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Abstract—As part of a project to examine how current
standards focused on test and diagnosis might be extended to
address requirements for prognostics and health management,
we have been exploring alternatives for incorporating facilities
to represent gray-scale health information in the IEEE Std 1232
Standard for Artificial Intelligence Exchange and Service Tie to
All Test Environments (AI-ESTATE). In this work, we extend the
AI-ESTATE Common Element Model to provide “soft outcomes”
on tests and diagnoses. We then demonstrate how to use these soft
outcomes with the AI-ESTATE Fault Tree Model to implement
a “fuzzy” fault tree. The resulting model then enables isolating
faults within a system such that levels of degradation can also
be tracked. In this paper, we describe the proposed extensions to
AI-ESTATE as well as how those extensions work to implement
a fuzzy fault tree using the demonstration circuit from previous
Automatic Test Markup Language (ATML) demonstrations.

I. INTRODUCTION

Current standards for prognostics and health management
(PHM) are mostly based upon providing a basic framework for
managing applications to be used in a diagnostic environment
and to support off-line analysis of performance and historical
data in a prognostic context. Since its publication in 2010, we
have been examining methods for extending the IEEE 1232-
2010 Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE) standard [1] to incorporate
elements supporting gray-scale health information with the
intent of increasing the ability to provide a standards-based
approach to performing on-line prognostic analysis. This paper
evaluates the ability of these proposed changes to support gray-
scale health by exploring a concrete model containing uncer-
tainty using a fuzzy fault tree. Prior to publishing AI-ESTATE,
we demonstrated the ability of that standard to support interop-
erable exchange of diagnostic data and seamless integration of
diagnostic applications in a larger test environment. As part of
this work, we encoded a Fault Tree Model of the AI-ESTATE
Demonstration Phase II from AUTOTESTCON 2009 [2].

In a traditional fault tree, as specified by AI-ESTATE, each
test returns a single outcome (usually either pass or fail)
and that outcome determines a single branch to follow in
the tree. The result of applying this outcome might be to
perform another test or, at the leaves of the tree, to identify
a diagnosis. Given the specific results of the tests, only a
single path of the fault tree would be analyzed. Fuzzy fault
trees, also known as soft decision trees, provide a method

to encode uncertainty in the diagnostic process. This often
requires analyzing multiple branches of the fault tree but
yields a set of possible diagnoses, each with an individual
degree of membership in the associated candidate set. Each
test in the fault tree is assigned a membership function. These
membership functions map a given continuous value to a level
of membership. The value of the resulting test is assigned to
one or more linguistic variables, corresponding a state of the
test with the associated membership value. In practice, the
diagnostic reasoner could ignore or prune certain branches of
the tree if the membership values do not reach a predefined
threshold. The defuzzified value for each candidate diagnosis
can be utilized as a degree of failure (i.e., gray-scale health)
for each fault in the model.

In this paper, we demonstrate our proposed extensions
to AI-ESTATE by adapting the fault tree of the ATML
demonstration circuit as a fuzzy fault tree. This adaptation
incorporates fuzzy sets in the model and applies the proposed
extensions to AI-ESTATE necessary to represent degree of
failure. Specifically, this paper extends the ATML model to
represent gray-scale health, evaluates the model with a fuzzy
fault tree, demonstrates a common defuzzification technique,
and finally, evaluates the ability of our proposed extensions to
AI-ESTATE to support PHM.

II. BACKGROUND

A. Fault Trees

The diagnostic process can be defined as a fault isolation
procedure that uses information from system observations and
tests [3]. More specifically, traditional fault diagnosis is often
regarded as a process whereby an ambiguity group is refined
successively based on performing tests. This view can be
described in the context of set theory whereby an ambiguity
group corresponds to the set of candidate diagnoses consistent
with some set of test results. Thus a final diagnosis consists
of the intersection of the sets consistent with each individual
test outcome.

Fault tree based tools have existed since the 1970s [2], and
fault trees are one of the most common ways to formalize a
fault isolation procedure, as described above [3]. Formally, we
define a fault tree as a graph FT = (V,E) as follows.
• Let (w, v) ∈ E be some edge in FT .
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• Given edge (w, v) ∈ E, let Pa(v) = w denote the unique
parent of v in FT . In other words, any v ∈ V can have
at most one parent.

• Let r ∈ V denote the unique vertex in V such that
Pa(r) = NIL. We call this the root of FT .

• For any v ∈ V and fault universe F , Let τv(u) be a
function

τ : V → A

where A ⊆ F , corresponds to the result of performing
a test on some object u in our universe of discourse
U . In other words, u corresponds to our unit under test
(UUT), and τv(u) returns the ambiguity group A ⊆ F
corresponding to the result of performing test τv on our
UUT.

• Let TFT
v (u) = τv(u) ∩ TFT

Pa(v)(u), where TFT
Pa(r)(u) = F .

Given this definition, we can think of a path through the
fault tree as a sequence of intersection operations applied to
the various ambiguity groups as a result of performing the
corresponding tests along that sequence.

Thus a fault tree is a specific type of decision tree, wherein
the interior nodes indicate specific tests to be run during the
fault isolation procedure, and each possible outcome of a
particular node’s test becomes a branch of that node that points
to further tests or to the final diagnoses at the leaves [4]. Each
path from the root to the leaves represents a sequence of tests
to reach a diagnosis, and thus a fault tree attempts to model
the relevant test sequences, often optimized by some set of
criteria [5]. The AI-ESTATE Fault Tree Model was specified to
support this type of diagnostic decision tree but also includes
the ability to associate intermediate diagnoses in interior nodes
of the tree and to associate confidence information with tests
and diagnoses [1].

Typically, when building a fault tree, the fault isolation
procedure uses the information gain of successive tests to
reduce the ambiguity of a diagnosis [5]. But what if there
is uncertainty associated with test outcomes themselves? Fur-
thermore, what if the actual failure state of a UUT corresponds
to a level of degradation rather than a hard failure? With the
traditional fault tree, the outcome of a particular test on an
interior node determines the branch to follow, and the leaves
of the fault tree identify hard faults. One way to relax these
assumptions in the fault tree is to associate grades of fuzziness
with the different outcomes of the tests. Fuzzy logic can then
be used to evaluate the degree of failure associated with each
possible diagnosis at the leaves of the tree. We refer to this
degree of failure as a gray-scale health assessment of the
associated diagnosis.

B. Fuzzy Sets

Fuzzy set theory enables a form of approximate reasoning
[6], in which the membership functions associated with sets
in a domain of discourse U are extended to permit a degree of
membership. Specifically, in traditional crisp set theory, we say
some object u ∈ U either belongs to a set A or does not belong
in set A. This can be represented as µA(u) = 1 or µA(u) = 0

respectively. Thus, in crisp set theory, a membership function
is defined as

µA : U → {0, 1}.

Fuzzy sets, on the other hand, permit a degree of membership,
given by

µA : U → [0, 1]

where µA(u) = 1 and µA(u) = 0 correspond to the crisp
limits of the fuzzy sets, but 0 < µA(u) < 1 can also occur.

This idea can be extended to combining fuzzy sets by re-
placing the consistency constraint to utilize the fuzzy member-
ship functions. To do this, we need to define the corresponding
fuzzy set operators. Of particular interest to us here is fuzzy
intersection; however, definitions for all fuzzy set operators
exist. Specifically, one definition for fuzzy intersection (also
known as the t-norm) corresponds to

µA∩B(u) = min{µA(u), µB(u)}.

and another (which is used in fuzzy diagnostics) corresponds
to

µA∩B(u) = µA(u)× µB(u).

The introduction of fuzzy rules allows reasoning about these
membership values while managing the uncertainty associated
with real-valued set membership.

C. Fuzzy Fault Trees

Fuzzy set theory and fuzzy logic have previously been ex-
tended to decision trees to manage the uncertainty of following
particular paths through the tree. The general fuzzy decision
tree consists of interior nodes for branching on a set of possible
outcomes, as before, but now each of the outcomes are possible
with varying degrees of truth. The fuzziness associated with
different outcomes are defined by the user, while the final
set memberships are evaluated at the leaves, representing the
various sets (i.e., diagnoses) [7].

More formally, given our definition of a fault tree above,
we replace our test function τv(u) with membership function
µv(u). Then the basic process is similar to that above whereby
we maintain a running t-norm along the paths of the tree.
Note that this process is complicated by the fact we may
need to consider multiple paths. The resulting membership
value in the candidate set for each fault must be determined
by “defuzzifying” the resulting subsets. Several approaches
exist for defuzzification; however, the one we used in our
demonstration is the “center of area” method. This can be
done as follows. Assume we are defuzzifying the candidate
status for some fault f ∈ F after applying our fuzzy fault tree
FT . Then the defuzzified value for f , zcoa(f), is computed as

zCOA(f) =

∫
f
µFT (f) · I(f) df∫
f
µFT (f) df

where µFT (f) is the result of combining the running t-norms
along the paths in the fault tree for fault f , and I(f) acts in
the numerator as an indicator function to limit the integral to
the results consistent with fault f alone.



The fault tree and associated fuzzy membership functions
can be hand-built by a domain expert based on the uncertainty
associated with particular tests and on the accuracy and
sensitivity of the instruments used for the test. Alternatively,
the fuzzy membership functions can be derived from the
data, as in [8], which calculates the membership values based
on fuzzy entropy measures. Also, data-driven techniques for
programmatically constructing fuzzy decision trees can be
found in [9], [10], [11]. An application of a fuzzy fault tree,
specifically, can be found in [7].

D. AI-ESTATE

Since approximately 1989, the IEEE has been developing
the AI-ESTATE standard with the intent of providing the
means for exchanging diagnostic models and defining a stan-
dard application programming interface (API) for interacting
with a diagnostic reasoner. The most recent version of AI-
ESTATE, IEEE Std 1232-2010 [1], accomplishes this by
specifying four semantic models, defined in the EXPRESS
information modeling language [12], for fault diagnosis based
on fault trees, D-matrices, logic models, and Bayesian net-
works. The Extensible Markup Language (XML) schemata
have been derived from these semantic models conformant to
the Standards for the Exchange of Product model data (STEP)
from the International Organization for Standardization (ISO)
[13]. In addition, several standard services have been defined
to enable a test or diagnostic application to interact with a
diagnostic reasoner in a standard way. While it is expected
that the reasoner would most likely process one of the AI-
ESTATE models, this is not a requirement of the standard. The
effectiveness of AI-ESTATE in model exchange and reasoner
interoperability was demonstrated in 2008 [14] and 2009 [2]
respectively.

E. ATML

The goal of the Automatic Test Markup Language (ATML)
family of standards (IEEE Std 1671) [15] is to define a
collection of XML-based schemata that allows Automatic
Test Systems (ATS) and test information to be exchanged
in a common format adhering to the XML standard [16].
The 2008 and 2009 demonstrations focused on exchanging
XML-based ATS information using the IEEE ATML and AI-
ESTATE standards. For these demonstrations, a simple low
frequency analog UUT was designed to facilitate both testing
and diagnostics [2]. A circuit schematic of the designed UUT
for the second phase of this demonstration is shown in Fig. 1.

The UUT consists of seven resistors, five capacitors, and a
transistor. In addition, three digital components were added in
Phase II to increase the complexity of the demonstration unit.
The tests are defined as follows:

• VCC resistance (i.e., continuity) test
• AC voltage test at VO
• AC voltage test at VC
• Test for high DC voltage at VC
• Test for low DC voltage at VC

• Test for high DC voltage at VE
• Test for low DC voltage at VE
• Test for high DC voltage at VB
• Test for low DC voltage at VB
• Test for Gain Control
• Test for Output Control

For purposes of creating our fuzzy fault tree, we consider
the following fifteen failure modes:

• Resistor 1 - Open (R1.OP)
• Resistor 2 - Open (R2.OP)
• Resistor 3 - Open (R3.OP)
• Resistor 4 - Open (R4.OP)
• Capacitor 1 - Open (C1.OP)
• Capacitor 2 - Open (C2.OP)
• Capacitor 3 - Short (C3.SR)
• Transistor 1 - Open at Collector (Q1.C.OP)
• Transistor 1 - Short at Collector (Q1.C.SR)
• Transistor 1 - Open at Base (Q1.B.OP)
• Transistor 1 - Open at Emitter (Q1.E.OP)
• Transistor 1 - Base–Emitter Short (Q1.BE.SR)
• Transistor 1 - Base–Collector Short (Q1.BC.SR)
• Gain Control Failure
• Output Control Failure

III. A PROPOSED EXTENSION TO AI-ESTATE

One of the limitations facing AI-ESTATE is the current
inability to represent gray-scale health information. Presently,
the standard limits states of tests, actions, and diagnoses to
have discrete outcomes. The inclusion of gray-scale health
information would provide a means to “roll up” failure pro-
gression to higher levels in the system hierarchy, while still
supporting reasoning about the current state of degradation
and projecting future failure conditions. By incorporating
gray-scale health information, the standard would relax the
outcome-based approach to diagnosis to support health esti-
mation based on real-valued or soft test results. The approach
described in this paper would support legacy and future
diagnostics by having discrete outcomes as a special case
while simultaneously being extensible to support requirements
for PHM.

We propose that gray-scale health information be repre-
sented in the AI-ESTATE standard using a set of soft outcomes
that use a basis function or a mixture of several basis functions
to determine underlying health state in the presence of uncer-
tainty. This general approach would allow interoperability of
the standard utilizing a variety of specific implementations,
such as fuzzy logic, artificial neural networks, mixtures of
Gaussians, Bayesian networks with continuous random vari-
ables, or, as illustrated in this paper, fuzzy fault trees.

A. Soft Outcomes

To include gray-scale health information in AI-ESTATE,
the majority of the proposed changes would be limited to the



Fig. 1. ATML Phase II Demonstration UUT circuit diagram.

Common Element Model (CEM). Currently the standard re-
stricts outcomes to discrete outcomes (e.g., GOOD, BAD, and
CANDIDATE for diagnoses; PASS, FAIL, and UNKNOWN
for tests). The abstract entity Outcome contains the attribute
allowedValue that represents a single discrete value associated
with the specific outcome based on the subtype instantiating
the Outcome entity.

Our proposed changes to allow gray-scale health informa-
tion would require modification of the allowedValue attribute
of the Outcome entity (Fig. 2). Specifically, we propose
redefining allowedValue to utilize a new SELECT type—
CrispSoft—that serves as a selector of the type the outcome

value is to be. This allows the Outcome to instantiate either
the current implementation of a single discrete OutcomeValue
attribute or alternately instantiate a new SoftOutcomeValue
that represents individual possible gray-scale outcomes. The
SoftOutcomeValue entity permits an Outcome to specify mem-
bership in one or more possible SoftOutcomeValues, each
with a linguistic variable name. An associated degree of
membership would be recorded at test time.

The new entity SoftOutcomeValue contains two attributes.
Attribute “name” of type NameType represents the linguistic
label assigned to the soft outcome, such as Failed, Degraded,
or Good. The names of these linguistic variables could be



Fig. 2. Suggested modifications to the AI-ESTATE Common Element Model.

left to be defined entirely by a specific implementation or
could be defined within the standard. The second attribute,
“membershipFunction,” is defined using the BasisFunction
SELECT type. This SELECT type associates a particular
SoftOutcomeValue with a single basis function entity that
models how the soft outcome’s value associated with that
linguistic variable will be determined at test time. Essentially,
this function bounds the associated degree of uncertainty.

In the present standard, the Outcome entity contains the
optional attribute maxConfidence, which is of type Confidence.
The semantics for this attribute were defined relative to the
original crisp outcome. Consequently, given the potential
ambiguity that might arise from incorporating a ”maximum
confidence” with a soft outcome when the shape of the basis
function determines this property, we propose adding a rule to
the standard whereby, if the type of the outcome is soft, then
this attribute would not be instantiated. Thus, for purposes of
our discussion here, the maxConfidence attribute is not used.

Since actually modeling Outcomes occurs at the subtype
level, soft outcomes would be inherited down to all imple-
menting subtypes. This would include the DiagnosisOutcome,
permitting flexible representation of gray-scale health infor-
mation. Additionally, TestOutcome and ActionOutcome would
also inherit this ability to represent soft outcomes, permitting

the potential to handle the continuous representation of test
measurements. Note that the proposed modification would
permit outcome types to be “mixed and matched” as needed
by the end model.

B. Basis Functions

As described above, the SoftOutcomeValue entity contains
a SELECT type that associates the SoftOutcomeValue with a
single basis function. Each basis function contains common
attributes that define its individual shape. For example, a
triangular basis function requires a list of two angles and the
length of the base. A Gaussian basis function, on the other
hand, requires the mean and standard deviation of the function.
The Other entity is a placeholder to demonstrate that any
number of other common basis functions (e.g., a sigmoidal
or sinusoidal function) could be included to reflect the ability
of this approach to extend to a specific target application.

Including a variety of common basis functions permits
flexibility to any specific implementation using gray-scale soft
outcomes. For instance, triangular and trapezoidal functions
are common membership functions in a fuzzy logic system,
while the hard limiter, linear threshold, and logistic functions
are common activation functions used in neural networks.
Additionally, a mixture of Gaussian functions could be used



Fig. 3. Fault tree for the ATML circuit.

in the implementation of a Bayesian network with continuous
random variables.

While the standard should include a number of general com-
mon basis functions, an additional user-defined basis function
should be included to permit flexibility to any implementation
incorporating gray-scale health, replacing the Other entity
in the model. The specification of this user-defined basis
function is to be determined based on feedback from the
standards committee, but including such an entity would then
permit users of AI-ESTATE to apply the standard extension
mechanism to incorporate whatever basis function they need.

IV. A FUZZY FAULT TREE FOR THE ATML UUT

To illustrate the utility of our proposed extensions to AI-
ESTATE to support gray-scale health, we have encoded a
concrete example. Beginning with the fault tree from the
ATML demonstration discussed in Section II-E, we have
created a fuzzy fault tree (Fig. 3) of the ATML UUT. The
underlying assumption in building this tree (which may or
may not be valid) is that the degree of membership associated
with a test result arises due to that test detecting a possible
level of degradation in the UUT.

Three of the tests being applied to this circuit have three
possible test outcomes: Pass, Fail Low, and Fail High. In
the crisp version of the ATML fault tree each of these
is represented as two separate tests, each with the binary
outcomes of Pass or Fail. One test asks if the test fails low or
passes while the other asks if the test fails high or passes. In the
fuzzy fault tree, however, these tests are represented with three
possible outcomes. Each of these outcomes is represented by
a trapezoidal membership function with overlapping areas of
uncertainty. Fig. 4(a) shows an example trapezoidal function
for the VB DC Voltage Test.

As an example of gray-scale health being derived from a
fuzzy fault tree, suppose we perform the tests and get the
results as shown in Table I. The result of each test shown in
the Value column determines the corresponding membership
value for each respective test outcome shown in the Outcome
column. The first four tests have a membership value of
1 to the outcome shown, while the final test has non-zero
membership value to the two outcomes shown. Notice that
this list of tests follows a distinct path through the fault tree
in Fig. 3. In this example, the first test, VCC Resistance Test,
passes while the next test, VO AC Voltage Test, fails. The



(a) Membership function for Test Vb DC Voltage.

(b) Membership function for Diagnosis R2-OP

Fig. 4. Examples of fuzzy membership functions for a Test (a) and a
Diagnosis (b).

third test, VC DC Voltage, fails low leading to the fourth
test, VE DC Voltage, which fails high. Now consider the final
test, VB DC Voltage. If VB DC Voltage yields a value of
1.21 V, this value resides in the overlapping region between
the membership functions of Pass and Fail High. Using the
common defuzzification technique of “center of area” (COA)
as described above, this results in two paths, each with a
different level of uncertainty as shown in Table II.

Given the potential modifications to AI-ESTATE discussed
in Section III, it would be possible to represent this fuzzy fault
tree using the standard. For example, the VB DC Voltage Test
would have three associated TestOutcomes: Pass, Fail Low,
and Fail High. The TestOutcomes would use the new CrispSoft
SELECT type to store a SoftOutcomeValue instead of the
single OutcomeValue currently prescribed in the standard.
Each TestOutcome would store its membership function. In
this example, these are the trapezoidal membership functions,
such as the one shown in Fig. 4(a). Likewise, the Diagnosis
associated with Resistor 2 failing open (R2-OP) would have
two associated DiagnosisOutcomes: Candidate and Not Can-
didate, each storing a SoftOutcomeValue that represents its
membership function (Fig. 4(b)).

During the diagnostic reasoning process, using the Dynamic

Test Value Outcome (Membership value)
VCC Resistance Test 12.5 KΩ Pass (1)
VO AC Voltage Test 0.85 V Fail (1)
VC DC Voltage Test 4.5 V Fail Low (1)
VE DC Voltage Test 0.6 V Fail High (1)
VB DC Voltage Test 1.21 V {Pass (0.25), Fail High (0.75)}

TABLE I
VALUES OF THE TESTS. OUTCOMES WITH MEMBERSHIP VALUES OF ZERO

ARE NOT SHOWN.

Diagnosis Value
R2.OP 0.72
Q1.BC.SR 0.72
Q1.C.SR 0.66

TABLE II
AMBIGUITY GROUP SHOWING CANDIDATE DIAGNOSES USING COA

DEFUZZIFICATION.

Context Model (DCM), the VB DC Voltage Test, when applied,
would result in an ActualOutcome for each of its outcomes.
This is different from a standard fault tree in that we need
to record the associated membership values for both Pass
and Fail High. The current Step in the DCM then stores
the set of ActualOutcomes in its attribute, outcomesObserved,
and these ActualOutcomes point to the corresponding soft
TestOutcomes with their associated membership functions.
The ActualOutcome also stores the corresponding membership
values in the confidence attribute.

Given the information stored in the ActualOutcome entity,
the user can apply any defuzzification technique desired.
We show the defuzzified values using the “center of area”
technique in Table II. This represents the gray-scale health
corresponding to the diagnosis. Within the DCM, diagnosis
outcomes are stored at each step using the outcomesInferred
attributes, which is also of type ActualOutcome. The process
is identical to the way test outcomes are captured. Thus, these
defuzzified values would be stored as the confidence attribute
in the ActualOutcome.

V. CONCLUSION

In this paper, we proposed modifications to AI-ESTATE to
extend the ability of the standard to represent gray-scale health.
Furthermore, we have translated the ATML fault tree into a
fuzzy fault tree containing gray-scale uncertainty. Lastly, we
have demonstrated the ability of our proposed extensions to
AI-ESTATE to represent this gray-scale uncertainty.

As future work, we will focus on evaluating the ability
our proposed changes to the standard to represent uncertainty
in the other models supported by AI-ESTATE. These include
continuous state approximations of Bayesian networks, fuzzy
Bayesian networks [17], and fuzzy D-matrices.

By way of a disclaimer, in any standardization effort,
requirements are brought before a standards development
organization, such as the IEEE, from which either new stan-
dards are developed or existing standards are revised. For
standardization efforts to be successful, existing applications



should drive the requirements, rather than standards require-
ments drive the applications. Currently, considerable work is
being performed in developing new applications for PHM.
These applications are demonstrating the need for diagnostic
standards to incorporate capabilities such as the ones presented
here. The purpose of this paper is not to propose a need
for standardizing on fuzzy fault trees for PHM. Rather, the
purpose is to propose general extensions to AI-ESTATE to
support PHM requirements while using the fuzzy fault tree as
an example of how these extensions might be used.
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