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Abstract—In this paper we build upon 
previous work to examine the efficacy of 
blending probabilities in asset-specific 
classifiers to improve diagnostic accuracy for 
a fleet of assets. In previous work we also 
introduced the idea of using split probabilities. 
We add environmental differentiation to asset 
differentiation in the experiments and assume 
that data is acquired in the context of online 
health monitoring. We hypothesize that overall 
diagnostic accuracy will be increased with the 
blending approach relative to the single 
aggregate classifier or split probability asset-
specific classifiers. The hypothesis is largely 
supported by the results. Future work will 
concentrate on improving the blending 
mechanism and working with small data sets. 
 

INTRODUCTION 

In a previous paper we explored using a set of 
asset-specific classifiers to improve the accuracy 
of Bayesian diagnostics for a fleet of assets. For 
our purposes, an asset is a specific piece of 
equipment with characteristics differentiating it 
from the rest of the fleet. We found that a set of 
asset-specific classifiers could be more accurate 
overall than a single composite classifier 
constructed from all of the data but not in all 
cases. In fact, sometimes the asset-specific 
classifiers were less accurate [1]. 
 
In a subsequent paper, we sought to combine the 
best of both the asset-specific classifiers and a 
composite classifier. The best method we 
examined estimated the priors from asset-specific 
data and likelihoods from aggregate data. By 
using a set of asset-specific “split probability” 

classifiers, we were able to achieve a more 
consistent advantage over a single composite 
classifier than we had previously [2]. 
  
This paper reports on our most recent research. In 
our previous papers we assumed that the 
diagnostic model(s) would be constructed from 
data obtained from offline testing. Now we look at 
how our approach might work when we are 
building our diagnostic models from online health 
monitoring and engaging in real time diagnostics. 
Additionally, we assume that the assets are used 
in different environments and that these 
environments affect the online health monitoring. 
We find that in such a situation a different 
approach, which we examined previously, works 
better. This approach uses blended probabilities 
to improve the accuracy of the set of asset-
specific classifiers.  
 
The outline of the paper is as follows. The next 
section will describe the research question. The 
third section will discuss related work. The fourth 
section will explore the experimental design. The 
fifth and sixth sections will present and discuss 
the experimental results (including future work) 
respectively. The final section will conclude the 
paper. 

RESEARCH PROBLEM 

Several observations both theoretical and 
practical motivate the approach we take to 
learning Bayesian diagnostic models for a fleet of 
assets from test data. First, when constructing any 
classifier, the more closely the distribution of the 
training data matches the distribution of the target 
population, the more accurate the classifier will be 
[3]. In diagnostic terms, the more the maintenance 



and test data used to build the model reflect 
failures the model will actually encounter when 
used in the field, the more accurate the diagnoses 
will be. 
 
Second, different lots of assets, while 
representing the same “system,” may fail in 
different ways. For example, one lot may always 
see an eventual failure of a particular circuit board 
while another lot may see a pattern of failures that 
starts with a power supply failure and thus make 
other failures more likely. These failures may also 
occur at the level of an individual asset. Because 
of environment and usage patterns or because of 
the idiosyncrasies of replacement parts, individual 
assets may also develop different and distinct 
failure profiles. 
 
Thus while we want to learn a diagnostic model 
for a specific system, a GPS device for example, 
we are only ever able to obtain maintenance and 
test data for specific instances of that systemthe 
actual assets in the field. As a result, because 
individual performance may vary, when the data is 
aggregated the resulting diagnostic model may be 
inconsistent to varying degrees. 
 
We define different assets by different failure 
distributions. For example, one asset might have 
a uniform failure distribution where all components 
are equally likely to fail. Several other assets 
might have “one bad actor” profiles where a 
particular component is more likely to fail. 
Although the models are learned from test data, 
the relationship between diagnoses and tests can 
be represented by a particular D-Matrix [3].  
 
Using this representation of different assets, we 
showed in a previous paper that one way to 
overcome possible model inconsistency is to 
create a set of asset-specific classifiers rather 
than a single composite one. Unfortunately, 
contrary to expectation, the set of asset-specific 
classifiers was not universally as good as or better 
than the composite classifier [1]. 
 
In a subsequent paper, we sought to determine if 
we might not be able to blend the probability 
estimates in each asset-specific classifier using 
both asset-specific and aggregate data [1]. The 
basic idea behind blending is based on the m-
estimate and likelihoods, P(o(Tj) | Di). We use 
naïve Bayesian classification (NBC) as the 
specific algorithm to test the hypothesis, and the 
formula for naïve Bayesian classification is: 
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where Di is some diagnosis, P(Di) is the 
probability estimate of a particular fault in the data 
set and P(o(Tj) | Di) is the frequency of some 
discrete test outcome o(Tj), e.g., PASS or FAIL, for 
some test Ti, considering only the particular 
diagnosis Di.1 
 
In the case that any likelihood is zero, to prevent 
the classification rule from degenerating, 
probability estimates are calculated using the m-
estimate [7]: 
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where nc is the number of instances in the data 
pairing particular values for o(Ti) and Dj, n is the 
total number of instances in the data 
corresponding to diagnosis Dj, p is a prior 
estimate for the probability, and m is the number 
of “virtual” examples in the data. 
 
Note that the m-estimate modifies the current 
frequency estimate by adding in some fraction of 
a probability mass, p. That fraction is determined 
by some number of virtual examples, m. In many 
cases, p is simply chosen to be a small innocuous 
value sufficient to prevent the formula from 
zeroing out and m is often set to one. 
 
In contrast, our blending approach attempts to use 
m and p to create a better estimate of the 
likelihoods in each asset-specific classifier. It does 
this in several ways. First, when estimating the 
likelihood from asset-specific data for the asset-
specific classifier, p is the likelihood calculated 
from the aggregate data.2 
 
Second, we let m change based on calculations 
from the data at hand. In our original research, at 
low N and low noise, the aggregate classifier 
tended to do better than the set. This is most likely 
because the aggregate data is a better overall 
estimate of the probabilities in those cases. 
However, as either N or noise increased, the 

                                                   
1 For a more in-depth discussion of Bayesian approaches to 
diagnostics, see some of our previous papers [2],[5],[6]. 
2 Because this is also a probability estimate, it must also have 
its own values of m and p in its m-estimate. In This case, it 
uses conventional values for m and p. 



asset-specific classifiers tended to do better. The 
formula for m is: 
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where k and q are user defined parameters to 
control how much weight goes to the asset-
specific likelihoods versus the aggregate 
likelihoods. This makes m a decreasing function of 
both noise and the quantity of data, N. 
 
In the paper where we introduced the blended 
probabilities, however, we found that blending 
was not generally more advantageous than 
another approach we call splitting. Splitting is 
based on the observation that while every asset 
has a different failure distribution and therefore a 
different set of priors, P(Di); because all assets 
share the same likelihoods, P(o(Tj) | Di) in theory 
there is no advantage to not using all of the data 
available to estimate them. Thus the likelihoods 
are calculated from the aggregate data while the 
priors are calculated from asset-specific data.  
 
In this paper, we return our attention to blending. 
The success of the split classifier depends on the 
assumption that the likelihoods are the same 
across all assets. In certain situations, for 
example in the case of online health monitoring, 
the environment may affect the test equipment 
and results. Thus in this paper, we introduce 
different environments as well as different assets. 
For our purposes, an environment is some context 
of external factors to which the asset is exposed 
and which is assumed to affect online health 
monitoring.  
 
Imagine a situation where diagnostic procedures 
are being prepared for a GPS system that will be 
installed on a wide variety of aircraft, and that 
GPS system has a built in health monitor. For 
example, it could be installed on a C-17 used for 
long-haul transport with little chance of requiring 
any extreme maneuvering where we might expect 
the equipment to function, and fail, as planned. 
Suppose, however, that the same model GPS 
system is installed on an F/A-18 that is flying 
maneuvers in hostile territory. Then more extreme 
maneuvers may be required, and this could lead 
to stresses on health monitoring equipment such 
that the test likelihoods need to shift to reflect 
greater sensitivity. Finally, consider a GPS system 
of the same model installed on a high-altitude 
trainer (e.g., a 747 used by NASA for astronaut 

training) where it is likely the aircraft will undergo 
frequent negative G-force maneuvers. A 
completely different set of test likelihood 
distributions might appear because of the 
conditions under which the measurements are 
taken. 
 
Because of the assumed environmental effects on 
test likelihoods, each environment can be 
effectively represented as its own D-Matrix. We 
thus find ourselves in a situation similar to the one 
where we have different failure distributions for 
assets. Aggregating all of the data to build a 
single diagnostic model may lead to 
inconsistencies. We hypothesize that segregating 
the data to create a set of asset and environment 
specific classifiers will result in a set of classifiers 
that are more accurate, overall, than a single 
classifier. Additionally, we hypothesize that the set 
of classifiers that uses blended probabilities will 
generally be more accurate than the set of 
classifiers that uses split probabilities. 
 
Before we describe the experimental design, we’ll 
look at some of the related work in ensemble 
methods. 

RELATED WORK 

One approach to combining models to improve 
diagnostic accuracy is through the use of 
“ensemble methods.” Ensemble methods seek to 
improve accuracy by combining recommendations 
from multiple classifiers [8]. Ensemble methods 
vary widely and include, for example, bagging, 
boosting, and mixtures of experts. 
 
Bagging normally involves the creation a set of 
classifiers by using bootstrapping to resample the 
available data. Boosting involves creating 
successive classifiers trained on the mistakes of 
the previous classifier. Both approaches have 
been used in classifiers used for diagnostics 
[9],[10]. Mixtures of experts create a meta-
classifier that combines the results of simpler 
classifiers and have been successfully used with 
Bayesian approaches to classification [11],[1]. 
 
Our research differs from typical ensemble 
methods in a number of ways. First, while we 
create a set of classifiers, each classifier is tied to 
a specific asset. There is no voting or combining 
because the appropriate classifier can be 
determined by context. Second, when creating the 
classifiers, we apply “blending” at a lower level of 
abstraction than at the level of the classification 



results. Although we emphasize the goal of 
obtaining the best accuracy of either the asset-
specific or composite classifiers, we seek to 
achieve this by combining asset-specific and 
composite data to estimate the probabilities for 
each asset-specific classifier. 

EXPERIMENTAL DESIGN 

To test our hypotheses, we first generated 
synthetic data that reflected our assumptions. 
First, we have different assets, which are 
represented by different failure distributions. 
Second, we have different environments, which 
are represented by different D-Matrices.  
 
We use a hypothetical system consisting of eight 
components that can be arranged in various 
ways. Each component is subject to failure and 
that failure is detected by a combination of eight 
tests that can either PASS or FAIL. Depending on 
how the components are arranged, the diagnostic 
characteristics of each system are captured by a 
corresponding D-Matrix. Figure 1 shows the 
arrangement of components and the 
corresponding D-Matrix for the baseline system 
used to generate the data for the experiments in 
this paper. Each di corresponds to a component 
that can fail and each tj corresponds to a test. In 
the case of failure, then di corresponds to the 
diagnosis. Each row in the D-Matrix is a signature 
relating expected test outcomes (PASS = 0 or FAIL 
= 1 for each test) to a particular diagnosis. 
 
Assets are represented by different failure 
distributions. For example, “Asset A” might always 
have trouble with component 3 (d3). In this case, 
the probability of d3 failing will be relatively higher 
than the probability of d0–d2 and d4–d7 failing. 
For these experiments, there are five such 

hypothetical failure distributions. The “uniform” 
asset has a uniform probability of failure for each 
component. The “one bad actor” assets have 
failure distributions where one component has a 
53.3% probability of failure and the remaining 
components have a uniform probability of failure. 
The two assets are “Component #0” failure and 
“Component #7” failure. 
 
The “two bad actor” assets have failure 
distributions where two components have a 36.4% 
probability of failure while the rest have a uniform 
probability of failure. The two assets are 
“Components #0 and #7” and “Components #3 
and #6”. 
 
Our hypotheses involve assumptions about how 
the environment affects test results in online 
health monitoring. To model these effects, we 
start with the baseline shown in Figure 1 and 
develop four additional environments. We assume 
these environments cause various tests to 
perform differently and represent each of these as 
alternative D-Matrices. In Environment #1, test #3 
always fails. In Environment #2, test #4 always 
passes (can never fail). In Environment #3, test #2 
always fails for diagnoses #0 and #1 and finally 
Environment #4, where test #7 passes for 
diagnoses #2, #3 and #4. These D-Matrices are 
shown in Figure 2 and Figure 3. 
 
These five failure distributions (assets) and five D-
Matrices (environments) form the foundation for 
generating the synthetic data. For each data set, 
N data points are generated for each asset and 
environment using a particular fault distribution 
and D-Matrix. For example, if N = 100, creating 
data for “Component #7 – Environment #1” 
involves creating data that includes seven each of 
signatures d0–d6 but 53 of signature d7 from the 
D-Matrix “Environment #1”. This process is 
repeated for each asset and environment for each 
of N = 25, 50, 100, 250, 500, 1000, 2500, 5000. 
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Figure 2. D-Matrices for Environments 
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Figure 1. Logic model and D-matrix 



 
At this point, we have a collection of data sets that 
represent each D-matrix perfectly. However, in the 
real world, our test results are not likely to 
originate from clean PASS or FAIL test readings, 
nor are they always perfect. The actual 
measurements are subject to varying levels of 
noise. We also note that an NBC can easily learn 
the diagnostic concept represented by any 
(single) D-matrix to 100% accuracy as long as 
each row in the matrix corresponds to a unique 
diagnosis because the concept represented is 
linearly separable [13]. To both inject a degree of 
realism into the data and to prevent the problem 
from becoming trivial, we add noise to the data. 
 
Assume we have determined typical “raw” values 
for a test passing and failing for a specific system 
and use those values as the means of a Gaussian 
distribution of equal variance (since we would be 
using the same measurement device). Based on 
Bayesian decision theory, assuming equal loss, 
the optimal decision threshold is midway between 
the two means [13]. Using different variances, we 
introduce noise into the data in the following 
manner. When a test signature is copied into the 
data set, each test is examined. A random value 
is generated from the corresponding PASS or FAIL 
distribution, and the result is compared to the 
decision threshold.3 The outcome is then 
determined based on where the value falls with 
respect to this threshold. For example, if the result 
of a particular test is supposed to indicate a PASS 
(a “0” in the data), a random value is generated 
with the passing mean and the specified variance. 
If the resulting value is within the nominal limits, 
the test outcome is kept as a PASS. If it is lower 

                                                   
3 For these experiments, we assume only a single test limit is 
applied to determine PASS or FAIL. In fact, this is easily 
extended to the more realistic case but was deemed 
unnecessary for these experiments. 

than the nominal limit, the test result is changed to 
FAIL. Standard deviations (rather than variances) 
of 0.00 to 0.1 in 0.01 increments are used for a 
total of 11 different noise distributions. 
 
Taking all of these parameters together, we have 
five assets × five environments × eight sizes × 11 
noise levels for a total of 2,200 data sets. Using 
this data, we trained four classifiers on each 
individual data set (asset and environment pair) 
with a given N and noise level. Three of the 
classifiers were (canonical) naïve Bayesian 
classifier (NBC), the naïve Bayesian classifier 
using split probabilities (SNB) and the naïve 
Bayesian classifier using blended probabilities 
(BNB). The fourth classifier was the composite 
classifier, which was trained with the aggregate 
data but tested against each asset-specific data 
set individually. Thus the composite classifier was 
trained with 25N data examples whereas the 
asset-and-environment specific classifiers were 
each trained with N examples. This comports well 
with real world experience—if one had data for ten 
assets and had the option of creating ten 
classifiers or one aggregate classifier, one would 
not throw 90% of the data away. 
 
For all experiments, each learning algorithm was 
repeated with 30 trials using 66% of the data to 
train the classifier and 34% of the data to test the 
classifier during each trial. New data was 
generated for each trial (bringing the total of 
actual data sets generated to 66,000). All random 
selection was stratified first by asset-environment 
pair (if necessary) and then by diagnosis (class). 
The m-estimate was set with p = 0.001% and m = 1 
in all cases except where the special m and p 
were used in the blended probability classifiers. In 
the other cases, the value of p was set low to 
make sure that the classification rule doesn’t 
degenerate on the one hand but, on the other 
hand, the classification is not influenced. In case 
of blended probabilities, the user defined 
parameters k and q were set to 100 and 1.2 
respectively. Choosing a diagnosis at random 
breaks all classification ties. 
 

RESULTS 

For the sake of clarity and conciseness, we first 
establish a bit of terminology. “Asset-and-
environment-specific blended probability naïve 
Bayesian classifier” is a bit verbose. First of all we 
note that all of the classifiers are naïve Bayesian 
classifiers so we shorten that part to just 
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Figure 3. D-Matrices for Environments 



“classifier.” Additionally, we note that because 
only the composite classifier isn’t “asset-and-
environment-specific” we can shorten to “blended 
probability classifier.” For the other two classifiers, 
we have “specific probability classifier” for what is 
the regular naïve Bayesian classifier applied to a 
specific asset and environment. We also have 
“split probability classifier” for the classifier that 
uses specific probabilities for the priors and 
aggregate probabilities for the likelihoods. 
However, when we refer to the asset-and-
environment-specific classifiers generically, we 
will use “context-specific classifier” where a 
context is an asset and environment pairing. 
 
With five assets and five environments, there are 
25 possible context-specific classifiers and a 
single composite classifier for the experiments. 
The results are presented in two sets of tables. 
The first set, Tables 1-3, shows the number of 
context-specific classifiers that are as good as or 
better than the composite classifier in terms of 
accuracy (t-stat > –1.96). The second set, Tables 
4-6, shows the number of context-specific 
classifiers that are better than the composite 
classifier in terms of accuracy (t-stat > 1.96). All 
statistical significance tests use difference of 
means with pooled variance and a significance 
level of 0.05. 
 
Table 1 shows results for the specific probability 
classifiers compared to the composite classifier. 
These results are typical of those we’ve found in 
previous research. When the noise level is zero, 
all of the specific probability classifiers are at least 
as good as the composite classifier (with a few 
random hits here and there). This continues until 

about noise level 0.04 when some of the specific 
probability classifiers begin to lose accuracy 
relative to the composite classifier. As noise 
increases, the drop off in accuracy occurs at 
smaller and smaller N but also returns with 
smaller and smaller N. For example, at noise level 
0.05, accuracy drops off steadily from an initial 
value of 20 but begins to rebound at N = 1000. On 
the other hand, with noise level 0.08, the drop off 
starts with 13 but begins to rebound with N = 250. 
 
The results in Table 1 are the frame of reference 
for the remainder of the experiments. Ideally, we 
want all of the cells with values less than 25 to 
somehow “use” the composite classifier when it is 
better than the context-specific classifier. 
However, our approach is not so much to use the 
actual composite classifier but to use the data 
used to create the composite classifier. This is the 
reason for the “blending” and “splitting” and also 
why this approach is not, strictly speaking, an 
ensemble method. 
 
As Table 2 shows, the blended probability 
classifiers were able to achieve this result. Except 
for a run at N = 50, all 25 of the blended probability 
classifiers are at least as good as the composite 
classifier. 
 
Table 3 shows that the split probability classifiers 
were not quite able to do as well as the blended 
probability classifiers. In fact, while at high noise 
levels they were an improvement over the 
conventional probability classifiers (noise levels 
0.07 and higher), at lower noise levels they did 
worse in many cases. 
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Table 1. Number of Specific Probability Classifiers as
good as the Composite Classifier (out of 25)
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Table 2. Number of Blended Probability Classifiers as
good as the Composite Classifier (out of 25)

 



 
If we were only concerned with context-specific 
classifiers doing as well as the composite 
classifier, there would be little reason to 
investigate context-specific classifiers in the first 
place. While we certainly don’t expect to do better 
in every case, we would like to do better in many 
cases. Table 4 shows the number of specific 
probability classifiers that were better than the 
composite classifier. 
 
These results are generally typical of those we 
have found in previous research. Just as Table 1 
shows that there are some specific probability 
classifiers that are less accurate than the 
composite classifier, there are some specific 
probability classifiers that are better. For example, 
at N = 250 and noise level 0.07, Table 4 shows 
that four of the classifiers are better than the 
composite classifier. Referring back to the same 

cell in Table 1, we can see that ten were just as 
good. Thus, overall, four classifiers were better, 
six were the same and a full 15 were worse than 
the composite classifier in terms of accuracy. 
Note, however, that when N is large and the data 
is noisy, that the specific probability classifiers are 
not only as good as the composite classifier in 
most if not all cases but they are also better as 
well.  
 
There is an additional interesting result in Table 4 
that illustrates the problem of merging data from 
different contexts (assets and environments). 
Even if there is no noise, there are sometimes a 
few context-specific classifiers that are better than 
the composite classifier. Generally, if there is no 
noise in the data and the concept to be learned is 
linearly separable, a naïve Bayesian classifier can 
learn a concept with 100% accuracy. Because we 
have a case where the composite classifier was 
unable to learn the concept with 100% accuracy 
(in fact, in one case the accuracy was 52%), we 
must conclude that the underlying concept is 
noisy or possibly even deceptive (non-linear). The 
results in Table 4 for the no and low noise 
columns illustrate this effect. This demonstrates 
that creating a single model by aggregating data 
collected for the same system but different 
contexts may lead to an inconsistent model. 
  
The results for the blended probability classifiers 
are shown in Table 5. Compared to the 
conventional probability classifier, there are some 
substantial gains over the composite classifier in 
terms of relative accuracy. This is especially true 
once the noise level increases to 0.04 and 
beyond. Although there is still a definite “hill”, it is 

Table 3. Number of Split Probability Classifiers as good as
the Composite Classifier (out of 25)
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22

22

22

22
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22
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25
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22

22

22

22

22

22

22

22

22

22

22
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25 25

22 22
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25
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25
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25
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25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

 

Table 5. Number of Blended Probability Classifiers better
than the Composite Classifier (out of 25)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Noise (Standard Deviation)

N

25

50

100

250

500

1000

2500

5000

0.08 0.09 0.10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

5

13

16

1

1

1

1

1

2

4

10

15

18

17

1

2

2

9

15

16

18

20

3

4

4

11

10

16

18

19

5

3

10

10

12

15

17

19

13

18

21

23

24

16

20

23

24

25

6 8

10 11

118

 

Table 4. Number of Specific Probability Classifiers better
than the Composite Classifier (out of 25)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Noise (Standard Deviation)

N

25

50

100

250

500

1000

2500

5000

0.08 0.09 0.10

1

1

1

1

1

1

1

1

1

1

1

3

1

1

1

1

2

1

1

1

1

1

2

1

2

1

1

1

1

5

2

2

2

1

1

2

4

1

2

1

2

1

1

1

1

1

15

17

1

2

1

1

3

13

18

21

1

1

1

4

8

15

16

19

2

0

1

5

11

15

17

19

10

17

21

23

24

12

19

24

25

25

2 3

1 2

00



not as steep. It should also be noted that where 
the gains are similar, such as with large N in the 
high noise area of the table, the specific 
probability classifiers also have some classifiers 
that are worse than the composite classifier 
whereas this is not the case for the blended 
probability classifier. 
 
Table 6 shows the “better than” results for the split 
probability classifier. The split probability classifier 
did fairly well in previous research, which is the 
reason for its inclusion here. Overall, they are 
simpler to calculate than the blended probability 
classifier so if they do as well or better than the 
blended probability classifiers, there would be a 
practical gain in terms of learning these models. 
 
We can see that although the pattern is similar to 
that of the blended probability classifiers, the split 
probability classifiers are often behind. 
Additionally, as Table 3 shows, some of the split 

probability classifiers are actually worse than the 
composite classifier.  
 
We should note that these are comparisons 
between the context-specific classifiers and the 
composite classifier. Table 7 shows a comparison 
between the split probability classifiers and the 
blended probability classifiers. The comparison 
only shows the counts of the blended probability 
classifiers that were better than the split 
probability classifier. Every other blended 
classifier, for every N and noise level except for 
one, was at least as good as the split probability 
classifier. 
 
Table 7 has some very interesting results. First, 
generally speaking, the more data there is the 
more likely the blended probability classifier was 
more accurate than the split probability classifier. 
Generally, the blended probability classifiers 
tended to do better than the split probability 
classifiers with N > 250. Additionally, even if the 
blended probability classifiers were not able to 
best the composite classifier with low noise data, 
they were able to best the split probability 
classifiers. Because the split probability classifiers 
are using the same likelihood estimates as the 
composite classifier, this is another result that 
supports the hypothesis that aggregating data can 
create inconsistent models. 
 
The final table attempts to measure the gains to 
be had from creating a set of blended probability 
classifiers. Table 8 shows the percent increase in 
accuracy, on average, over the composite 
classifier for the set of blended probability 
classifiers. The gains are modest at low noise 
levels, which is to be expected. However, they are 
nearly 10% at the highest noise levels. 

Table 6. Number of Split Probability Classifiers better than
the Composite Classifier (out of 25)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Noise (Standard Deviation)

N

25

50

100

250

500

1000

2500

5000

0.08 0.09 0.10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

4

6

1

1

1

1

1

1

3

6

5

12

12

1

2

2

8

12

12

13

14

4

5

5

9

10

11

12

15

5

3

7

10

11

13

16

17

12

18

20

22

23

18

20

22

23

23

4 8

9 13

108

 
Table 7. Number of Blended Probability Classifiers better
than Split Probability Classifiers (out of 25).

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Noise (Standard Deviation)

0

N
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100

250

500

1000

2500

5000
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1

3

3

3

3

3

3

0

1

3

3

3

3

3

3

0

1

3

3

3

3

3

3

0

0

3

3

3

3

3

3

0

0

3

3

3

5

9

14

0

0

4

5

6

7

12
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0

0

1

5

6

8

13
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0

0

0

3

8
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0

1

2

9

11

0

3

4

8

14
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3
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0 0 0
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Table 8. Average Percent increase in Accuracy between
the Set of Blended Probability Classifiers and the
Composite Classifier.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Noise (Standard Deviation)

1.8

N

25

50

100

250

500

1000

2500

5000

0.08 0.09 0.10

0.5
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1.3
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1.3

1.3

1.3

1.8

0.5

1.1

1.3

1.3

1.3

1.3

1.3

1.8

0.5

1.1

1.3

1.3

1.3

1.3

1.3

1.8

0.6

1.1

1.2

1.3

1.3

1.3

1.3

1.9

0.6

1.2

1.4

1.4

1.5

1.5

1.5
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1.0

1.7

2.1

2.0

2.1

2.2

2.2

3.2

2.0

2.0

2.0

3.1

3.1

3.2

3.3

4.1

2.5

3.1

3.5

3.7

4.1

4.3

4.3

4.8

4.8

4.8

5.0

4.9

6.1

6.5

6.8

6.8

7.1

8.1

8.9

9.3

9.7

10.0

5.8 6.7 9.2

4.6 5.5 6.7

8.13.6 6.5

 



DISCUSSION 

In previous research we examined the role of 
asset-specific classifiers in improving diagnostic 
accuracy for a fleet of assets. While we found that 
asset-specific classifiers could improve diagnostic 
accuracy, this was not always the case. 
Subsequently we investigated a way to combine 
aggregate and asset-specific data into the asset-
specific classifiers to boost accuracy in those 
cases where the composite classifier would have 
been more accurate. We examined two methods 
of combining data: blending and splitting. The 
splitting approach turned out to be better when the 
test data was such that a consistent estimation of 
the likelihoods for the naïve Bayesian classifiers 
was possible. 
 
In this paper, we expanded our experiments to 
include environmental effects by changing the 
focus of the test data from the offline maintenance 
depot to the online health monitor. By assuming 
that the operating environment affects the online 
health monitor results in specific ways, we were 
able to model the different environments as 
different D-Matrices. 
 
Under these new conditions, we hypothesized that 
the blended probability context-specific classifiers 
would be at least as accurate as the composite 
classifier most cases and more accurate in some 
cases. We also hypothesized that the blended 
probability context-specific classifiers would be at 
least as accurate as the split probability context-
specific classifiers in most cases and more 
accurate in many cases. The experimental results 
supported both of these hypotheses. 
 
However, we note the bulk of the context-specific 
classifiers that were more accurate than the 
composite classifier were so when N was large 
and the level of noise was large. This suggests a 
number of areas for future work. 
 
First, the impact of the user-defined parameters of 
the formula for m should be examined. Not only 
might this improve the overall accuracy but also in 
cases of smaller N. In addition, examining various 
values of k and q might reveal the range of their 
impact on accuracy.  
 
Second, there may be a better formula for m. The 
current shape might not correctly weight smaller N 
towards the aggregate likelihood in the blended 
classifier. The overall shape might be improved. 
 

Third, smaller N may simply be a special case. 
We may need to investigate methods of 
leveraging small data sets to extract more 
information from them. 
 
Finally, and this is related to the third, we 
recognize that a simple trained classifier—or set 
of trained classifiers—is unlikely to be sufficient by 
itself to accurately diagnose faults. Accurate 
diagnosis generally requires a model created 
initially by experts and matured as data is 
acquired. The full diagnostic problem will most 
likely be solved by using classifiers with other 
types of diagnostics models [6]. 

CONCLUSION 

The experiments were designed to test two 
hypotheses. The first was that a set of classifiers 
built from asset-and-environment-specific 
(context-specific) data would be more accurate 
overall than a single classifier built from the 
aggregate of the data. The results presented in 
Tables 1 through 6 largely support that 
hypothesis. 
 
Additionally, we hypothesized that context-specific 
classifiers built using blended probabilities would 
perform as well and sometimes better than 
context-specific classifiers built using split 
probabilities. In previous work we showed that the 
split probability classifiers were generally better 
than the specific probability classifiers. The results 
in Table 7 support this hypothesis. There was 
almost never a case where the blending scheme 
did worse than the splitting scheme and there 
were many times when the blending scheme did 
better. The remainder of the time it was a 
statistical draw. 
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