers. The question naturally 
arises as to what should be done until there is 
enough data. Although the experiments in this 
paper examined the broad outlines of what might 
happen, the practical application of the results will 
have to be determined in future work. 
 

VII. FUTURE WORK 
 
Given enough data, a set of asset-specific 
classifiers is more accurate than a single 
composite classifier. Until there is enough data, 
however, the results are mixed. If the data has no 
or low noise, aggregation/segregation doesn’t 
matter because the accuracy of the classifiers is 
going to be the same. If the noise is high, then 
there is some advantage to be gained by using 
asset-specific classifiers sooner rather than later. 
Even before an N of 50 or even 100, however, is 
there a way to take advantage of these findings? 
 
One place to start looking is in the specification of 
the Dirichlet prior. For the experiments in this 
paper, the Dirichlet prior was set to 0.001%—just 
enough to prevent the classification rule from 
breaking but not enough to affect classification. 
An improved approach might use Dirichlet priors 
to actually affect classification in an intelligent 
way. For example, for the current set of 
experiments, the D-matrix for each system is 
known. Given a historical distribution of 
diagnoses, the D-matrix could be used to 
calculate a noise-free set of prior probabilities. If 
these priors were then used during the training of 
the classifier, accuracy might be improved. If no 
D-matrix is available or if it is unknown, expert 
knowledge could be substituted to estimate priors 
and possibly even the network. This could also 
provide an intelligent starting point for training the 
network. Either approach could be used in the 
beginning to create the composite classifier and 
both will be investigated in future work. 
 
The next step would be to use the composite 
classifier for the prior probabilities for the 
individual asset-specific classifiers. In the limit, as 



more and more data is collected, the composite 
classifier would be updated into the respective 
asset-specific classifiers, depending on which 
asset data was used for training. The main 
challenge here will be to arrive at an appropriate 
update rule. For example, if the probabilities from 
the composite classifier were used as the priors, 
the question is what m would be the best to 
maintain good performance when N is low (and 
the prior p should dominate) when N is high (and 
the training should dominate). This will also be 
investigated in future work. 
 

VIII. CONCLUSION 
 
This paper started out by describing the DoD’s 
IUID program. The eventual goal of the research 
of which this paper is but a part is to use the IUID 
based data to build effective diagnostic and 
prognostic models. It was hypothesized that 
asset-specific modeling would be a good step in 
the direction of reaching that goal. To test the 
hypothesis in a well-controlled way, experiments 
were conducted and the results were reported.  
 
In general, the hypothesis was well supported. A 
set of asset-specific classifiers was eventually 
more accurate than a single composite classifier 
given a large enough N. However, it was 
determined that “enough data” was not the only 
factor in determining if a set of specialized 
classifiers was more accurate than a single 
general classifier. System complexity and noise 
level both had an influence on relative accuracies 
between the two. Additionally, it was determined 
that the trends observed in the experiments were 
limiting cases. In practice, it would take quite 
some time to collect “enough data.” 
 
Nevertheless, the approach appears to be 
promising. For future work it was suggested that 
experiments be conducted to improve estimation 
of the Dirichlet priors from either a known D-Matrix 
or expert knowledge for the composite classifier. 
The composite classifier could then serve as the 
Dirichlet prior while training asset-specific 
classifiers. In that case the emphasis would be on 
finding an effective weight for the prior. 
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