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Abstract – Faulty automotive systems 
significantly degrade the performance and 
efficiency of vehicles, and oftentimes are the 
major contributors of vehicle breakdown; they 
result in large expenditures for repair and 
maintenance. Therefore, intelligent vehicle 
health-monitoring schemes are needed for 
effective fault diagnosis in automotive 
systems. Previously, we developed a data-
driven approach using a data reduction 
technique, coupled with a variety of classifiers, 
for fault diagnosis in automotive systems [1]. 
In this paper, we consider the problem of 
fusing classifier decisions to reduce 
diagnostic errors. Specifically, we develop 
three novel classifier fusion approaches: 
class-specific Bayesian fusion, joint 
optimization of fusion center and of individual 
classifiers, and dynamic fusion. We evaluate 
the efficacies of these fusion approaches on 
an automotive engine data. The results 
demonstrate that dynamic fusion and joint 
optimization, and class-specific Bayesian 
fusion outperform traditional fusion 
approaches. We also show that learning the 
parameters of individual classifiers as part of 
the fusion architecture can provide better 
classification performance. 

INTRODUCTION 

Modern automobiles are being equipped with 
increasingly sophisticated electronic systems.  
Operational problems associated with degraded 
components, failed sensors, improper installation, 
poor maintenance, and improperly implemented 
controls affect the efficiency, safety, and reliability 
of the vehicles. Failure frequency increases with 
age and leads to loss of comfort, degraded 

operational efficiency, and increased wear and 
tear of vehicle components. An intelligent on-
board fault detection and diagnosis (FDD) system 
can ensure uninterrupted and reliable operation of 
vehicular systems, and aid in vehicle health 
management. In particular, faulty engine systems 
significantly degrade the performance and 
efficiency of vehicles, and oftentimes are the 
major causes of vehicle breakdown; these result 
in large expenditures for repair and maintenance. 
Therefore, intelligent vehicle health-monitoring 
schemes are needed for effective fault diagnosis 
in automotive systems.  
 
What does one do when a mathematical model 
(for model-based approach) or a cause-effect 
graph model of system failures and their 
manifestations (for a knowledge-based approach) 
is not available for fault diagnosis? Data-driven 
approach for FDD is an alternative when system-
monitoring data is available. Owing to its simplicity 
and adaptability, customization of a data-driven 
approach does not require an in-depth knowledge 
of the system. A data-driven approach to FDD has 
a close relationship with pattern recognition, 
wherein one learns classification rules directly 
from the data, rather than using analytical models 
or a knowledge-based approach. This approach is 
attractive when one has difficulty in developing an 
accurate system model.  
 
In our previous research [1], we considered a 
data-driven approach to fault diagnosis in an 
automotive engine system. In order to diagnose 
the faults of interest in the engine system, we 
employed several classifiers for fault isolation.  
These include: multivariate statistical techniques 
exemplified by the principal component analysis 
(PCA) ([2], [3]) and linear/quadratic discriminant 



analysis (L/QDA) [4], and pattern classification 
techniques epitomized by the support vector 
machines (SVM) [5], probabilistic neural network 
(PNN), and the k-nearest neighbor (KNN) 
classifier [4]. We employed multi-way partial least 
squares (MPLS1) as a data reduction technique to 
accommodate the processed information (i.e., 
transformed data) within the limited memory 
space available in the electronic control units 
(ECUs) for control and diagnosis. Adaptive 
boosting (AdaBoost) [6] was used to improve the 
classifier performance. We validated and 
compared the accuracies and memory 
requirements of various fault diagnosis schemes. 
We successfully applied the FDD scheme to an 
automotive engine, and showed that it resulted in 
significant reductions in computation time and 
data size without loss in classification accuracy.  
 
It has been well recognized that typical pattern 
recognition techniques, which focus on finding the 
best single classifier, have one major drawback 
[7]: any complementary discriminatory information 
that other classifiers may provide is not tapped. 
Classifier fusion appears to be a natural step 
when a critical mass of knowledge for a single 
classifier has been accumulated [8]. The objective 
of classifier fusion is to improve the classification 
accuracy by combining the results of individual 
classifiers. The fusion also allows analysts to use 
the strengths and weaknesses of each algorithm 
to reduce the overall classification error. Classifier 
fusion has been widely studied in such diverse 
fields as image segmentation, data mining from 
noisy data streams, credit card fraud detection, 
sensor networks, image/speech/handwritten 
recognition, fault diagnosis, etc [9].  
 
In this paper, we propose three novel approaches 
to classifier fusion. These were motivated by our 
previous work on multi-target tracking and 
distributed M-ary hypothesis testing [10-11] and 
on dynamic multiple fault diagnosis (DMFD) [12-
13]. The first approach led to a class-specific 
Bayesian approach to classifier fusion which 
exploits the fact that different classifiers can be 
good at classifying different fault classes. The 
second approach, motivated by the fact that the 
decision rules of fusion center and individual 
classifiers are coupled [11], involves the joint 
optimization of fusion center and of individual 

                                                   
1  This algorithm was used to convert the 3D matrix data 
(samples x measurements x time), which we collected from 
CRAMAS® [35] into a 2D matrix (samples x features) as a data 
reduction technique.  

classifier decision rules. Given the classifiers, we 
develop the necessary conditions for the optimal 
fusion rule, taking into account costs of decisions. 
The SVM, PNN, KNN, and PCA classifiers are 
used to obtain the posterior probabilities of class 
labels. These probabilities are then combined by 
our proposed fusion approaches. The third 
approach involves dynamic fusion of classifiers, 
where classifier outputs are combined over time. 
In this paper, our primary focus is on evaluating 
how effectively our proposed classifier fusion 
approaches can reduce the diagnostic error, as 
compared to traditional fusion methods and the 
individual classifiers. 
 
The paper is organized as follows. A brief 
overview of previous fusion research is provided 
in the next section. Then, an overview of 
diagnostic and fusion process, including our 
proposed approaches, follows. Simulations and 
results are discussed in the next two sections. 
Finally, we conclude the paper with a summary 
and directions for future research. 

PREVIOUS FUSION RESEARCH 

The area of classifier fusion has been investigated 
extensively over the past fifteen years. Fusion 
involves manipulating an ensemble of learners to 
improve the overall classification accuracy. This 
work has produced numerous techniques, which 
can be decomposed into five categories:  
classifier selection, combination of classifier 
outputs, sampling of classifier training data, 
manipulation of classifier outputs, and classifier 
feature selection. Classifier fusion techniques are 
categorized in Table 1, and a brief explanation of 
each technique follows.  

Classifier Selection 

Classifier selection endeavors to choose the best 
classifier for a given task. This method assumes 
that a classifier is an expert on a subset of the 
feature space. The two approaches to classifier 
selection, viz., static and dynamic, differ in terms 
of how the subset is calculated. Static selection 
determines a priori a competent classifier for each 
region based on training data. The more popular 
dynamic classifier selection chooses the classifier 
according the certainty of the decision [15]. An 
adaptive k-nearest neighbor rule for dynamic 
classifier selection is suggested in [16]. Kuncheva 
suggested a hybrid between dynamic classifier 



selection and combination of classifier outputs 
[17].  

Combining Classifier Outputs 

Combining classifier outputs is the most frequently 
used fusion technique.  It combines the outputs of 
each classifier in the ensemble to determine a 
final decision. There are three types of classifier 
outputs:  single class label, ranking of classes, 
and soft-decisions or posterior probabilities. 
Techniques using single class labels include 
voting, naïve Bayes, and decision trees. 
Kuncheva investigated several combination 
techniques in [8], including a discussion of voting 
techniques. In [18], the accuracy of naïve Bayes 
fusion for dependent classifiers is studied. An 
application of decision tree combination in the 
context of gas turbine fault isolation is provided in 
[19]. Combinational techniques operating on a set 
of ranked classes are discussed in [20]. Soft 
decision combination techniques operate on 
classifiers’ posterior probabilities.  

Sampling Training Data 

Sampling training data has seen considerable 
success in various applications [21]. These 
algorithms create an ensemble of classifiers by 
training the classifiers on different samples of the 
training data. The two most common forms are 
bagging and boosting [25]. Bagging randomly 
samples the data set with replacement to create 
different training sets for each ensemble classifier. 

AdaBoost, the most popular rendition of boosting, 
uses weights for each training pattern that are 
updated at each iteration of the algorithm to focus 
on the more difficult patterns to classify [26]. A 
comparison of these techniques is provided by 
Bauer [25]. 

Manipulation of Classifier Outputs 

In this category, the class labels are used to train 
an ensemble of classifiers to improve the 
performance. A representative example is the 
error correcting codes (ECC) matrix used by 
Dietterich and Bariki to improve the separation of 
output class signatures [26]. Each row of ECC, 
termed the codeword, represents a class, and the 
collection of words constitutes the code matrix.  
There exist many techniques for the development 
of the code matrices [8, 26]. The dependence 
among code words’ bit errors is discussed in [27].  

Classifier Feature Selection 

Different subsets of features may offer different 
performance on the same data. This class of 
classifiers exploit this fact to create diversity in a 
classifier ensemble and, consequently, to improve 
classifier performance. Numerous techniques 
aimed at feature selection are outlined in [8]. In 
[28], the genetic ensemble feature selection 
(GEFS) algorithm is introduced using entropy as a 
diversity measure. Several search strategies, 
including ensemble forward sequential selection 
(EFSS), ensemble backward sequential selection 
(EBSS), a genetic algorithm (GA), and hill 
climbing, are discussed in [29] and are evaluated 
on data from the UCI repository.   

DIAGNOSTIC AND FUSION    
PROCESS OVERVIEW 

A block diagram of the diagnostic and classifier 
fusion schemes in our proposed approach is 
shown in Figure 1. The proposed fusion scheme 
is a three-step process: data reduction (raw data 
is also considered), fault isolation via individual 
classifiers, and classifier fusion with and without 
parameter optimization.  

Data Reduction 

Due to memory-constrained ECUs of automotive 
systems, intelligent data reduction techniques for 
on-board implementation of data-driven 
classification techniques are needed. Traditional 

Table 1. Overview of Fusion Techniques 

Fusion 
Category Techniques 

Classifier 
Selection Static, Dynamic 

Combining 
Classifier 
Outputs 

• Single Label Fusion: Voting, naïve  
                      Bayes, Decision Trees 
• Class Rankings: Borda Count,   
                              Highest Rank 
• Posterior Probability: Sum, Min, 

Max,  Product, [20] Median, 
Decision Templates [21],  
Dempster-Schafer [22] 

Sampling 
Training Data Bagging, Boosting, AdaBoost 

Manipulating 
Classifier 
Outputs 

ECC 

Classifier 
Feature 

Selection 

Random Selection, Non-random 
Selection, GEFS, Hill Climbing 



methods of data collection and storage 
capabilities often become untenable because of 
the increase in the number of observations 
(measurements), but mainly because of the 
increase in the number of variables associated 
with each observation (“dimension of the data”) 
[30]. Using data reduction techniques, the entire 
data is projected onto a low-dimensional space, 
and the reduced space often gives information 
about the important structure of the high-
dimensional data space. Among widely used 
dimension reduction techniques, an MPLS-based 
data reduction technique was examined, and we 
found that it is very efficient in reducing the data 
size (by a factor of 2000). Consequently, the 
classification algorithm could be embedded in 
existing ECUs with limited memory [1].  

Fault Isolation 

The following classification techniques are used 
as individual classifiers for fault isolation: 
• Pattern classification techniques: SVM, PNN, 

and KNN 
• Multivariate statistical technique: PCA 
A brief explanation of each technique follows.  

Support Vector Machines (SVM) 

Support vector machines transform the data to a 
higher dimensional feature space, and find an 
optimal hyperplane that maximizes the margin 
between the classes [31]. There are two distinct 
features of SVM. One is that it is often associated 
with the physical meaning of data, so that it is 
easy to interpret, and the other one is that it 
requires only a small amount of training data. A 
kernel function is used for fitting non-linear models 
by transforming the data into a higher dimension 
before finding the optimal hyperplane. In this 
paper, we employed a radial basis function to 
transform the data into the feature space. 

Probabilistic Neural Networks (PNN) 

The probabilistic neural network (PNN) is a 
supervised method to glean distribution functions 
from data. In the recall mode, these functions are 
used to estimate the likelihood of an input 
measurement vector being part of a learned 
category, or class. The learned patterns can also 
be weighted, with a priori probability (relative 
frequency) of each category and misclassification 
costs, to determine the most likely class for a 
given input vector. If the relative frequency of the  

 
Figure 1. Block Diagram of Proposed  

    FDD Fusion Scheme 
 
categories is unknown, then all the categories are 
assumed to be equally likely, and the 
determination of category is solely based on the 
closeness of the input feature vector to the 
distribution function of a class. 

k-Nearest Neighbor (KNN) 

The k-nearest neighbor classifier is a simple non-
parametric method for classification. Despite the 
simplicity of the algorithm, it performs very well, 
and is an important benchmark method [32]. KNN-
based classifier requires a metric d and a positive 
integer k. A new input vector x∈ℜn is classified 
using a subset of k–feature vectors that are 
closest to x with respect to the given metric d. The 
input vector x is then assigned to the class that 
appears most frequently within the k–subset. Ties 
can be broken by choosing an odd number for k 
(e.g., 1, 3, 5, etc.). Mathematically this can be 
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viewed as computing the a posteriori class 
probabilities P(cj|x) via, 

( ) ( )=|j j jP c x k p c k                   (1) 
where kj is the number of vectors belonging to 
class cj  within the subset of k vectors. A new 
input vector x is assigned to the class cj with the 
highest a posteriori class probability P(cj|x).  

Principal Component Analysis (PCA) 

Principal component analysis transforms 
correlated variables into a smaller number of 
uncorrelated variables, called principal 
components. PCA calculates the covariance 
matrix of the training data, and the corresponding 
eigenvalues and eigenvectors. The eigenvalues 
are then sorted, and the vectors (called scores) 
with the highest values are selected to represent 
the data in a reduced dimensional space. The 
number of principal components is determined by 
cross-validation [33]. The model of PCA is: 

1

 = 
U

T
f f

f

X t p E
=

+∑                       (2) 

where E is the residual matrix, and U is the 
number of principal components. The loading 
vectors (pf) are orthonormal and provide the 
directions with maximum variability. The score 
vectors (tf) from the different principal components 
are the coordinates of the objects in the reduced 
space. Nonlinear iterative partial least squares 
(NIPALS) [33] algorithm is used to perform the 
PCA. A classification of a new test pattern is done 
by obtaining its predicted scores and residuals. If 
the test pattern is similar to a specific class in the 
training data, the scores will be located near the 
origin of the reduced space, and the residual 
should be small. The distance of test data from 
the origin of the reduced space is measured by 
the Hotelling statistic [34].  

Fusion Approaches 

We discuss three approaches to fusion: Class-
specific Bayesian fusion, joint optimization of 
fusion center and of individual classifiers, and 
dynamic fusion.   

Class-specific Bayesian Fusion 

We let dk (k = 1,2, ,L) be the set of models 
(classifiers) with C classes, and let the targets be 
{ti} (i=1, 2 ,N). Let Z (zi: i = 1, 2, , N) and x be 
the set of training patterns and the test pattern, 

respectively. The posterior probability of class j 
from classifier k for the pattern x is denoted by 
ejk(x). Here, we make use of the fact that different 
classifiers are good at classifying different fault 
classes. Formally,  
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We can initialize P(dk(cj))=1/L assuming all 
classifiers perform equally or make it proportional 
to the overall accuracies of classifiers, i.e.,  

=

= ∑
1

( ( )) ( ) ( )
L

k j k j l j
l

P d c a c a c                (5) 

where ak(cj) is the accuracy of jth class in classifier 
k. Evidently,  

1
ln ( | ( )) ln ( )

N

ik j ij jk
i

P Z d c t e z
=

=∑         (6) 

This simply sums the logs of posterior 
probabilities for the target class over all the 
samples corresponding to class cj. Larger this 
number (closer to zero because the sum is 
negative), better is the classifier. So, the 
numerator of P(dk(cj)|Z) can be evaluated in log 
form as: 

1

ln ( | ( )) ln ( ( ))

   ln ( ) ln ( ( ))

kj k j k j

N

iij jk k j
i

n P Z d c P d c

t e z P d c
=

= +

= +∑
        (7) 

Then,   
=

= ∑
1

( ( ) | ) exp( ) exp( )
L

k j kj lj
l

P d c Z n n          (8)          

Joint Optimization of Fusion Center 
and of Individual Classifiers 

Assume that there are L classifiers, a fusion 
center, C fault classes, and the N targets {ti }. The 
decisions of individual classifiers are denoted by 
{uk}L

k=1while that of fusion center by u0: The 
classification rule of kth classifier is uk∈{1, 2, ..., C} 
=γk(x) and that of fusion is center u0∈{1, 2, ..., 
C}=γ0(u1, u2, ..., uL). The fusion center must decide 
which one of the classes is correct based on its 
own data and the evidence from the L classifiers. 
The prior probabilities of each class cj is Pj=Nj /N, 



where N is number of training patterns of class cj. 
We let J(u0,cj) be the cost of decision u0 by the 
committee of classifiers when the true class is cj. 
The problem is to find the joint committee strategy 
γc=(γ0, γ1, γ2, ..., γL) such that the expected cost 
E{J(u0,cj)} is a minimum, where E denotes 
expectation over {x, uk, 0 ≤ k ≤ L} and {cj, 1 ≤ j ≤ 
C}. The necessary conditions of optimality for the 
optimal decision rules are given by [11]: 

{ }

( ){ ( )}
0

0 1, 2, , 

1 2 0
1

:  arg min

             , , , | , 

o d C

C

L j j j
j

u

P u u u c P J d c

γ
∈

=

=

∑
    (9) 

The key problem here is to obtain P(u1, u2, ..., 
uL|cj). For C classes, this would involve building a 
table of CL entries, which is clearly intractable in 
practice. The probability computation is simplified 
by correlating each classifier with respect to only 
the best classifier from the training data. The best 
classifier may change during iterations. 
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=
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k
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   ( ) ( )
   1
 

            | | ,  
L
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k

k best

P u c P u c u
=

≠

≈ ∏   (10) 

We can estimate P(uk|cj, ubest) by 
( )| ,  

kk k j best d jhP u d c u h e= = =        (11) 
where edkjh is the proportion of time classifier k 
makes decision dk when the true class is cj and 
the best classifier makes decision h for dk=1,2,  
C; j=1,2, ,C; h=1,2, ,C. Given the classifiers, 
one can also fuse the classifier decisions taking 
into account costs of decisions [10]. The key here 
is that the decision rules of fusion center and 
individual classifiers are coupled.   Given that the 
fusion rule is fixed and the decision strategies of 
other classifiers are fixed, the kth classifier makes 
its decision as follows: 
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Eq. (13) can be simplified as: 
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P(u0|uk=dk, cj) is computed from the training data 
by counting the fraction of times the fusion center 
made the decision u0 when the local classifier k 
made the decision dk and the true class is cj in the 
previous iteration of the fusion rule. Also P(cj|x) is 
the estimate of posterior probability class cj given 
the data x.  

Dynamic Fusion of Classifiers 

Dynamic fusion process is based on an 
optimization framework that computes the most 
likely fault sequence over time. The dynamic 
fusion problem is a specific formulation of the 
DMFD problem [12-14]. In the DMFD problem, the 
objective is to isolate multiple faults based on test 
(classifier) outcomes observed over time. The 
dynamic fusion problem consists of a set of 
possible fault states in a system, and a set of 
binary classifier outcomes that are observed at 
each time (observation, decision) epoch. 
Evolution of fault states is independent, i.e., there 
is no direct coupling among the component states. 
The component states are coupled via classifier 
outcomes. Each classifier outcome provides 
information on a subset of the fault states (the 
entries with ones in the corresponding column of 
the ECC matrix). At each sample epoch, a subset 
of classifier outcomes is available. Classifiers are 
imperfect in the sense that the outcomes of some 
of the classifiers could be missing, and classifiers 
have missed-detection and false-alarm 
probabilities associated with them. Let the set of 
passed classifier outcomes be Op and that of 
failed classifiers be Of. Formally, we represent the 
dynamic fusion problem as DF={s, κ, D, O, ECC, 
P, A}, where S={s1, s2, …, SM} is a finite set of M 
components (failure sources, classes) associated 
with the system. The state of a component m is 
denoted by sm(t) at discrete time epoch t, where 
sm(t)=1if failure source sm is present; sm(t)=0, 
otherwise. Here κ = {0, 1, …, t,…,T} is the set of 
discretized observation epochs. The status of all 
component states at epoch t is denoted by 
s(t)={s1(t), s2(t), ..., sM(t)}. We assume that the 
probability distribution of initial state is known. The 
observations at each epoch are subsets of binary 
outcomes of classifiers O = {o1, o2, ..., oL}, i.e., 
on(t) ∈ {pass, fail} = {0, 1}. Figure 2 shows the 
DMFD problem viewed as a FHMM. The hidden 
system fault state of mth HMM at discrete time 
epoch t is denoted by sm(t). Each fault state sm(t) 
is modeled as a two-state HMM. Here, the true 



states of the component states and of classifiers 
are hidden.  
 

 
 

Figure 2. Dynamic Fusion Problem Viewed as a 
Factorial Hidden Markov Model (FHMM) 

 
We also define the ECC matrix ECC = [emn] as the 
diagnostic matrix (D-matrix), which represents the 
full-order dependency among failure sources and 
classifiers. Table 2 shows an ECC matrix as an 
illustrative example (8 failure sources and 4 
classifiers).  
 

  Table 2. An Error Correcting Codes (ECC) Matrix 

 d1 d2 d3 d4 
s1 0 1 0 0 
s2 1 1 1 1 
s3 0 0 1 0 
s4 0 1 1 0 
s5 1 1 0 1 
s6 0 0 1 1 
s7 1 1 1 0 
s8 1 0 0 1 

 
Each component state is modeled as a two-state 
non-homogenous Markov chain. For each 
component state, e.g., for component si at epoch t, 
A = {Pam(t), Pvm(t)} denotes the set of fault 
appearance probability Pam(t) and fault 
disappearance probability Pvm(t) defined as 
Pam(t)= P(sm(t) = 1|sm(t-1) = 0) and Pvm(t)= P(sm(t) 
= 0|sm(t-1) = 1). For static classes, Pam(t) = 
Pvm(t)=0. When these probabilities are non-zero, 
the model provides the capability to handle 
intermittent faults. Here, D = {d1, d2, ..., dL} is a 
finite set of L available binary classifiers, where 
the integrity of the system can be ascertained. 
P={Pdn, Pfn} represents a set of probabilities of 
detection and false alarm, which is associated 
only with each classifier n. Formally, Pdn=P(on(t) = 

1|dn(t) = 1) and Pfn=P(on(t) = 1|dn(t) = 0). The 
dynamic fusion problem is one of finding, at each 
decision epoch t, the most likely fault state 
candidates s(t)∈{0, 1}m, i.e., the fault state 
evolution over time, ST={s(1), s(2), ..., s(T)} that 
best explains the observed classifier outcome 
sequence OT. We formulate this as one of finding 
the maximum a posteriori (MAP) configuration:  

argmax  ( )
T

T T T

S
P S OS = |               (16) 

This problem is solved using a primal-dual 
optimization framework as discussed in [12-14]. 
Note that the details of the dynamic fusion are 
provided in [12, 14].  In this work, we assume that 
the faults evolve independently, but they are 
coupled through the test outcomes via the D-
matrix denoting fault-test dependencies.  
 

SIMULATIONS 
 
The proposed schemes are evaluated on an 
engine data set. A realistic automotive engine 
model is simulated under various fault conditions 
in a custom-built ComputeR Aided Multi-Analysis 
System (CRAMAS®) [35]. CRAMAS®, a vehicle 
engine simulator, which is used to develop 
vehicular ECUs, is a high-speed, multi-purpose, 
and expandable system. The system is subject to 
the following 8 faults: air flow sensor fault 
(misreading the air flow mass), leakage in air 
intake manifold (a hole in the intake tube), 
blockage of air filter (blocking the incoming air), 
throttle angle sensor fault (misreading the throttle 
angle), air/fuel ratio sensor fault (misreading the 
A/F ratio), engine speed sensor fault (misreading 
the engine speed), less fuel injection (delivering 
less fuel from the fuel pump), and added friction 
(increasing the friction in cylinders). It also 
contains the following 5 sensors: air flow meter 
reading, air/fuel ratio, vehicle speed, turbine 
speed, and engine speed. We collected 
observations of the 5 sensor readings 
(measurements) from the CRAMAS® hardware-in-
the-loop simulator. The operating condition for the 
simulation was as follows: 2485 rpm (engine 
speed), 18o (pedal angle), and 86o (water 
temperature). For each class (fault), we performed 
simulations for 40 different severity levels (0.5 % ~ 
20 %); each run is sampled at 2,000 time points 
with a 0.005-sec sampling interval. We apply our 
proposed fusion techniques to the data set and 
compare them to individual classifier performance. 
Here, 10 randomized data sets of 2-fold cross-
validation were used to assess the classification 
performance.  
 



RESULTS 

We implemented and experimented with the three 
proposed fusion approaches on the CRAMAS® 
engine data. Widely used fusion techniques, the 
majority voting and the naïve Bayes were also 
evaluated and compared to our approaches. The 
diagnostic results, measured in terms of 
classification errors and testing times for the 8 
faults, are shown in Table 3. Testing time was 
computed using Matlab® Software on a 2.3 GHz 
Intel Pentium 4 processor with 1 GB of RAM. We 
assume that time shown could be further reduced 
by a factor of 10 by implementing in the C 
language. As shown in Table 3, we not only 
achieved smaller fault isolation error, but also 
obtained significant data reduction (25.6  12.8 
KB). Since data reduction improved classifier 
performance, the proposed fusion approaches 
were mainly evaluated on reduced data set.  
 
Although majority voting, naïve Bayes, proposed 
Bayesian fusion and dynamic fusion (with no 
parameter optimization) approaches for this 
problem helped marginal classifiers (PNN, KNNs, 
and PCA) in reducing the correct isolation error, 
they were unable to overcome the best single 
classifier (SVM). However, the proposed Bayesian  

and dynamic fusion are comparable to the best 
single classification error, and outperformed the 
majority voting and naïve Bayes. Initially the 
results from joint optimization approach and class-
specific Bayesian fusion were quite similar to that 
from best single classifier (virtually tied 
statistically). However, we were able to improve 
the classification performance using the joint 
optimization approach on marginal classifiers 
(PNN, KNN (k=3) and PCA) and then applying the 
majority voting on the fused decision and those 
from SVM and KNN (k=1). Specifically, the 
posterior probabilities from PNN, KNN (k=3), and 
PCA were fed to the joint optimization algorithm, 
and then SVM and KNN (k=1) were used for the 
majority voting with fused decisions from the joint 
optimization algorithm. Use of only majority voting 
provided poor isolation results; this implies that 
the joint optimization approach was definitely a 
contributor to the reduced error. We believe that 
this is because the joint optimization of fusion 
center and of individual classifiers increases the 
diversity of the classifier outputs, which is a vital 
requirement for reducing the diagnostic error. The 
Bayesian fusion result was also improved by 
optimally selecting classifiers. For the result 
shown in Table 3, three classifiers, SVM and 
KNNs (k=1,3) were selected and fused for the 



Bayesian fusion approach. For the dynamic fusion 
approach, we ran the fusion algorithm with a 
sampling interval of 0.5 seconds in order to 
suppress the noise in the data. Thus, we used a 
down sampling rate of 100, and obtained 20 time 
epochs for the dynamic fusion process. The 
results in Table 3 were obtained using 15 SVM 
classifiers, which are represented by the columns 
of the ECC matrix. The ECC matrix was 
generated using the Hamming code generation 
method [36]. The dynamic fusion achieved low 
isolation error results as compared to single 
classifier results. We experimented with two 
different approaches for Pd and Pf in the dynamic 
fusion process. The first approach used Pd and Pf 
learned from the training data of individual 
classifiers, while coarse optimization was applied 
to learn Pd and Pf, and the optimal parameters 
were Pd = 0.5~0.6 and Pf = 0~0.02 when they are 
part of the dynamic fusion. We found that the 
dynamic fusion approach with parameter 
optimization significantly reduces diagnostic error 
by 45.1% (as compared to single best classifier on 
reduced data).  
 
Figure 3 shows that dynamic fusion with 
parameter optimization provided the most 
significant improvement and also the best in 
classification accuracy. Note that the training time 
for the dynamic fusion method depends on how 
many classifiers (ECC columns) are used. The 
more the number of classifiers, the larger is the 
training time. 

 
Figure 3. Comparison of Fusion Approaches with 

No Parameter Optimization and Optimization 
 
Figure 4 illustrates all the approaches we 
considered in this paper and Pareto efficiency 
(dash line) [37] in terms of testing time vs. 
classification error. By indicating all of the 
potentially optimal approaches to the problem, 
analysts can obtain focused tradeoffs within the 
constrained set of classification error and testing 
time, rather than considering the full ranges of 

fusion approaches. Since our primary focus is on 
diagnostic error, the lower values are preferred to 
the higher values. The figure clearly shows that 
our dynamic fusion with parameter optimization is 
superior to all other approaches.  
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Figure 4. Comparison of Individual and Fusion 

Classifiers on Reduced Data 

CONCLUSIONS 

In this paper, we have proposed and developed 
three new approaches to classifier fusion. In 
addition to individual classifiers, such as the SVM, 
PNN, KNN, and PCA for fault isolation, posterior  
probabilities from these classifiers were fused by 
class-specific Bayesian fusion, joint optimization 
of fusion center and individual classifiers, and 
dynamic fusion. All the approaches were validated 
on the CRAMAS® engine data (raw and reduced 
data sets). Although in terms of diagnostic error, 
the results of the proposed approaches before 
applying optimization were quite close to the best 
single classifier performance, they are generally 
better than the majority voting and the naïve 
Bayes approaches. It confirms again that fusing 
marginal classifiers can increase the diagnostic 
performance substantially. We showed that 
classifier selection in the context of class-specific 
Bayesian fusion, majority voting among the best 
classifiers and fused marginal classifies, and 
parameter optimization in dynamic fusion 
significantly reduced the overall diagnostic error. 
The key empirical result here is that one needs to 
learn parameters as part of the fusion architecture 
(not standalone) to obtain the best classification 
performance from a team of classifiers. This is 
consistent with the finding in distributed detection 
that the individual sensors (classifiers in our case) 

Dynamic Fusion  
with Parameter Optimization 

SVM
Joint Optimization  
with Majority Voting 

Bayesian Fusion  
with Classifier Selection 



operate at a different operating point when part of 
a team (fusion in our case) than when they 
operate alone [38]. 
 
Our future research involves evaluating the 
proposed classifier fusion techniques on various 
data sets, such as real automotive field data, UCI 
repository, etc. Furthermore, we plan to explore 
and compare other fusion techniques that can be 
applied to fault diagnosis in automotive systems. 
For the dynamic fusion research, we also plan to 
explore relaxation of the independence 
assumption and solve the dynamic fusion problem 
when faults are dependent. Coupled hidden 
Markov models offer a promising platform for the 
solution of this problem [39]. We also plan to 
extend the joint optimization approach to 
correlated faults via Bayesian network/influence 
diagram framework.  
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