
Standard Diagnostic Services for the ATS Framework

John W. Sheppard
Department of Computer Science

Montana State University
Bozeman, MT 59717

john.sheppard@cs.montana.edu

Stephyn G. W. Butcher, Patrick J. Donnelly
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218

steve.butcher@jhu.edu, donnell@cs.jhu.edu

Abstract—The US Navy has been supporting the demonstration
of several IEEE standards with the intent of implementing these
standards for future automatic test system procurement. In this
paper, we discuss the second phase of a demonstration focusing
on the IEEE P1232 AI-ESTATE standard. This standard
specifies exchange formats and service interfaces for diagnostic
reasoners. The first phase successfully demonstrated the ability to
exchange diagnostic models through semantically enriched XML
files. The second phase is focusing on the services and has been
implemented using a web-based, service-oriented architecture.
Here, we discuss implementation issues and preliminary results.

Keywords–AI-ESTATE, ATS framework, diagnostics, IEEE
standards, interoperability

I. INTRODUCTION
The Department of Defense (DoD) has established a

partnership between government, industry, and academia to
address architectural design and standardization issues for
Automatic Test Systems (ATS). The DoD ATS Framework
Working Group is focusing on defining an information
framework and identifying standards for next-generation ATS.
The principal requirement to be satisfied by the framework and
associated standards is to provide an open architecture for ATS
to reduce overall cost of development and ownership for
resulting families of standards and the ATS which employ
them. Based on work in the 1990s when the ATS Research and
Development Integrated Product Team defined a set of “critical
interfaces” for ATS, the current working group has been
selecting, supporting the development of, and demonstrating
commercial standards to be used in ATS with the intent of,
ultimately, implementing these standards in future ATS
procurement programs.

The Institute for Electrical and Electronics Engineers
(IEEE), through its Standards Coordinating Committee 20
(SCC20), is developing interface standards focusing on several
elements defined in the ATS Framework. One of these
standards—IEEE P1232 Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE)—has been
chosen for demonstration prior to mandate. Previously, we
presented the results of the first phase of the AI-ESTATE
demonstration, focusing on semantic interoperability of
diagnostic models to support the Diagnostic Data (DIAD)
element of the framework. The results of that demonstration
successfully showed the effectiveness of semantic modeling in
information exchange. In addition, the engineering burden

imposed by stronger semantic requirements was demonstrated
to be manageable.

In the second phase, the focus was on the Diagnostic
Services (DIAS) element, intended to support reasoner
interoperability. The AI-ESTATE standard accomplishes this
by specifying the implementation of semantically defined
software services in a service-oriented architecture. Here, we
present an overview of the semantic interoperability problem in
the context of diagnostic reasoning and forecast the results of
the second phase of the demonstration.

II. THE AI-ESTATE STANDARD
The AI-ESTATE standard has been under development

since the late 1980s and has undergone several significant
modifications and advances over the intervening 20 years. AI-
ESTATE is based upon a foundation of formal semantic
information models developed in the EXPRESS modeling
language [1]. Initially, the standard was published in three
parts:

• Architecture: The first part focused on a conceptual
view of a diagnostic reasoner in the context of an
abstract test environment [2]. This first standard
imposed requirements on the following two standards
rather than on any particular AI-ESTATE
implementation.

• Knowledge Exchange: The second part introduced the
first information models for diagnosis [3] and
incorporated a little-used member of the Standard for
the Exchange of Product model data (STEP) family for
file exchange—EXPRESS-I [4].

• Software Services: The third part used the syntax of the
EXPRESS information modeling language to specify
software services, focusing mostly on model access
services [5]. No specific implementation strategy was
either specified or assumed; however, a binding
strategy illustrated with the C programming language
was provided as guidance.

Subsequent to their publication, all three standards were
upgraded to full-use, and the revision process began.

During the revision of the standard, the DMC determined
that maintaining the standard would be simplified if the three
“components” were combined into a single document. In
addition, it was pointed out that the exchange format was not

The research described in this paper was supported by the US Navy,
NAVAIR PMA-260D.

particularly useful since it was never intended for file
exchange. Furthermore, the STEP community had already
specified a standard specifically for file exchange, known as
the “STEP physical file format” [6]. Thus, in 2002, a new
version of the standard was approved making these changes
[7].

The IEEE requires that all of their standards either be
reaffirmed, revised, or withdrawn every five years. Shortly
after publication of the 2002 version of AI-ESTATE, it was
discovered that a significant error was introduced into the
standard. Specifically, while the information models were
being updated, the specification for failure rate had been
deleted from the standard. At the time the error was discovered,
the DMC believed a simple “corrigendum” could be prepared
repairing the error.

As the process of preparing the corrigendum began, the
DMC also decided to explore incorporating an XML-based file
exchange into the standard. To accomplish this, the
corrigendum changed into an amendment, and the DMC
decided to develop a set of XML schemata for the models in
the standard [8],[9]. As the amendment proceeded, the DMC
determined that there were several places where the standard
could be improved, and the XML schemata should follow the
STEP specification for deriving XML from information models
[10]. AI-ESTATE now started a full revision process.

In the spring of 2009, the newly revised AI-ESTATE
standard was balloted [11]. That standard is now in the process
of being revised based on over 700 comments received. The
demonstration described in this paper has been developed in
parallel and has provided several additional “rogue comments”
for incorporation into the draft to be recirculated by the end of
the year.

III. SEMANTIC INTEROPERABILITY
As mentioned in the previous section, the fundamental

principle that underlies AI-ESTATE and the approach
developed to write the standard is that of providing a sound
semantic specification of the information to be exchanged with
a diagnostic reasoner. Within software, generally two
approaches exist to exchanging information: 1) through the
exchange of static files, and 2) through a set of software
services defined as an Application Program Interface (API).
AI-ESTATE provides specifications both for file exchange and
for software APIs. Although not stated explicitly, software-
based access to model elements could also be done through the
STEP Standard Data Access Interface (SDAI) [12].

Several previous papers have been published focusing on
the role of semantic models in addressing data exchange within
AI-ESTATE [13], supporting information integration [14], and
facilitating data mining [15]. In this paper, we focus on the role
of semantic interoperability in defining software services and
on the demonstration of the AI-ESTATE services. Within AI-
ESTATE, five information models were developed to support
model exchange. In addition, a sixth information model has
been developed—the dynamic context model (DCM)—that
defines the semantics of much of the information required
when performing diagnosis. In addition, a new information
model is under development as a result of the P1232 ballot that

defines a set of types for the information passed by way of the
services. We will discuss each of these two models here.

A. Dynamic Context Model
The AI-ESTATE standard describes the DCM as a model

used that “captures a record of the reasoning session that may
be used in any diagnostic context by an adequate abstraction of
widely used diagnostic principles. … The DCM data and
knowledge are developed during a diagnostic session, unlike
those of the [other AI-ESTATE models] (which consist of
static diagnostic data and knowledge.” As described, the DCM
represents only a history of the diagnostic session; however, the
semantics of the model do far more than that. First, the model
defines the concept of a diagnostic session. A session is a
container for everything that happens while a system is being
tested or monitored and while reasoning about test/monitor
information is going on. Thus, the session encapsulates the
entire diagnostic process.

While the session is used as a “container” for the
information captured during diagnosis, the key entity defined
within the DCM corresponds to a step in the diagnostic
process. The balloted version of AI-ESTATE defines a step as
follows:
ENTITY Step;
Name : OPTIONAL NameType;
actionsPerformed : LIST OF ActiveAction;
activeModels : SET [1:?] OF DiagnosticModel;
optimizedByCost : SET OF CostCategory;
optimizedByDistribution :

 ReliabilityDirected;
optimizedByUser : HypothesisDirected;
outcomesInferred : SET OF ActualOutcome;
outcomesObserved : SET OF ActualOutcome;
serviceLog : OPTIONAL LIST [1:?] OF

 ServiceState;
stepContext : OPTIONAL ContextState;
timeOccurred : OPTIONAL TimeStamp;
userHypothesis : OPTIONAL SET [1:?] OF

 ActualOutcome;
lifeCycleStatus : LIST [1:?] OF ActualUsage;

INVERSE
owningSession : Session FOR trace;

WHERE
modelsInSet :

 (SELF.activeModels <=
 SELF.owningSession.modelSet);
hypothesisWithUserDirected :

 (NOT(SELF.optimizedByUser) OR
 EXISTS(SELF.userHypothesis));
END_ENTITY;

To interpret, the step entity defines the main pieces of
information to be collected during diagnosis and includes
concepts such as the actions that are performed (including any
setup actions, adjustments or repairs, and especially tests), the
results of these actions (especially test results/outcomes), and
any inferences drawn as a result.

The step also provides the ability to specify how the
diagnostic reasoner should choose tests to perform, assuming
the reasoner has that capability. Specifically, the standard
assumes the reasoner as a default test choice capability. The
specifics of that capability are immaterial; it could follow a

static fault tree, perform a brute-force end-to-end test, or
optimize test selection based on information gain. Up to three
additional criteria can also be selected for optimization:

1. Cost-based optimization: Incorporate cost factors as
specified in an instance of the AI-ESTATE Common
Element Model (CEM) such as the time required to
perform a test or the skill level of the technician
performing the test.

2. Probability-based optimization: Incorporate
information on the prior probability of a diagnosis
incorporated into an instance of the CEM. Usually,
these priors are determined based on failure rate
information; however, the specific way the reasoner
determines priors is not specified.

3. Hypothesis-directed optimization: Incorporate
knowledge of an expert, a technician, or any other
“agent” that might be able to furnish a hypothesis to
the reasoner. The reasoner then redirects its test choice
process to focus on verifying or denying that
hypothesis.

The ability to optimize by any or all of these approaches has
been available to several diagnostic tools for at least 20 years,
one of which was co-developed in 1988 by the lead author
[16].

The AI-ESTATE standard does not specify how to use this
model except to require that a reasoner be able to export a fully
populated DCM using one of the two interchange formats.
These exported files can then be used by applications to record
the history of the session or support post mortem analysis of the
session to support trending or maturation of the models. In
addition, the DCM includes the ability to reference other
DCMs to enable reasoners with the ability to incorporate
historical information into the reasoning process to access that
historical information. Because of the formal information
model, these tools are able to use the exported information and
understand exactly what the information means.

It is possible that a reasoner can also use the DCM to
specify its internal representation of the state of diagnosis.
While such a use is neither required nor necessarily even
recommended, this use points out the richness of the model in
that it is more than just historical data. In fact, it is this potential
use that led to the word “dynamic” being incorporated into the
name. As diagnosis proceeds, information integrity is
maintained by mapping the information used to the DCM.

B. Service Interface Model
In addition to the DCM, the DMC is in the process of

developing a new information model to specify semantics of
the data being passed to and from the services. To explain this
model, we also need to explain the service specification itself.
In the balloted version of P1232, two classes of services were
specified—model management services and reasoner
manipulation services. The model management services were
intended to permit a client to create, get, put, and delete
elements in any of the AI-ESTATE models. The reasoner
manipulation services were intended to provide the primary
means of a client communicating with a diagnostic reasoner

during a diagnostic session. As a result of the P1232 ballot, the
model manipulation services are being deleted, leaving only
services for communicating with the reasoner.

We will describe a complete use case in the next section;
however, here we describe three of the services specified.
Diagnosis is a process of obtaining observations (e.g., test
results) and drawing conclusions about the target of diagnosis
based on those observations. Thus, three key services include
getting a recommendation for a test to perform
(recommendActions), reporting the results of that test to
the reasoner (applyActions), and asking that the reasoner
update its belief in the state of the target system
(updateState). These services are specified using the
syntax of EXPRESS as follows:
FUNCTION recommendActions(
maxNumber : OPTIONAL INTEGER;
levelsOfInterest : OPTIONAL SET [1:?] OF

 NameType;) :
LIST [1:?] OF ActionRecomendation;

END_FUNCTION;

PROCEDURE applyActions
(actions : LIST [1:?] OF ActualAction);

END_PROCEDURE;

PROCEDURE update_state;
END_PROCEDURE;

The recommendActions service has two optional
attributes that specify the maximum number of actions to return
as the levels of indenture of the target system for the analysis.
It returns a set of ActionRecommendation, which is a new
entity to be included in the new information model.
ENTITY ActionRecomendation;
actionNames : LIST [1:?] OF NameType;
actionDescriptions : LIST OF [1:?]

DescriptionType;
sequenceDescription : OPTIONAL

DescriptionType;
costCategories : LIST [0:?] OF NameType;
catDescriptions : LIST [0:?] OF

DescriptionType;
estimates: LIST [0:?] CostValue;
uppers : LIST [0:?] CostValue;
lowers : LIST [0:?] CostValue;
units : LIST [0:?] STRING;

END_ENTITY;

The applyActions service passes a list of
ActualAction, which is an entity also defined in the new
model.
ENTITY ActualAction;
actionName : NameType;
statusValue : OPTIONAL AssignedValue;
statusConfidence : OPTIONAL ConfidenceValue;
costLabels : OPTIONAL LIST [0:?] OF NameType;
costValues : OPTIONAL LIST [0:?] OF

CostValue;
END_ENTITY;

Thus, by including semantic definitions of the parameters and
return values, AI-ESTATE provides an additional layer of
semantic interoperability in the service specification as well.

IV. DEMONSTRATING AI-ESTATE SERVICES
 As discussed above, the revised AI-ESTATE standard

contains a set of model management and reasoner manipulation
services, intended to provide a well-defined, semantically valid
software interface for performing fault diagnosis. In addition,
the AI-ESTATE standard currently specifies these services
using the Web Service Description Language (WSDL), thus
enabling a web service-oriented implementation. 1

The primary objective of this phase of the demonstration
can be summarized as follows:

 Note that
using web services is only one of several ways the services
might be implemented; however, for purposes of this
demonstration, this is the approach we used.

To demonstrate the ability of IEEE Std 1232 (AI-ESTATE)
to ensure the interchangeability of diagnostic reasoners
through the definition of encapsulated services.

To this end, the focus of this demonstration was on the
implementation of the services specified in the current draft of
IEEE P1232. That clause specifies two classes of services—
model management services and reasoner manipulation
services. Since model management services are to be deleted
from the standard these were not implemented in the
demonstration. Instead, the focus was on reasoner manipulation
services since it is in this area where reasoner
interchangeability is realized.

1 Recently, the BRC decided to remove the WSDL specification from the
standard; however, the demonstration project proceeded with them since they
permitted a level of “net-centricity” to be demonstrated.

The basic structure implemented in this phase of the
demonstration is shown in Figure 1. Key to the demonstration
is the abstraction created by specifying the reasoner
manipulation services, thereby encapsulating the reasoner. In
particular, by specifying these services and the associated
communication protocol (in this case, the Simple Object
Access Protocol—SOAP), it should no longer matter how the
specific reasoner or reasoner type behind the interface has been
implemented. This was demonstrated by using two different
types of reasoners—a fault tree reasoner (to exemplify legacy
diagnostic systems) and a Bayesian reasoner (to exemplify
state-of-the-art diagnostic systems).

In a “confederation of services” architectural environment,
exactly what is a client and what is a server can get a bit hazy
when each actual application may be a provider of some
services (and thus a server) and a consumer of other services
(and thus a client). Even the diagnostic reasoner is a client of
other servers when called on service methods that end with
“FromLocation.” These indicate that the reasoner should
acquire the specified resource at the URL indicated.

However, the AI-ESTATE standard is only concerned with
a central client-server relationship—the one between the
application calling the reasoner manipulation service methods
(client) and the application responding to those service calls
(server). Note that the client need not be the ultimate consumer
of the services nor the responding server the actual producer of
the services. This ability to delegate and adapt permits legacy
and otherwise mismatched applications to be integrated into the
“confederation.”

We chose to implement the services in SOAP because this
is what the balloted standard suggested for web services. For
the producing application (server), the starting point was the
Bayesian reasoner from the Phase I demonstration. This

Figure 1. AI-ESTATE Phase II Demonstration Concept

application was largely implemented in Ruby, embedded in a
web application container and responded to custom API calls
via HTTP GET and POST. For Phase II, a standalone server
was created that could respond to the standard service calls via
SOAP and then delegate them to the reasoner into which it had
been embedded.

For the consuming application (client), a standalone server
was created from scratch that could both communicate via
SOAP with the reasoner and via XML-RPC with the actual end
client or GUI. This separation permitted information traveling
from the reasoner to the end user to be decorated with
additional information and for information traveling from the
end user to the reasoner to be stripped of such decorations.

Finally, in order to avoid multiple copies of models being
propagated throughout the system, a simple model server was
created that all applications needing the models could access. A
more complete implementation of the model server would
integrate with tools like those developed in Phase I for creating
and editing models.

V. A USE CASE
To illustrate the application of the standard reasoner,

imagine the diagnostic client resides on a test station at a
maintenance depot but two diagnostic reasoners are located on
possibly different servers at remote locations. The test station
has access to the internet or a closed intranet and is able to
communicate with these reasoners over the network. A unit
under test (UUT) is attached to the test station, and the
maintenance technician requests that a model be loaded for that
UUT. Once the model is loaded, testing begins.

Alternatively, one can imagine using different models and
reasoners depending on the type of testing going on. For
example, a technician could use the Bayesian model for the
initial fault diagnosis. Bayesian models provide an excellent
way to account for uncertainty in the test process and give
more robust information to a technician to determine the proper
course of action. Once the fault is isolated and the repair
completed, the unit must undergo a verification/recertification
test. Due to constraints typically imposed on the recertification
process, a “certified” fault tree could be used during
recertification. From a process point of view, the diagnostic
application would function the same in both cases, thus
simplifying training and use in the maintenance process.

With either scenario, at each step of testing, the tester
would request a test recommendation from the diagnostic
server. Upon receiving the recommendation, the tester would
run the corresponding test (if possible) and provide the results
back to the server. Based on the results of the test (which might
include an inability to perform that test), the diagnostic
hypothesis would be updated and returned. The process would
continue until either no more testing was required or the
technician determined the hypothesis was sufficient to take
action. At the end of the session, the technician would request
that the session be exported and associated with a Maintenance
Action Form (MAF) for the UUT.

Using this scenario, the following basic use case was
developed to identify the key services to be implemented. As

an interesting (and important) byproduct of the process of
developing the use case, several services were identified as
being “missing” from the standard. These services are in the
process of being incorporated into the version to be recirculated
for re-ballot. These missing services are discussed in the next
section.

Step 1–Reasoner discovery: The client needs to determine
what reasoners are available for diagnosis. This service has not
been standardized in P1232, so we will assume the client
knows the available reasoners at the start of the process.

Step 2–Model discovery: Similar to the first step, the client
needs to know what models are available for use by the
reasoner. Of particular importance is making sure the model
type matches the reasoner type. For example, if the reasoner
uses Bayesian inference, it would not make sense to send it a
fault tree.

Step 3–Start diagnostic process: As suggested, this is the
point at which a diagnostic session begins and the session
entity would be “instantiated” in the DCM. Of course, the
reasoner is free to instantiate the DCM at the end of a session,
but this step indicates a session entity is required. The defined
service is initializeDiagnosticProcess.

Step 4–Load model: Here a diagnostic model is loaded into
the reasoner. P1232 permits models to be loaded in one of two
ways—loadModel and loadModelFromLocation. The
former assumes the reasoner knows where the model is, and the
latter permits the client to direct the reasoner to the model
location. We implemented the latter service. At this point, the
identified model is “attached” to the session in the DCM.

Step 5–Activate model: Currently, P1232 permits multiple
models to be associated with a session. It is likely this will be
changed in the published standard; however, currently this
feature requires the desired model to be activated for use by the
reasoner. The associated service is setActiveModel, and
this has the effect of creating a step in the DCM and attaching
the activated model to that step.

Step 6–Set UUT Usage: For purposes of indexing into
associated failure distributions, the reasoner may need to know
how long it has been since the UUT was last serviced or since
the UUT was put into operation. The setUsage service
permits this information to be associated with the current step.
It is likely this information will be moved to the session entity.

Step 7–Set optimization: One of the underlying assumptions
the DCM made in writing the P1232 standard was the
diagnostic reasoners often provide the capability of optimizing
the test selection process. As discussed previously, three
different types of optimization have been defined in the
services. At this point, the desired optimization can be set using
one or more of the services optimizeByCostCriteria,
optimizeByDistribution, or optimizeByUser-
Hypothesis. It is assumed the client either has a complete
copy of the model or at least knows the important elements
contained in the model (such as available cost criteria or the set
of diagnoses).

Step 8–Set initial results: This step is not necessary but
often occurs in practice. The idea is to present the reasoner with

known information such as symptoms, Built-In Test (BIT)
results, etc. so that diagnosis can take this prior information
into account. At this point, two services would be applied in
sequence—applyActions (where the prior information is
supplied as a set of action or test results) and updateState
(where the reasoner is asked to draw inferences from the
supplied information). As a byproduct, inferences would be
associated with the current step in the DCM and a new step
would be appended to the end of the session trace.

Step 9–Enter main diagnosis loop: At this point, the
following process is repeated until such time as either the
reasoner or the client determines no further testing is required.
Specifically, three services are applied in sequence—
recommendActions–applyActions–updateState.
The latter two have the same effect as in Step 8 above. The
recommendActions service provides a list of one or more
actions or tests to perform with associated figures of merit. The
figures of merit permit the client to choose whether to perform
the actions, which actions to perform, and whether or not to
terminate.

Step 10–Provide results: Actually, this last step can be
performed at any point in the above sequence; however, at a
minimum it needs to be done at the end of the diagnostic
session. Here, the current hypothesis produced by the reasoner
is supplied to the client through getDiagnosticResults.

VI. ISSUES AND DEFICIENCIES
The DoD is placing more and more emphasis on net-

centricity in future ATS and maintenance system
procurements. Within the context of AI-ESTATE and
diagnostics, net-centricity can be achieved through different
approaches which can be broadly grouped into those that are
data-centered and procedure-centered. Data-centered
approaches generally fall under the category of RESTful
interfaces although their adherence to the principles of
representational state transfer (REST) can vary. REST centers
on resources and Uniform Resource Locators (URL) to
resources. In REST, the standard’s
startDiagnosticProcess would be mapped to
/myreasoner/session/create where the parameters
for the UUT and serial number of the actualRepairItem
are supplied as XML or query parameters. The call would
return a session identifier, which would be used in subsequent
API calls. For example to call recommendActions using
REST, one would access the recommended actions as a
resource on the reasoner using a URL such as
/myreasoner/123456/actions/list. The session id
has become part of the URL which identifies the resource for
this particular session. While the semantics of the standard
could be achieved using REST, the standard has an explicit
implementation bias towards procedure-centered approaches
because the services must have the same names as those in the
standard.

Procedure-centered approaches have a long history. The
Common Object Request Broker Architecture (CORBA) is one
of the oldest object-oriented remoting approaches. Remote
Method Invocation (RMI) fulfills a similar role in Java-based

solutions. For net-centric solutions, the oldest remote procedure
call (RPC) type of approach is the standard HTTP GET/POST.
This approach uses a URL and query parameters. Our
startDiagnosisProcess could be implemented in
HTTP GET/POST using a URL such as
/myreasoner/startDiagnosticProcess?uut=X&actual

RepairItem=Y.

Unlike REST, HTTP GET/POST services can also be formally
described in a WSDL. Another alternative is XML-RPC. In this
case, an XML document is sent describing the method to be
invoked and the parameters to that method on the remote server
by POSTing an XML document to a service URL. XML-RPC
eventually evolved into SOAP; however, XML-RPC is still
used today for those who find defining a SOAP service through
a WSDL to be “overkill.” One final alternative is to use SOAP
itself and one of its various encoding combinations including
“rpc” or “document” with “literal” or “encoded.” There is also
a format recommendation called “wrapped document literal.”
All of these formats have their good and bad points.

Although the standard services definition precludes some
implementations (REST), it lays the foundation for a simplified
process of coordination and integration when parties must
negotiate or use implementations. This process might be even
further enhanced by the presence of reference implementations;
however, SCC20 has historically taken a position against either
providing reference implementations or conformance test
suites.

Other than the various implementation issues and
alternatives, the process by which the services have been
implemented for demonstration served a very useful purpose.
Several items were found to be missing in the balloted standard
that would be of value (and even required), given common uses
of diagnostic applications. Two areas were such deficiencies
were found were with the management of resource availability
and the specification of optimization criteria.

The balloted standard includes a service that permits a
client to specify which resources (e.g., test instruments, power
sources, etc.) were available: setAvailableResources.
While the AI-ESTATE CEM includes information on
resources, the DCM does not capture what resources have been
identified as available. From the perspective of the service, the
DCM does not need to store this information; however, given
the DCM is supposed to capture a history of all information
relevant to the diagnostic process, omitting this information
was a serious oversight. As a result, the DCM has been
modified as part of the demonstration to capture this
information.

While the problem identified above illustrates a situation
where the DCM does not support a service, the second problem
illustrates the opposite situation—where no service exists to
support information in the DCM. Specifically, the balloted
version of the DCM defines four attributes of a step to support
the optimization process:

• Step.optimizedByCost

• Step.optimizedByUser

• Step.userHypothesis

• Step.optimizedByDistribution

Unfortunately, no corresponding reasoner manipulation
services were defined that enabled the client to set these
attributes. Technically, the model management services could
be used to set these values, except an approach was taken
where model management services worked with entity ids and
reasoner manipulation services worked with entity names. This
mismatch made it impossible to use the model management
services with the reasoner manipulation services to set the
optimization information. As a result, three services have been
added as a part of this demonstration to address this deficiency:

• optimizeByCostCriteria

• optimizeByDistribution

• optimizeByUserHypothesis

The purpose of the demonstration process was to provide a
way of “testing” a standard being considered by the DoD for
future mandate. The intent is to provide a proof-of-concept that
the standard works and will satisfy the DoD’s requirements.
But there is a more important benefit to the demonstration
process, especially when no de facto standard exists. The
demonstration process serves as a valuable tool for identifying
deficiencies/errors and testing alternatives, thus providing a
mechanism for producing an even more effective standard.

VII. CONCLUSION
In this paper, we discussed the role of information

modeling in the context of defining software services to ensure
semantic interoperability of elements in a test environment.
The focus of our discussion was the P1232 AI-ESTATE
standard since this standard used information models for this
very purpose. We also provided a high-level discussion of the
second phase of a demonstration project for the Navy where
the services specified in AI-ESTATE were implemented to
show interoperability characteristics.

Key conclusions to be drawn, both from the process by
which the standard was developed and from the demonstrations
performed are that semantic interoperability remains a “tricky”
issue. One of the main goals of the DMC was to define a
standard that would be independent of implementation
language and permit “plug-and-play” functionality of
diagnostic reasoners. Unfortunately, this goal has not been
realized fully, and there is considerable doubt whether such a
goal will ever be realized. Therefore, the emphasis has shifted
from being completely language independent and fully
interchangeable to that of providing a specification whereby
“contract negotiations” between parties developing these
implementations is minimized.

In the revised standard, the use of WSDL and SOAP has
been removed, and associated WSDL files are no longer
available. In addition, the binding strategy section of the
standard has been rewritten to say,

It is beyond the scope of this standard to define bindings for
each implementation language. However, in the interest of

interoperability, the standard provides the following
guidance for services passing and returning data:

• Component implementations should use native
messages.

• Object-oriented implementations should use objects.

• Procedural implementations should use structures.

• Other implementations should use XML entities
defined by Part 28 schemas.

The application and diagnostic reasoner programs may be
written in different languages as long as the translation is
handled transparently to the two programs, i.e., in the
binding layer or lower. When publishing the interface, it is
recommended that documentation of traceability of the
elements of the interface to the services specified in the
standard be provided.

In spite of the weakening of expectation for AI-ESTATE
implementations, the primary goals of the P1232 standard have
been achieved—to incorporate domain specific terminology, to
facilitate portability of diagnostic knowledge, and to enable
consistent exchange and integration of diagnostic capabilities.
Specifically, the information models themselves provide formal
definitions of the domain specific terminology and promote
semantically valid exchange of diagnostic knowledge. By using
these models as the basis for defining the services, these
models also enable exchange and integration of diagnostic
capabilities providing a major starting point in negotiating the
system interfaces for the diagnostic reasoners.

ACKNOWLEDGMENT
We thank the members of the ATS Framework Working

Group and the members of the IEEE SCC20 DMC for their
constant vigilance in the creation and demonstration of several
IEEE standards. We appreciate their comments on the
standards and their support through the completion of this
demonstration. In particular, we thank Alicia Helton, Oscar
Fandino, Darryl Busch, Tim Wilmering, Mike Malesich, and
Jennifer Fetherman.

REFERENCES
[1] ISO 10303-11:1994, Industrial Automation Systems and Integration—

Product Data Representation and Exchange—Part 11: Description
Methods: The EXPRESS Language Reference Manual, Geneva,
Switzerland: The International Organization for Standardization, 1994

[2] IEEE Std 1232-1995, IEEE Trial-Use Standard for Artificial
Intelligence Exchange and Service Tie to All Test Environments (AI-
ESTATE): Overview and Architecture, Piscataway, NJ: IEEE Standards
Press, 1995.

[3] IEEE Std 1232-1997, IEEE Trial Use Standard for Artificial Intelligence
Exchange and Service Tie to All Test Environments (AI-ESTATE): Data
and Knowledge Specification, Piscataway, NJ: IEEE Standards Press,
1997.

[4] ISO/TR 10303-12:1997, Industrial Automation Systems and
Integration—Product Data Representation and Exchange—Part 12:
Description Methods: The EXPRESS-I Language Reference Manual,
Geneva, Switzerland: The International Organization for
Standardization, 1997.

[5] IEEE Std 1232-1998, IEEE Trial Use Standard for Artificial Intelligence
Exchange and Service Tie to All Test Environments (AI-ESTATE):
Service Specification, Picataway, NJ: IEEE Standards Press, 1998.

[6] ISO 10303-21:1994, Industrial Automation Systems and Integration—
Product Data Representation and Exchange—Part 21: Implementation
Method: Clear Text Encoding of the Exchange Structure, Geneva,
Switzerland: The International Organization for Standardization, 1994.

[7] IEEE Std 1232-2002, IEEE Standard for Artificial Intelligence
Exchange and Service Tie to All Test Environments (AI-ESTATE):
Overview and Architecture, Piscataway, NJ: IEEE Standards
Association Press, 1995.

[8] eXtensible Markup Language (XML) Schema Part 1: Structures, Second
Edition. W3C Recommendation 28 October 2004. Available from World
Wide Web.

[9] XML Schema Part 2: Datatypes, Second Edition. W3C
Recommendation, 28 October 2004. Available from World Wide Web.

[10] ISO 10303-28:2007, Industrial Automation Systems and Integration—
Product Data Representation and Exchange—Part 28: Implementation
Methods: XML Representation of EXPRESS Schemas and Data Using
XML Schemas, Geneva, Switzerland: The International Organization for
Standardization, 2007.

[11] IEEE P1232, IEEE Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE), Draft 4, Piscataway,
NJ: IEEE Standards Association Press, 2009.

[12] ISO 10303-22:1998, Industrial Automation Systems and Integration—
Product Data Representation and Exchange—Part 22: Implementation
Methods: Standard Data Access Interface Specification, Geneva,
Switzerland: The International Organization for Standardization, 1998.

[13] John W. Sheppard, Stephyn G. W. Butcher, Patrick J. Donnelly, and
Benjamin R. Mitchell, “Demonstrating Semantic Interoperability of
Diagnostic Models via AI-ESTATE,” Proceedings of the IEEE IEEE
Aerospace Conference, Big Sky, MT, March 2009.

[14] Timothy J. Wilmering, “Semantic Requirements on Information
Integration for Diagnostic Maturation,” IEEE AUTOTESTCON 2001
Conference Record, Valley Forge, PA, September 2001.

[15] Timothy J. Wilmering and John W. Sheppard, “Ontologies for Data
Mining and Knowledge Discovery to Support Diagnostic Maturation,”
Proceedings of the 18th International Workshop on Principles of
Diagnosis (DX-07), Nashville, TN, May 2007.

[16] William R. Simpson, John W. Sheppard, and C. Richard Unkle,
“POINTER—An Intelligent Maintenance Assistant,” IEEE
AUTOTESTCON '89 Conference Record, Philadelphia, PA, September
1989.

	Introduction
	The AI-ESTATE Standard
	Semantic Interoperability
	Dynamic Context Model
	Service Interface Model

	Demonstrating AI-ESTATE Services
	A Use Case
	Issues and Deficiencies
	Conclusion
	Acknowledgment
	References

