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Abstract—The US Navy has been supporting the demonstration 
of several IEEE standards with the intent of implementing these 
standards for future automatic test system procurement. In this 
paper, we discuss the second phase of a demonstration focusing 
on the IEEE P1232 AI-ESTATE standard. This standard 
specifies exchange formats and service interfaces for diagnostic 
reasoners. The first phase successfully demonstrated the ability to 
exchange diagnostic models through semantically enriched XML 
files. The second phase is focusing on the services and has been 
implemented using a web-based, service-oriented architecture. 
Here, we discuss implementation issues and preliminary results. 

Keywords–AI-ESTATE, ATS framework, diagnostics, IEEE 
standards, interoperability 

I. INTRODUCTION 
The Department of Defense (DoD) has established a 

partnership between government, industry, and academia to 
address architectural design and standardization issues for 
Automatic Test Systems (ATS). The DoD ATS Framework 
Working Group is focusing on defining an information 
framework and identifying standards for next-generation ATS. 
The principal requirement to be satisfied by the framework and 
associated standards is to provide an open architecture for ATS 
to reduce overall cost of development and ownership for 
resulting families of standards and the ATS which employ 
them. Based on work in the 1990s when the ATS Research and 
Development Integrated Product Team defined a set of “critical 
interfaces” for ATS, the current working group has been 
selecting, supporting the development of, and demonstrating 
commercial standards to be used in ATS with the intent of, 
ultimately, implementing these standards in future ATS 
procurement programs.  

The Institute for Electrical and Electronics Engineers 
(IEEE), through its Standards Coordinating Committee 20 
(SCC20), is developing interface standards focusing on several 
elements defined in the ATS Framework. One of these 
standards—IEEE P1232 Artificial Intelligence Exchange and 
Service Tie to All Test Environments (AI-ESTATE)—has been 
chosen for demonstration prior to mandate. Previously, we 
presented the results of the first phase of the AI-ESTATE 
demonstration, focusing on semantic interoperability of 
diagnostic models to support the Diagnostic Data (DIAD) 
element of the framework. The results of that demonstration 
successfully showed the effectiveness of semantic modeling in 
information exchange. In addition, the engineering burden 

imposed by stronger semantic requirements was demonstrated 
to be manageable.  

In the second phase, the focus was on the Diagnostic 
Services (DIAS) element, intended to support reasoner 
interoperability. The AI-ESTATE standard accomplishes this 
by specifying the implementation of semantically defined 
software services in a service-oriented architecture. Here, we 
present an overview of the semantic interoperability problem in 
the context of diagnostic reasoning and forecast the results of 
the second phase of the demonstration. 

II. THE AI-ESTATE STANDARD 
The AI-ESTATE standard has been under development 

since the late 1980s and has undergone several significant 
modifications and advances over the intervening 20 years. AI-
ESTATE is based upon a foundation of formal semantic 
information models developed in the EXPRESS modeling 
language [1]. Initially, the standard was published in three 
parts: 

• Architecture: The first part focused on a conceptual 
view of a diagnostic reasoner in the context of an 
abstract test environment [2]. This first standard 
imposed requirements on the following two standards 
rather than on any particular AI-ESTATE 
implementation. 

• Knowledge Exchange: The second part introduced the 
first information models for diagnosis [3] and 
incorporated a little-used member of the Standard for 
the Exchange of Product model data (STEP) family for 
file exchange—EXPRESS-I [4]. 

• Software Services: The third part used the syntax of the 
EXPRESS information modeling language to specify 
software services, focusing mostly on model access 
services [5]. No specific implementation strategy was 
either specified or assumed; however, a binding 
strategy illustrated with the C programming language 
was provided as guidance. 

Subsequent to their publication, all three standards were 
upgraded to full-use, and the revision process began. 

During the revision of the standard, the DMC determined 
that maintaining the standard would be simplified if the three 
“components” were combined into a single document. In 
addition, it was pointed out that the exchange format was not 
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particularly useful since it was never intended for file 
exchange. Furthermore, the STEP community had already 
specified a standard specifically for file exchange, known as 
the “STEP physical file format” [6]. Thus, in 2002, a new 
version of the standard was approved making these changes 
[7]. 

The IEEE requires that all of their standards either be 
reaffirmed, revised, or withdrawn every five years. Shortly 
after publication of the 2002 version of AI-ESTATE, it was 
discovered that a significant error was introduced into the 
standard. Specifically, while the information models were 
being updated, the specification for failure rate had been 
deleted from the standard. At the time the error was discovered, 
the DMC believed a simple “corrigendum” could be prepared 
repairing the error. 

As the process of preparing the corrigendum began, the 
DMC also decided to explore incorporating an XML-based file 
exchange into the standard. To accomplish this, the 
corrigendum changed into an amendment, and the DMC 
decided to develop a set of XML schemata for the models in 
the standard [8],[9]. As the amendment proceeded, the DMC 
determined that there were several places where the standard 
could be improved, and the XML schemata should follow the 
STEP specification for deriving XML from information models 
[10]. AI-ESTATE now started a full revision process. 

In the spring of 2009, the newly revised AI-ESTATE 
standard was balloted [11]. That standard is now in the process 
of being revised based on over 700 comments received. The 
demonstration described in this paper has been developed in 
parallel and has provided several additional “rogue comments” 
for incorporation into the draft to be recirculated by the end of 
the year. 

III. SEMANTIC INTEROPERABILITY 
As mentioned in the previous section, the fundamental 

principle that underlies AI-ESTATE and the approach 
developed to write the standard is that of providing a sound 
semantic specification of the information to be exchanged with 
a diagnostic reasoner. Within software, generally two 
approaches exist to exchanging information: 1) through the 
exchange of static files, and 2) through a set of software 
services defined as an Application Program Interface (API). 
AI-ESTATE provides specifications both for file exchange and 
for software APIs. Although not stated explicitly, software-
based access to model elements could also be done through the 
STEP Standard Data Access Interface (SDAI) [12]. 

Several previous papers have been published focusing on 
the role of semantic models in addressing data exchange within 
AI-ESTATE [13], supporting information integration [14], and 
facilitating data mining [15]. In this paper, we focus on the role 
of semantic interoperability in defining software services and 
on the demonstration of the AI-ESTATE services. Within AI-
ESTATE, five information models were developed to support 
model exchange. In addition, a sixth information model has 
been developed—the dynamic context model (DCM)—that 
defines the semantics of much of the information required 
when performing diagnosis. In addition, a new information 
model is under development as a result of the P1232 ballot that 

defines a set of types for the information passed by way of the 
services. We will discuss each of these two models here. 

A. Dynamic Context Model 
The AI-ESTATE standard describes the DCM as a model 

used that “captures a record of the reasoning session that may 
be used in any diagnostic context by an adequate abstraction of 
widely used diagnostic principles. … The DCM data and 
knowledge are developed during a diagnostic session, unlike 
those of the [other AI-ESTATE models] (which consist of 
static diagnostic data and knowledge.” As described, the DCM 
represents only a history of the diagnostic session; however, the 
semantics of the model do far more than that. First, the model 
defines the concept of a diagnostic session. A session is a 
container for everything that happens while a system is being 
tested or monitored and while reasoning about test/monitor 
information is going on. Thus, the session encapsulates the 
entire diagnostic process. 

While the session is used as a “container” for the 
information captured during diagnosis, the key entity defined 
within the DCM corresponds to a step in the diagnostic 
process. The balloted version of AI-ESTATE defines a step as 
follows: 
ENTITY Step; 
Name : OPTIONAL NameType; 
actionsPerformed : LIST OF ActiveAction; 
activeModels : SET [1:?] OF DiagnosticModel; 
optimizedByCost : SET OF CostCategory; 
optimizedByDistribution :  

  ReliabilityDirected; 
optimizedByUser : HypothesisDirected; 
outcomesInferred : SET OF ActualOutcome; 
outcomesObserved : SET OF ActualOutcome; 
serviceLog : OPTIONAL LIST [1:?] OF 

  ServiceState; 
stepContext : OPTIONAL ContextState; 
timeOccurred : OPTIONAL TimeStamp; 
userHypothesis : OPTIONAL SET [1:?] OF 

  ActualOutcome; 
lifeCycleStatus : LIST [1:?] OF ActualUsage; 

INVERSE 
owningSession : Session FOR trace; 

WHERE 
modelsInSet : 

  (SELF.activeModels <=  
   SELF.owningSession.modelSet); 
hypothesisWithUserDirected : 

  (NOT(SELF.optimizedByUser) OR 
   EXISTS(SELF.userHypothesis)); 
END_ENTITY; 

To interpret, the step entity defines the main pieces of 
information to be collected during diagnosis and includes 
concepts such as the actions that are performed (including any 
setup actions, adjustments or repairs, and especially tests), the 
results of these actions (especially test results/outcomes), and 
any inferences drawn as a result.  

The step also provides the ability to specify how the 
diagnostic reasoner should choose tests to perform, assuming 
the reasoner has that capability. Specifically, the standard 
assumes the reasoner as a default test choice capability. The 
specifics of that capability are immaterial; it could follow a 



static fault tree, perform a brute-force end-to-end test, or 
optimize test selection based on information gain. Up to three 
additional criteria can also be selected for optimization: 

1. Cost-based optimization: Incorporate cost factors as 
specified in an instance of the AI-ESTATE Common 
Element Model (CEM) such as the time required to 
perform a test or the skill level of the technician 
performing the test. 

2. Probability-based optimization: Incorporate 
information on the prior probability of a diagnosis 
incorporated into an instance of the CEM. Usually, 
these priors are determined based on failure rate 
information; however, the specific way the reasoner 
determines priors is not specified. 

3. Hypothesis-directed optimization: Incorporate 
knowledge of an expert, a technician, or any other 
“agent” that might be able to furnish a hypothesis to 
the reasoner. The reasoner then redirects its test choice 
process to focus on verifying or denying that 
hypothesis. 

The ability to optimize by any or all of these approaches has 
been available to several diagnostic tools for at least 20 years, 
one of which was co-developed in 1988 by the lead author 
[16]. 

The AI-ESTATE standard does not specify how to use this 
model except to require that a reasoner be able to export a fully 
populated DCM using one of the two interchange formats. 
These exported files can then be used by applications to record 
the history of the session or support post mortem analysis of the 
session to support trending or maturation of the models. In 
addition, the DCM includes the ability to reference other 
DCMs to enable reasoners with the ability to incorporate 
historical information into the reasoning process to access that 
historical information. Because of the formal information 
model, these tools are able to use the exported information and 
understand exactly what the information means. 

It is possible that a reasoner can also use the DCM to 
specify its internal representation of the state of diagnosis. 
While such a use is neither required nor necessarily even 
recommended, this use points out the richness of the model in 
that it is more than just historical data. In fact, it is this potential 
use that led to the word “dynamic” being incorporated into the 
name. As diagnosis proceeds, information integrity is 
maintained by mapping the information used to the DCM. 

B. Service Interface Model 
In addition to the DCM, the DMC is in the process of 

developing a new information model to specify semantics of 
the data being passed to and from the services. To explain this 
model, we also need to explain the service specification itself. 
In the balloted version of P1232, two classes of services were 
specified—model management services and reasoner 
manipulation services. The model management services were 
intended to permit a client to create, get, put, and delete 
elements in any of the AI-ESTATE models. The reasoner 
manipulation services were intended to provide the primary 
means of a client communicating with a diagnostic reasoner 

during a diagnostic session. As a result of the P1232 ballot, the 
model manipulation services are being deleted, leaving only 
services for communicating with the reasoner. 

We will describe a complete use case in the next section; 
however, here we describe three of the services specified. 
Diagnosis is a process of obtaining observations (e.g., test 
results) and drawing conclusions about the target of diagnosis 
based on those observations. Thus, three key services include 
getting a recommendation for a test to perform 
(recommendActions), reporting the results of that test to 
the reasoner (applyActions), and asking that the reasoner 
update its belief in the state of the target system 
(updateState). These services are specified using the 
syntax of EXPRESS as follows: 
FUNCTION recommendActions( 
maxNumber : OPTIONAL INTEGER; 
levelsOfInterest : OPTIONAL SET [1:?] OF  

 NameType;) : 
LIST [1:?] OF ActionRecomendation; 

END_FUNCTION; 

PROCEDURE applyActions 
(actions : LIST [1:?] OF ActualAction); 

END_PROCEDURE; 

PROCEDURE update_state; 
END_PROCEDURE; 

The recommendActions service has two optional 
attributes that specify the maximum number of actions to return 
as the levels of indenture of the target system for the analysis. 
It returns a set of ActionRecommendation, which is a new 
entity to be included in the new information model.  
ENTITY ActionRecomendation; 
actionNames : LIST [1:?] OF NameType; 
actionDescriptions : LIST OF [1:?]  

DescriptionType; 
sequenceDescription : OPTIONAL  

DescriptionType; 
costCategories : LIST [0:?] OF NameType; 
catDescriptions : LIST [0:?] OF  

DescriptionType; 
estimates: LIST [0:?] CostValue; 
uppers : LIST [0:?] CostValue; 
lowers : LIST [0:?] CostValue; 
units : LIST [0:?] STRING; 

END_ENTITY; 

The applyActions service passes a list of 
ActualAction, which is an entity also defined in the new 
model.  
ENTITY ActualAction; 
actionName : NameType; 
statusValue : OPTIONAL AssignedValue; 
statusConfidence : OPTIONAL ConfidenceValue; 
costLabels : OPTIONAL LIST [0:?] OF NameType; 
costValues : OPTIONAL LIST [0:?] OF  

CostValue; 
END_ENTITY; 



Thus, by including semantic definitions of the parameters and 
return values, AI-ESTATE provides an additional layer of 
semantic interoperability in the service specification as well. 

IV. DEMONSTRATING AI-ESTATE SERVICES 
 As discussed above, the revised AI-ESTATE standard 

contains a set of model management and reasoner manipulation 
services, intended to provide a well-defined, semantically valid 
software interface for performing fault diagnosis. In addition, 
the AI-ESTATE standard currently specifies these services 
using the Web Service Description Language (WSDL), thus 
enabling a web service-oriented implementation. 1

The primary objective of this phase of the demonstration 
can be summarized as follows: 

 Note that 
using web services is only one of several ways the services 
might be implemented; however, for purposes of this 
demonstration, this is the approach we used. 

To demonstrate the ability of IEEE Std 1232 (AI-ESTATE) 
to ensure the interchangeability of diagnostic reasoners 
through the definition of encapsulated services. 

To this end, the focus of this demonstration was on the 
implementation of the services specified in the current draft of 
IEEE P1232. That clause specifies two classes of services—
model management services and reasoner manipulation 
services. Since model management services are to be deleted 
from the standard these were not implemented in the 
demonstration. Instead, the focus was on reasoner manipulation 
services since it is in this area where reasoner 
interchangeability is realized. 

                                                           
1 Recently, the BRC decided to remove the WSDL specification from the 
standard; however, the demonstration project proceeded with them since they 
permitted a level of “net-centricity” to be demonstrated. 

The basic structure implemented in this phase of the 
demonstration is shown in Figure 1. Key to the demonstration 
is the abstraction created by specifying the reasoner 
manipulation services, thereby encapsulating the reasoner. In 
particular, by specifying these services and the associated 
communication protocol (in this case, the Simple Object 
Access Protocol—SOAP), it should no longer matter how the 
specific reasoner or reasoner type behind the interface has been 
implemented. This was demonstrated by using two different 
types of reasoners—a fault tree reasoner (to exemplify legacy 
diagnostic systems) and a Bayesian reasoner (to exemplify 
state-of-the-art diagnostic systems).  

In a “confederation of services” architectural environment, 
exactly what is a client and what is a server can get a bit hazy 
when each actual application may be a provider of some 
services (and thus a server) and a consumer of other services 
(and thus a client). Even the diagnostic reasoner is a client of 
other servers when called on service methods that end with 
“FromLocation.” These indicate that the reasoner should 
acquire the specified resource at the URL indicated. 

However, the AI-ESTATE standard is only concerned with 
a central client-server relationship—the one between the 
application calling the reasoner manipulation service methods 
(client) and the application responding to those service calls 
(server). Note that the client need not be the ultimate consumer 
of the services nor the responding server the actual producer of 
the services. This ability to delegate and adapt permits legacy 
and otherwise mismatched applications to be integrated into the 
“confederation.” 

We chose to implement the services in SOAP because this 
is what the balloted standard suggested for web services. For 
the producing application (server), the starting point was the 
Bayesian reasoner from the Phase I demonstration. This 

 
 

Figure 1.  AI-ESTATE Phase II Demonstration Concept 



application was largely implemented in Ruby, embedded in a 
web application container and responded to custom API calls 
via HTTP GET and POST. For Phase II, a standalone server 
was created that could respond to the standard service calls via 
SOAP and then delegate them to the reasoner into which it had 
been embedded. 

For the consuming application (client), a standalone server 
was created from scratch that could both communicate via 
SOAP with the reasoner and via XML-RPC with the actual end 
client or GUI. This separation permitted information traveling 
from the reasoner to the end user to be decorated with 
additional information and for information traveling from the 
end user to the reasoner to be stripped of such decorations.  

Finally, in order to avoid multiple copies of models being 
propagated throughout the system, a simple model server was 
created that all applications needing the models could access. A 
more complete implementation of the model server would 
integrate with tools like those developed in Phase I for creating 
and editing models. 

V. A USE CASE 
To illustrate the application of the standard reasoner, 

imagine the diagnostic client resides on a test station at a 
maintenance depot but two diagnostic reasoners are located on 
possibly different servers at remote locations. The test station 
has access to the internet or a closed intranet and is able to 
communicate with these reasoners over the network. A unit 
under test (UUT) is attached to the test station, and the 
maintenance technician requests that a model be loaded for that 
UUT. Once the model is loaded, testing begins.  

Alternatively, one can imagine using different models and 
reasoners depending on the type of testing going on. For 
example, a technician could use the Bayesian model for the 
initial fault diagnosis. Bayesian models provide an excellent 
way to account for uncertainty in the test process and give 
more robust information to a technician to determine the proper 
course of action. Once the fault is isolated and the repair 
completed, the unit must undergo a verification/recertification 
test. Due to constraints typically imposed on the recertification 
process, a “certified” fault tree could be used during 
recertification. From a process point of view, the diagnostic 
application would function the same in both cases, thus 
simplifying training and use in the maintenance process. 

With either scenario, at each step of testing, the tester 
would request a test recommendation from the diagnostic 
server. Upon receiving the recommendation, the tester would 
run the corresponding test (if possible) and provide the results 
back to the server. Based on the results of the test (which might 
include an inability to perform that test), the diagnostic 
hypothesis would be updated and returned. The process would 
continue until either no more testing was required or the 
technician determined the hypothesis was sufficient to take 
action. At the end of the session, the technician would request 
that the session be exported and associated with a Maintenance 
Action Form (MAF) for the UUT. 

Using this scenario, the following basic use case was 
developed to identify the key services to be implemented. As 

an interesting (and important) byproduct of the process of 
developing the use case, several services were identified as 
being “missing” from the standard. These services are in the 
process of being incorporated into the version to be recirculated 
for re-ballot. These missing services are discussed in the next 
section. 

Step 1–Reasoner discovery: The client needs to determine 
what reasoners are available for diagnosis. This service has not 
been standardized in P1232, so we will assume the client 
knows the available reasoners at the start of the process. 

Step 2–Model discovery: Similar to the first step, the client 
needs to know what models are available for use by the 
reasoner. Of particular importance is making sure the model 
type matches the reasoner type. For example, if the reasoner 
uses Bayesian inference, it would not make sense to send it a 
fault tree. 

Step 3–Start diagnostic process: As suggested, this is the 
point at which a diagnostic session begins and the session 
entity would be “instantiated” in the DCM. Of course, the 
reasoner is free to instantiate the DCM at the end of a session, 
but this step indicates a session entity is required. The defined 
service is initializeDiagnosticProcess. 

Step 4–Load model: Here a diagnostic model is loaded into 
the reasoner. P1232 permits models to be loaded in one of two 
ways—loadModel and loadModelFromLocation. The 
former assumes the reasoner knows where the model is, and the 
latter permits the client to direct the reasoner to the model 
location. We implemented the latter service. At this point, the 
identified model is “attached” to the session in the DCM. 

Step 5–Activate model: Currently, P1232 permits multiple 
models to be associated with a session. It is likely this will be 
changed in the published standard; however, currently this 
feature requires the desired model to be activated for use by the 
reasoner. The associated service is setActiveModel, and 
this has the effect of creating a step in the DCM and attaching 
the activated model to that step. 

Step 6–Set UUT Usage: For purposes of indexing into 
associated failure distributions, the reasoner may need to know 
how long it has been since the UUT was last serviced or since 
the UUT was put into operation. The setUsage service 
permits this information to be associated with the current step. 
It is likely this information will be moved to the session entity. 

Step 7–Set optimization: One of the underlying assumptions 
the DCM made in writing the P1232 standard was the 
diagnostic reasoners often provide the capability of optimizing 
the test selection process. As discussed previously, three 
different types of optimization have been defined in the 
services. At this point, the desired optimization can be set using 
one or more of the services optimizeByCostCriteria, 
optimizeByDistribution, or optimizeByUser-
Hypothesis. It is assumed the client either has a complete 
copy of the model or at least knows the important elements 
contained in the model (such as available cost criteria or the set 
of diagnoses). 

Step 8–Set initial results: This step is not necessary but 
often occurs in practice. The idea is to present the reasoner with 



known information such as symptoms, Built-In Test (BIT) 
results, etc. so that diagnosis can take this prior information 
into account. At this point, two services would be applied in 
sequence—applyActions (where the prior information is 
supplied as a set of action or test results) and updateState 
(where the reasoner is asked to draw inferences from the 
supplied information). As a byproduct, inferences would be 
associated with the current step in the DCM and a new step 
would be appended to the end of the session trace. 

Step 9–Enter main diagnosis loop: At this point, the 
following process is repeated until such time as either the 
reasoner or the client determines no further testing is required. 
Specifically, three services are applied in sequence—
recommendActions–applyActions–updateState. 
The latter two have the same effect as in Step 8 above. The 
recommendActions service provides a list of one or more 
actions or tests to perform with associated figures of merit. The 
figures of merit permit the client to choose whether to perform 
the actions, which actions to perform, and whether or not to 
terminate. 

Step 10–Provide results: Actually, this last step can be 
performed at any point in the above sequence; however, at a 
minimum it needs to be done at the end of the diagnostic 
session. Here, the current hypothesis produced by the reasoner 
is supplied to the client through getDiagnosticResults. 

VI. ISSUES AND DEFICIENCIES 
The DoD is placing more and more emphasis on net-

centricity in future ATS and maintenance system 
procurements. Within the context of AI-ESTATE and 
diagnostics, net-centricity can be achieved through different 
approaches which can be broadly grouped into those that are 
data-centered and procedure-centered. Data-centered 
approaches generally fall under the category of RESTful 
interfaces although their adherence to the principles of 
representational state transfer (REST) can vary. REST centers 
on resources and Uniform Resource Locators (URL) to 
resources. In REST, the standard’s 
startDiagnosticProcess would be mapped to 
/myreasoner/session/create where the parameters 
for the UUT and serial number of the actualRepairItem 
are supplied as XML or query parameters. The call would 
return a session identifier, which would be used in subsequent 
API calls. For example to call recommendActions using 
REST, one would access the recommended actions as a 
resource on the reasoner using a URL such as 
/myreasoner/123456/actions/list. The session id 
has become part of the URL which identifies the resource for 
this particular session. While the semantics of the standard 
could be achieved using REST, the standard has an explicit 
implementation bias towards procedure-centered approaches 
because the services must have the same names as those in the 
standard. 

Procedure-centered approaches have a long history. The 
Common Object Request Broker Architecture (CORBA) is one 
of the oldest object-oriented remoting approaches. Remote 
Method Invocation (RMI) fulfills a similar role in Java-based 

solutions. For net-centric solutions, the oldest remote procedure 
call (RPC) type of approach is the standard HTTP GET/POST. 
This approach uses a URL and query parameters. Our 
startDiagnosisProcess could be implemented in 
HTTP GET/POST using a URL such as 
/myreasoner/startDiagnosticProcess?uut=X&actual

RepairItem=Y. 

Unlike REST, HTTP GET/POST services can also be formally 
described in a WSDL. Another alternative is XML-RPC. In this 
case, an XML document is sent describing the method to be 
invoked and the parameters to that method on the remote server 
by POSTing an XML document to a service URL. XML-RPC 
eventually evolved into SOAP; however, XML-RPC is still 
used today for those who find defining a SOAP service through 
a WSDL to be “overkill.” One final alternative is to use SOAP 
itself and one of its various encoding combinations including 
“rpc” or “document” with “literal” or “encoded.” There is also 
a format recommendation called “wrapped document literal.” 
All of these formats have their good and bad points. 

Although the standard services definition precludes some 
implementations (REST), it lays the foundation for a simplified 
process of coordination and integration when parties must 
negotiate or use implementations. This process might be even 
further enhanced by the presence of reference implementations; 
however, SCC20 has historically taken a position against either 
providing reference implementations or conformance test 
suites. 

Other than the various implementation issues and 
alternatives, the process by which the services have been 
implemented for demonstration served a very useful purpose. 
Several items were found to be missing in the balloted standard 
that would be of value (and even required), given common uses 
of diagnostic applications. Two areas were such deficiencies 
were found were with the management of resource availability 
and the specification of optimization criteria. 

The balloted standard includes a service that permits a 
client to specify which resources (e.g., test instruments, power 
sources, etc.) were available: setAvailableResources. 
While the AI-ESTATE CEM includes information on 
resources, the DCM does not capture what resources have been 
identified as available. From the perspective of the service, the 
DCM does not need to store this information; however, given 
the DCM is supposed to capture a history of all information 
relevant to the diagnostic process, omitting this information 
was a serious oversight. As a result, the DCM has been 
modified as part of the demonstration to capture this 
information. 

While the problem identified above illustrates a situation 
where the DCM does not support a service, the second problem 
illustrates the opposite situation—where no service exists to 
support information in the DCM. Specifically, the balloted 
version of the DCM defines four attributes of a step to support 
the optimization process: 

• Step.optimizedByCost 

• Step.optimizedByUser 



• Step.userHypothesis 

• Step.optimizedByDistribution 

Unfortunately, no corresponding reasoner manipulation 
services were defined that enabled the client to set these 
attributes. Technically, the model management services could 
be used to set these values, except an approach was taken 
where model management services worked with entity ids and 
reasoner manipulation services worked with entity names. This 
mismatch made it impossible to use the model management 
services with the reasoner manipulation services to set the 
optimization information. As a result, three services have been 
added as a part of this demonstration to address this deficiency: 

• optimizeByCostCriteria 

• optimizeByDistribution 

• optimizeByUserHypothesis 

The purpose of the demonstration process was to provide a 
way of “testing” a standard being considered by the DoD for 
future mandate. The intent is to provide a proof-of-concept that 
the standard works and will satisfy the DoD’s requirements. 
But there is a more important benefit to the demonstration 
process, especially when no de facto standard exists. The 
demonstration process serves as a valuable tool for identifying 
deficiencies/errors and testing alternatives, thus providing a 
mechanism for producing an even more effective standard. 

VII. CONCLUSION 
In this paper, we discussed the role of information 

modeling in the context of defining software services to ensure 
semantic interoperability of elements in a test environment. 
The focus of our discussion was the P1232 AI-ESTATE 
standard since this standard used information models for this 
very purpose. We also provided a high-level discussion of the 
second phase of a demonstration project for the Navy where 
the services specified in AI-ESTATE were implemented to 
show interoperability characteristics. 

Key conclusions to be drawn, both from the process by 
which the standard was developed and from the demonstrations 
performed are that semantic interoperability remains a “tricky” 
issue. One of the main goals of the DMC was to define a 
standard that would be independent of implementation 
language and permit “plug-and-play” functionality of 
diagnostic reasoners. Unfortunately, this goal has not been 
realized fully, and there is considerable doubt whether such a 
goal will ever be realized. Therefore, the emphasis has shifted 
from being completely language independent and fully 
interchangeable to that of providing a specification whereby 
“contract negotiations” between parties developing these 
implementations is minimized. 

In the revised standard, the use of WSDL and SOAP has 
been removed, and associated WSDL files are no longer 
available. In addition, the binding strategy section of the 
standard has been rewritten to say, 

It is beyond the scope of this standard to define bindings for 
each implementation language. However, in the interest of 

interoperability, the standard provides the following 
guidance for services passing and returning data: 

• Component implementations should use native 
messages. 

• Object-oriented implementations should use objects. 

• Procedural implementations should use structures. 

• Other implementations should use XML entities 
defined by Part 28 schemas. 

The application and diagnostic reasoner programs may be 
written in different languages as long as the translation is 
handled transparently to the two programs, i.e., in the 
binding layer or lower. When publishing the interface, it is 
recommended that documentation of traceability of the 
elements of the interface to the services specified in the 
standard be provided. 

In spite of the weakening of expectation for AI-ESTATE 
implementations, the primary goals of the P1232 standard have 
been achieved—to incorporate domain specific terminology, to 
facilitate portability of diagnostic knowledge, and to enable 
consistent exchange and integration of diagnostic capabilities. 
Specifically, the information models themselves provide formal 
definitions of the domain specific terminology and promote 
semantically valid exchange of diagnostic knowledge. By using 
these models as the basis for defining the services, these 
models also enable exchange and integration of diagnostic 
capabilities providing a major starting point in negotiating the 
system interfaces for the diagnostic reasoners. 
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