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Abstract—Today’s diagnostic systems can generate a large
amount data. Data from sources such as onboard reasoners and
historical maintenance data are often stored in heterogeneous
systems and cannot be collected immediately and aggregated
for use. In our previous work we described a software visu-
alization tool that allowed integration of different data sources
and displayed the data with elements organized according to
maintenance-oriented ontologies. This tool allows users to search
quickly through available data to locate interesting relationships
in the sequences of maintenance events. Additional previous work
described a diagnostic maturation tool, called ModelMat, that
updates causal relationships in a Timed Failure Propagation
Graph based on historical diagnostic session data. In this paper,
we present an update to both of these projects discussing
enhancements to each as well as work in progress to create
a single, integrated toolset, called Bobcat, to support ontology-
guided diagnostic knowledge discovery.

I. INTRODUCTION

Modern diagnostic systems can generate an overwhelming
amount of data. For example, many onboard systems record
not only test or alarm outcomes and diagnostic results, but
also environmental variables, such as temperature, location,
and date. In addition, a large amount of data is generated from
maintenance events, including information from automatic
test equipment (ATE) and maintenance/repair actions taken
in response to fault isolation. While in theory this data can
be used for knowledge discovery, the actual task of mining
the data is non-trivial because the data is distributed across
multiple heterogeneous systems [1]. Even after the data is
collected, determining what parts of the data are correlated
can be challenging. There is the added burden on the user
to consider the results of analysis and locate interesting or
relevant information. All of these issues highlight the need for
a software tool that allows the users to first take data from
various sources and aggregate them together in an intelligent
way and then enables the users to inspect, analyze, and assess
whatever new knowledge has been discovered.

One method that has been proposed to combine data from
heterogeneous systems is to use domain ontologies as an
“information integrator.” Ontologies allow one to associate the
semantics of the data across the different data sources. The
result is that, from a user’s perspective, all of the data looks
like a single unified data source containing all of the relevant
information within that domain [2]. In prior work, Wilmering
and Sheppard proposed a method that used ontologies to focus

and filter data that would then be used in the knowledge
discovery process. In that work, the authors showed how
ontologies could be used to guide the process of maturing
diagnostic models. Furthermore, the authors proposed using
a method such as the Apriori algorithm [3] to discover new
relationships within historical maintenance data that could then
be used in diagnostic model maturation [2].

We extended Wilmering and Sheppard’s work by mapping
diagnostic models and historical diagnostic session data to
two ontologies derived from IEEE Standards [4]. In that
paper, we mapped the diagnostic reasoner information to the
IEEE Std 1232 Standard for Artificial Intelligence Exchange
and Service Tie to All Test Environments (AI-ESTATE) [5]
and the maintenance history to IEEE Std 1636.2 Software
Interface for Maintenance Information Collection and Anal-
ysis (SIMICA): Maintenance Action Information (MAI) [6].
We redefined these IEEE models, which were standardized
using the EXPRESS language [7], using the Web Ontology
Language (OWL) [8]. The main focus of that paper focused
on the role ontologies can play in diagnostic model maturation.

Another extension of Wilmering and Sheppard’s work in-
volved the use of ontologies in knowledge discovery by
visualizing aircraft maintenance data in a meaningful way
[9]. In that paper, a visualization tool was presented that
takes transactional records detailing each maintenance event
that occurred at ground-based maintenance facilities. The
tool converts the transactional records into a ontology-based
instance graph using the IEEE Std 1636.2. Users can query
a database to filter the information, and the tool displays a
chronological sequence of maintenance events. The software
allows users to click on each maintenance event, which then
displays the ontology-based graph of the event.

In this paper, we present the results of our work integrating
updated versions of the visualization tool software presented
in our previous work, called Event Grapher Gold (EGG) [9]
and the model maturation tool, ModelMat [10]. Previously,
the EGG software only supported the visualization of data
obtained from ground-based maintenance events. EGG now
supports displaying sequences of onboard monitoring data
conforming to the ontology derived from SIMICA Test Results
(IEEE Std 1636.1-2007) [11]. In addition, the software now
supports the ability to export data, formatted according to the
underlying ontologies, that can be used in knowledge discov-
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ery algorithms. Finally, there have been several performance
upgrades that allows the software to run more smoothly.

Similarly, the ModelMat tool has been updated to incor-
porate maturing sequence-based relationships, as would be
required by a Timed Failure Propagation Graph [12]. In
addition, to facilitate integration with EGG, ModelMat was
rewritten in Java with several optimizations and a new user
interface.

The remainder of the paper is organized as follows. Section
II discusses the IEEE standards and the ontologies that were
derived from them, followed by Section III, which gives an
explanation of Event Graphs and how they are related to on-
tological graphs in EGG. Section IV provides an overview of
the EGG application, followed by a discussion of knowledge
discovery algorithms in VI. A discussion of the integrated
toolset comprising EGG and ModelMat is then presented in
VII. Finally, we give a list of future work along with our
conclusions in Section VIII.

II. IEEE STANDARDS AND OWL

In information science, an ontology is a type of knowledge
model that formally defines concepts, their properties, and
the relationships between concepts. These well-defined models
enable automated methods of reasoning and analysis focusing
on the domain concepts that an ontology describes. Ontologies
have been used for several different applications, such as
aiding in communication, interoperability of software, and
the integration of heterogeneous information sources [13]. In
addition, Wilmering and Sheppard suggested using domain
ontologies as a means to focus and filter data analysis in the
process of knowledge discovery [2]. The specific focus of that
work was on utilizing the ontologies to guide the process by
which diagnostic models could be matured over time. In this
paper we use domain ontologies to join together different data
sources and aggregate individual records into more meaningful
models.

One issue with domain ontologies is the process by which
they are created. In our work, we addressed this issue by
basing our ontologies on information models taken from
several IEEE standards. Specifically, we utilized IEEE Std
1232 AI-ESTATE and IEEE Std 1636.2 MAI [5], [6]. AI-
ESTATE is a set of specifications for exchanging data and
defining software services for diagnostic systems. The infor-
mation models defined for AI-ESTATE are designed to form
the basis for facilitating exchange of persistent diagnostic
information between two reasoners and to provide a formal
typing system for diagnostic services [5]. MAI specifies the
means to exchange records of actual maintenance actions
performed on a particular system or subsystem, also based
on formal information models [6].

In this work, we also utilized IEEE Std 1636.1 Software
Interface for Maintenance Information Collection and Analysis
(SIMICA): Exchanging Test Results and Session Information
via the Extensible Markup Language(XML) (Test Results)
[11]. The Test Results standard defines an interface for access,
exchange, and analysis of test result information that arises

Fig. 1. An EXPRESS diagram for the AI-ESTATE D-Matrix Inference Model
(DIM). The lines with circles and labels denote attributes while the lines with
circles and no label denote subclass relationships.

ENTITY OutcomeInference;
andOrRows : SET [1:?] OF Inference;
preconditionTestOutcome : TestOutcome;
confidence : OPTIONAL ConfidenceValue;
andOrRelation : BOOLEAN;

UNIQUE
oneOutcome : preconditionTestOutcome;

WHERE
conjunctOrDisjunct :

((SELF.preconditionTestOutcome.allowedValue =
Pass) AND

(SELF.andOrRelation = TRUE)) XOR
((SELF.preconditionTestOutcome.allowedValue =

Fail) AND
(SELF.andOrRelation = FALSE));

noUserDefined :
preconditionTestOutcome.allowedValue <>

UserDefined;
END_ENTITY;

Fig. 2. The EXPRESS code that defines the entity “OutcomeInference.” Not
only are the attributes for the entity defined, but also any constraints on those
attributes, such as the requirement that the attribute “oneOutcome” points to
a unique “preconditionTestOutcome.”

from executing tests of a Unit Under Test (UUT) via a
test program in an automatic test system (ATS) [11]. While
generally the Test Results standard is used for exchanging
information from an ATS during maintenance, it can also
be used to exchange onboard built-in test and monitoring
information.

The information models in each of these IEEE standards
were defined using EXPRESS, standardized by the Interna-
tional Organization for Standardization (ISO) to support com-
munication of product data between engineering applications.
The main purpose of EXPRESS is to define the semantics
of information that will be generated by a system [7]. An
EXPRESS diagram of the AI-ESTATE D-Matrix Inference
Model (DIM) is given in Fig. 1 while the EXPRESS code
that defines an “OutcomeInference,” as defined by the DIM,



<owl:Class rdf:ID="OutcomeInference">
<rdfs:subClassOf rdf:about="#DMATRIX_MODEL"/>

</owl:Class>
<owl:Class rdf:ID="CEM_ConfidenceValue">

<rdfs:subClassOf rdf:about="#DMATRIX_MODEL"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="confidence">

<owl:maxCardinality rdf:datatype=
"http://.../XMLSchema#nonNegativeInteger">1

</owl:maxCardinality>
<owl:minCardinality rdf:datatype=

"http://.../XMLSchema#nonNegativeInteger">0
</owl:minCardinality>
<rdfs:domain rdf:resource="#OutcomeInference"/>
<rdfs:range rdf:resource="#CEM_ConfidenceValue"/>

</owl:ObjectProperty>

Fig. 3. Excerpt from the OWL code defining the class “OutcomeInfer-
ence” and relationships that exist between “OutcomeInference” and other
classes in the ontology, such as the “confidence” relationship with the class
“CEM ConfidenceValue.”

Fig. 4. Subsection of the OWL diagram from the AI-ESTATE DIM model.
The large arrows without labels denote parent and child relationships while
the smaller arrows denote attributes.

is shown in Fig. 2. The lines with circles and labels denote
attributes while the heavy lines with circles and no label denote
subclass relationships. For example, in the diagram, the en-
tity “DmatrixInferenceModel” has the attribute “testColumn”
which points to the entity “OutcomeInference,” which has
several relationships with other entities in the standard.

While EXPRESS was not designed to support ontology-
based analysis, the semantics defined by EXPRESS models
are very rich. Therefore, we used the EXPRESS models
as the foundation for defining our ontologies. Recent work
in ontology-guided data mining has made use of standard
ontology languages such as OWL [8], DAML+OIL [14], and
RDF [15]. We decided to use OWL due to its prevalence
in the semantic web. OWL is a language for defining and
instantiating ontologies based on description logic that also
supports a number of automated inference procedures [8]. An
OWL ontology may have descriptions of classes, properties,
and their instances. The formal OWL semantics then specify
how to find logical consequences from the defined entities.

To convert EXPRESS to OWL, we first defined a mapping
of EXPRESS concepts to OWL concepts. Once this mapping
was completed, we specified the relationships for the OWL
ontologies based on the attributes and subtype relationships
in the EXPRESS models. After the OWL ontologies had
been defined, we mapped the raw data from our maintenance

history and diagnostic session data sources to the concepts
defined in the corresponding ontologies. In some cases, certain
parts of our raw data did not match existing areas of the
ontologies; therefore, additional entities and relationships had
to be defined. The OWL code and OWL diagram of the same
“OutcomeInference” concept from the DIM is shown in Figs.
3 and 4, respectively. In Fig. 4, the large arrows without labels
denote parent-child relationships while the smaller arrows
denote attributes.

III. EVENT GRAPHS

While ontologies can provide an effective way to display
data, there is a problem of knowing which ontology instance
graphs have interesting information. Displaying all of the
ontologies would not be feasible for even a moderate number
of graphs, and going through each graph would be far too time-
consuming. To overcome this problem, we developed what
are called Event Graphs. An Event Graph is a chronological
ordering of MAI and on-platform events. For this paper, we
refer to an MAI event as a group of records pertaining to a
unique set of ground-based maintenance actions while an on-
platform event corresponds to a group of records pertaining to
a particular set of tests or monitors performed during normal
system operation, such as a set of onboard information for an
aircraft during a flight [9].

Each MAI event may be composed of one or more trans-
actional database records grouped together based on the MAI
model. A Maintenance Action Information Document (MAID)
element is the root of our MAI ontology, and its attributes
are specified as unique, representing the super-key of each
event. The existence of multiple records with the same super-
key value indicates multiple Maintenance Actions (MA) were
performed for a single Maintenance Event (ME). Therefore,
the ME element contains a list of MAIs, and is directly
connected to the root (MAID) element. For an on-platform
event, there are two main concepts of the ontology that are
used—Test Result and Test. Specifically, a Test element is the
root of the on-platform ontology. All of the test parameters and
results that were recorded during system operation connect to
the Test element via the Test Result concept.

In an Event Graph, each node corresponds to either an
MAI or an on-platform event, and the nodes are ordered
chronologically along the horizontal axis. In addition, each
node is positioned vertically depending on the event type.
The MAI nodes can be ordered by two user-specified date
attributes: JCN (Job Control Number) Date, or MA (mainte-
nance action) Completion Date. To improve the readability of
the graph, the sequence contains six distinct layers. The top-
most layer contains the date when each event occurred. The
next layer contains any on-platform event nodes, while the
third layer contains the MAI event nodes. Under the MAI event
layer are three additional layers, corresponding to the various
Maintenance Level (ML) attribute values for each event—
Organizational, Intermediate, and Depot levels, respectively
(or whatever levels would be implemented for the system being
tracked).



Fig. 5. Event Grapher Gold (EGG) main window. The left panel contains the query options, while the right panel displays all of the Event Graphs in
chronological order. The bottom panel displays any messages and status updates.

Finally, we create two sets of links. The first are horizontal
links between events that have the same system or item serial
number to help the user follow items of interest throughout
time. The second set of links connect on-platform and MAI
events vertically if they fall under the same date, along with
the main MAI event with that of the various nodes representing
maintenance actions at different levels. This is a critical
capability supporting post hoc analysis of maintenance data,
as it quickly and easily allows a user to trace the context of
specific parts or aircraft through time.

An example of an Event Graph is given in Fig. 5. In this
case, two on-platform events are displayed with the system
identifier (SYSID) of “Looney,” along with a single MAI event
that occurred on 2004-08-12. Under that event there are several
maintenance actions that occurred at the three maintenance
levels.

IV. EVENT GRAPHER GOLD

Event Grapher Gold (EGG) is a Java application that con-
nects to a MySQL database containing all of the data mapped
to the various ontologies. When the program starts, users are
presented with the main application window (Fig. 5). There
are three main sections to the application window. The left
side of EGG shows the search options that the user can use
to filter the data displayed. The right side of the application
holds the display window, which presents the user with the
set of events. Finally, the bottom portion of the window gives
the status updates of the tool, such as whether a query was
successful or if there were any errors.

To use the program, the user selects the desired search op-
tions in the search panel. A database query is then constructed
based on the selected options. Currently, EGG allows users to
query on dates, system IDs (SYSID), unified number systems
(UNS), part numbers (Part), and serial numbers (Serial). Once
users have selected their desired parameters, the tool will query



the database and return all of the entries that match the search
criteria. This information is then transformed into an ontology-
based graph that is displayed in the right panel. To allow
users to track events easily throughout time, EGG allows the
option of displaying lines between each maintenance event for
a particular SYSID and part number.

To display the underlying MAI Event Graphs, the user clicks
on an MAI event node, which then generates a new window
with the graph displaying all of the information for that
particular maintenance event. A window with an MAI graph
is shown in Fig. 6. In this example, there is one maintenance
action that involved a repair event. From this window, EGG
can save the graph as an image, allowing the user to save
interesting information they may have discovered.

The database back-end of EGG has received an extensive
upgrade. In the previous version, the software required the
database to store all of the information as JGraphs, which were
held as blobs in the MySQL database. This required a separate
data transformation from transactional records representing
pieces of maintenance events to entire Event Graphs that
aggregate all of those pieces into a common OWL ontology
instance. This transformation needed to be performed before
the software was run. While this made retrieval of the relevant
information straightforward, there were several problems with
this approach, such as extending the database to include new
data and fields. The current database now only stores the
relevant data, and the graphs are generated on demand. While
theoretically this does require slightly more overhead when
displaying the graphs, the reduced performance is not very
noticeable.

One major extension that has been added to EGG is the
ability to query and display on-platform data. In previous ver-
sions of the visualization tool, only MAI data was displayed.
However, the tool now displays information corresponding to
Test Results data. For each on-platform event, the tool then
attempts to locate the corresponding MAI event. A node is
then added to the event sequence graph at its chronological
location. The node can then be clicked, which will bring up an
ontology-based graph containing all of the data corresponding
to that particular on-platform event. The window in Fig. 7
gives an example of an on-platform graph.

Another extension to the tool that is currently being imple-
mented is the ability to export the selected data to an OWL
ontology. This new feature converts all of the data that is
currently displayed in the Event Graphs into an OWL instance
format. The export includes all of the data that is displayed
in the MAI and on-platform graph ontologies. Once the data
has been exported to the OWL format, it can then be used by
ontological guided knowledge discovery algorithms.

V. MODELMAT

Model-based methods have become common when per-
forming system-level diagnosis. The basic idea behind model-
based diagnosis is to compare observations from the system
with those predicted by a model of the system [12] and
derive an explanation for those observations (especially those

not expected) based on the properties of the model. One
model-based approach to system-level diagnosis is the Timed
Failure Propagation Graph (TFPG), developed at Vanderbilt
University [16], [17]. The TFPG specifies causal relationships
between faults and discrepancies, which are irregular con-
ditions arising as a result of the faults (whether monitored
or unmonitored). Consistency-based diagnostic algorithms are
then able to diagnose faults by considering those alarms
that were triggered, combined with the order in which they
occurred [16], [17].

Because creating error-free diagnostic models is difficult,
a process is needed to mature the diagnostic models over
time. If system engineers or technicians know when a model
is misdiagnosing a fault, they should be able to use that
information to modify the model, resulting in more accurate
diagnoses. To determine whether the reasoner diagnosed the
correct fault, one must compare the reasoner’s diagnosis with
the actual fault found by alternative means. By storing past
maintenance history, detailed engineering analysis can often
be performed to determine the actual fault that occurred.
The maintenance information can then be compared to the
reasoner history and searched for any discrepancies between
the two data sources. If there is a discrepancy between the two
histories, then the users know that the reasoner misdiagnosed
a fault [1].

We developed a toolset called ModelMat that implements
our maturation algorithms, DMat (which identifies potential er-
rors in the underlying D-matrix) and SeqMat (which identifies
potential errors in the expected sequences of alarms), to mature
TFPG and other D-matrix models [10]. ModelMat was written
in Java and provides the user with an easy-to-use interface for
viewing the algorithm output and setting algorithm parameters
(Fig. 8). In the left panel, the tool displays information about
the diagnostic model being analyzed, including the list of
faults, alarms, and the D-matrices representing relationships
between faults and alarms. In the right panel, the tool displays
results from running the maturation algorithms. To analyze
output from the various maturation algorithms, the user clicks
on the desired results tab, which instantly displays any rec-
ommendations for how to edit the model. When ModelMat
locates a possible error in the diagnostic model, the table of
results will highlight those potential errors for the user. When
there is no conflict found, the rows are colored blue, while
potential conflicts that were discovered during the maturation
process are highlighted in red.

ModelMat works as follows. First, the user selects a diag-
nostic model to open. Currently, the user can load D-matrices
or TFPGs. If a D-matrix is loaded, the software will first
perform logical closure followed by transitive reduction. This
will provide an approximation of the type of information the
underlying TFPG might have. If a TFPG is loaded, a first-
order D-matrix can be extracted directly from the graph. As
an option, the software can convert the TFPG to a D-matrix
using transitive closure and then perform logical closure and
transitive reduction. This allows the user to assess the potential
loss of information from working with a D-matrix alone.



Fig. 6. An EGG MAI window displaying all of the data contained for a particular maintenance event in an ontology-based graph. From this window, the
program also allows users to save an image, which can then be referenced later without having to run the query again.

Fig. 7. An EGG window containing an on-platform graph.

The software then gives the user the option to run the alarm
sequence maturation algorithms (i.e., either DMat or SeqMat)
on the original TFPG or D-matrix.

Next, ModelMat connects to a MySQL database that con-
tains reasoner history data (including what was diagnosed),
the ordered list of alarms that fired, and what maintenance
determined was the true fault. In addition, system information
is also stored, such as the date of the maintenance event, the
system ID, and the system type. ModelMat then allows the
user to query the database based on ground truth, system
type, system ID, and a range of dates. Alarm sequences
corresponding to the user’s query are loaded into the tool
for subsequent analysis. If the user is running the alarm
sequence maturation, an option is provided for whether or not
to run Warshall’s algorithm, which removes the falsely flagged
relationships [18], [19]. The software also allows the user to
set the various threshold values used by the algorithms.

Note that all of the information stored in the database is in
the process of being converted to OWL ontologies correspond-
ing to IEEE Std 1232 (AI-ESTATE) D-matrix models and
dynamic context models [5] as well as IEEE Std 1636.2 MAI
information [6]. This is a major point of integration for EGG
and ModelMat, because now EGG can be used to identify

key events that may be of interest to diagnostic maturation.
Conversely, potential discrepancies flagged by ModelMat can
trigger an analyst to examine event sequences in EGG to see
if other problems exist in the maintenance process.

VI. ONTOLOGY MINING ALGORITHMS

While EGG allows users to quickly inspect data visually, it
does not support the ability for the direct use of knowledge
discovery algorithms on the data. The capability to perform
knowledge discovery is critical in discovering new relation-
ships in data. A variety of knowledge discovery algorithms
can be applied to the data being capture for use by EGG
and ModelMat, including algorithms for clustering, feature
extraction, association and link analysis, anomaly detection,
and classification. Currently, we are in the process of exploring
several algorithms, focused specifically on clustering and
association analysis, which, when guided by the underlying
ontologies associated with the data, provide for a more ef-
fective means to discover knew knowledge about the systems
being maintained.

A. Apriori Knowledge Discovery

One way to discover new relationships is through mining
frequent patterns, which are sets of data items (called itemsets)



Fig. 8. A screenshot of ModelMat, which is a software program designed to perform maturation on diagnostic models. The left side of the panel shows
information of the diagnostic model, while the right panel shows results from the maturation algorithms.

that frequently appear together in a dataset. The Apriori
algorithm is one such knowledge discovery algorithm that
locates frequent itemsets for creating association rules [3].
An association rule is a rule written as an implication of the
form X ⇒ Y where X is the conjunction of a set of discrete
variables and Y is the conjunction of a different set of discrete
variables. Given an association rule r =df (X ⇒ Y ) and
a dataset D, we say that the support spt(r) of rule r is the
percentage of examples in D for which the conjunction X∧Y
holds:

spt(r) =
|X ∧ Y |
|D|

,

and the confidence cf(r) of rule r is the percentage of
examples in D for which X holds where X ∧ Y also holds:

cf(r) =
|X ∧ Y |
|X|

.

The Apriori algorithm finds so-called “large itemsets,”
which are sets of variables for which the minimum support has
been obtained. A large itemset with k variables is referred to as
a k-itemset. The algorithm is based upon the Apriori property,
which states that all nonempty subsets of a frequent itemset
must also be frequent. This property allows us to develop a
strategy for building up frequent itemsets from scratch. Using
all frequent (k − 1)-itemsets, we can combine these (k − 1)-
itemsets to build possible k-itemsets.



The pseudocode for the Apriori algorithm can be found
in Fig. 9. In this algorithm, let Lk be the set of large k-
itemsets, Ck be the set of candidate k-itemsets, d be some
subset of “literals” or “items” in the data (called “transactions”
in [3]), and s be the user-specified minimal percent of items
containing some candidate itemset c. This algorithm then finds
the itemsets of various sizes meeting the minimum support
threshold. Once the itemsets are found, it is a simple matter
to construct the rules where the left-hand sides are itemsets
that are subsets of itemsets covering the entire rule.

1: function Apriori (D,minSpt)
2: L1 ← set of large 1-itemsets
3: k ← 2
4: while Lk−1 not empty do
5: Ck ← (Lk−1) // Generate itemset candidates
6: for all d ∈ D do
7: Cd ← subset(Ck, d) // Candidate contained in data
8: for all c ∈ Ct do
9: count[c]← count[c] + 1

10: end for
11: end for
12: Lk ← {c ∈ Ck|count[c] ≥ minSpt} // Test for support
13: k ← k + 1
14: end while
15: return ∪k Lk

Fig. 9. The pseudocode for the Apriori algorithm.

The algorithm works as follows. The user passes in a
database of transactions D and a value for s, which is the
minimum support threshold. In the following steps, the algo-
rithm uses the previous Lk−1 set of frequent itemsets to build
the set of frequent k-itemsets. Line 5 of the algorithm uses the
Apriori property to remove itemsets that are not frequent. Next,
the database is scanned and compared to the set of possible
frequent itemsets (lines 6 and 7). If a single transaction c
contains as a subset one of the candidate frequent itemsets, the
count for that candidate frequent itemset is increased (line 8
and 9). Finally, in line 12, the count of each possible candidate
is checked again the minimum support threshold. If the support
is high enough, then the candidate is kept as a frequent k-
itemset. The process ends when there are no more frequent
itemsets to be constructed (line 14), at which point all of the
frequent k-itemsets constructed to that point are returned.

The Apriori algorithm was originally designed to run on
raw transactional datasets. However, because EGG is able
to export the data in an ontological graph format, we also
have additional knowledge that is not present in transactional
records. This lets the Apriori algorithm perform more effi-
ciently. One proposed way to use the Apriori algorithm on
ontological datasets is to restrict the search of frequent itemsets
to that of nodes in the ontology selected by the user [2]. For
example, suppose in the MAI data, the user wanted to know
the most common occurring repaired items for a set of aircraft.
By using ontologies, the user could restrict the analysis to a
set of diagnoses that are at the same level of indenture, part

of the same repair context, and at the same depth within the
lattice structure by constructing ontological queries against the
mediated information, thus restricting the information to be
limited to the subset of interest. Alternatively, concepts in the
ontology could be weighted based upon significance for some
issue (e.g., safety, availability, identification of bad actors).
The data items could be restricted to those concepts or key
related concepts.

B. Graph Mining

Recently, graph mining has become another popular ap-
proach to knowledge discovery, especially because a wide
variety of complicated structures can be represented as graphs.
One of the fundamental graph mining problems is the discov-
ery of frequent subgraphs. Frequent subgraph mining is aimed
at locating subgraphs within a set of larger graph structures
which appear frequently together. Many of the frequent sub-
graph mining algorithms utilize the Apriori property to aid in
computational complexity [20]. Because ontologies are graphs,
one could use a frequent subgraph mining algorithm to locate
frequently occurring subgraphs in instance graphs of data
mapped to these ontologies. However, because the structure of
the ontologies will all be very similar, the algorithm will also
have to consider the values in each of the nodes of the ontol-
ogy. This suggests a hybrid algorithm whereby Apriori would
be adapted to consider these values. Alternatively, clustering
algorithms, such as k-means, k-medoids, or agglomerative
hierarchical clustering could be applied to relate the graph
structures together, based upon these feature values.

Another recent graph-based mining approach that has been
showing remarkable utility is spectral clustering. Spectral
clustering works by finding the top eigenvectors of a matrix
representing distances between points. These eigenvectors are
then used to derive a scheme for clustering the points [21].
More formally, suppose we have a dataset D that has been
mapped to some ontology O. Suppose further that we use a
mechanism such as concept weighting (described above) to
filter and extract relevant instance data from D. For example,
we might only be interested in test measurements that have
been taken on inertial navigation systems that have flown on
aircraft in high-G situations. We could use information from
the AI-ESTATE DCM to find onboard diagnostic sessions
for these INS based on the Step.stepContext attribute in the
associated sessions. This information points us to the relevant
repair items, which then point us to relevant Test Results data.
The Test Results instances contain the desired measurements.

At this point, traditional spectral clustering treats the asso-
ciated data as flat feature vectors and constructs an associated
similarity matrix,

M =


δ(x1, x1) δ(x1, x2) · · · δ(x1, xn)

δ(x2, x1) δ(x2, x2) · · · δ(x2, xn)

...
...

. . .
...

δ(xn, x1) δ(xn, x2) · · · δ(xn, xn)





where xi is the ith feature vector and δ(xi, xj) is the similarity
between feature vector xi and feature vector xj . This corre-
sponds to a weighted adjacency matrix for the graph. Usually,
a threshold ε is defined such that, should the similarity be less
than this threshold, the corresponding entry in the matrix is set
to zero. This leads to what is called an ε-neighborhood graph.
Another approach is to restrict connections to the k nearest
neighbors of each vector. These approaches lead to reduced
weighted adjacency matrices.

After computing the reduced matrix Mreduced, the next step is
to find the graph Laplacian. The Laplacian can be normalized
or unnormalized. For this, we also need to define the degree
matrix for the reduced matrix. This matrix, which we denote
∆, is a diagonal matrix where the entries along the diagonal
equal the degrees of the vertices deg(xi) corresponding to
each of the feature vectors xi. specifically, deg(xi) is the sum
of the non-zero entries in the ith row of Mreduced.

deg(xi) =
∑
j

δ(xi, xj)

The unnormalized graph Lagrangian then corresponds to

L = ∆−Mreduced.

Given L, the most common spectral clustering algorithm for
unnormalized Lagrangians works as follows:

• Construct the reduced similarity graph Mreduced.
• Construct the graph Lagrangian L = ∆−Mreduced.
• Find the first k eigenvectors u1, . . . , uk (ranked by eigen-

value in decreasing order) of L.
• Construct a new matrix U where each of the ui eigen-

vectors are columns.
• Cluster the rows of U using k-means to find clusters
C1, . . . , Ck.

• Return the row indices of U , grouped according to their
k clusters.

To interpret the results, note that, because we are finding
eigenvectors of the graph Laplacian, we are constructing a
linear transformation into a space where each eigenvector is a
linear combination of distances focused on identifying those
points that are furthest apart. Then the k-means algorithm finds
the components in these new vectors that are most similar,
in effect finding ways to “cut” (i.e., partition) the underlying
graph. The resulting graph partitions form connected compo-
nents in the original graph that correspond to clusters of nearby
feature vectors.

These clustering methods can be very useful for detecting
various fault conditions arising that might not have been
expected during system design. For example, as described with
the INS flown under high-G conditions, we might be able to
use these techniques to detect how different environmental or
operational conditions might affect degradation and failure of
the system. It is in these types of analyses that coupling state-
of-the art knowledge discovery methods with information tied
to domain ontologies can yield tremendous benefit.

VII. INTEGRATED TOOLSET

EGG and ModelMat were both originally designed to be
stand-alone applications. For example, one of the primary
applications for EGG is for allowing a user to quickly discover
interesting events throughout time. Specifically, should a part
be removed from a system, we can track the part forward
through time to see if it is ever reinstalled on another system.
If the same part is installed on a system with a different
ID, then we can consider the dates of removal and install,
from which we might be able to ascertain that the part was
cannibalized from the first to be used in the second. If users
wish to investigate this event further, then they are able to
click on the MAI events of interest to bring up the specific
maintenance events to see if there are any fields that could
give users a better understanding of the underlying cause of
that event.

Similarly, ModelMat was designed to discover discrepan-
cies between maintenance data and diagnostic reasoner data.
However, as mentioned in our previous work on ModelMat,
locating the desired data can be difficult. By integrating
EGG and ModelMat together, users are able to overcome
this difficulty by using EGG to find relevant events for use
in ModelMat. Subsequently, a maturation analysis can be
performed to determine if any associated discrepancies might
be significant.

Conversely, ModelMat may inform users of certain events
in the data that they may wish to investigate in EGG. For
example, suppose an analyst performs a maturation analysis
with ModelMat using all of the historical maintenance data
and discovers discrepancies between diagnostic reasoning and
maintenance. In doing so, they may wish to investigate what
occurred in those maintenance events, which they can do by
visually inspecting those events in EGG.

A top-level diagram of the EGG and ModelMat as an
integrated toolset and their interactions with the data and
one another can be seen in Fig. 10. We call the resulting
toolset Bobcat. In this diagram, we see that Bobcat draws its
information from a semantic repository, consisting of historical
instance data that has been mapped to four different domain
ontologies through a set of simpler data converters:

• SIMICA Test Results (IEEE Std 1636.1)
• SIMICA MAI (IEEE Std 1636.2)
• AI-ESTATE D-Matrix (IEEE Std 1232)
• AI-ESTATE DCM (IEEE Std 1232)

Both EGG and ModelMat extract the relevant data from the
semantic repository to support their respective analyses. Fur-
thermore, as indicated by the arrow from EGG to ModelMat,
knowledge discovery algorithms and processes can now be
applied to the data, as informed and filtered by these two tools.

VIII. CONCLUSIONS

In this paper, we have presented an integrated toolset
that consists of two software programs we developed for
performing ontology-guided knowledge discovery. The first is
a visualization tool called EGG that allows users to inspect



Fig. 10. A top-level view of the toolset presented in this paper. Raw data, such as test results, maintenance histories, and onboard reasoner data, is
transformed and sorted into an ontological format. This data is then accessed by EGG and ModelMat for knowledge discovery, visualization, and diagnostic
model maturation.

data visually very quickly and efficiently. The second is a diag-
nostic model maturation tool called ModelMat that engineers
use to identify discrepancies between diagnostic sessions and
associated maintenance events and then recommend ways to
fix those discrepancies. While these two tools were originally
designed to be stand-alone, we have begun to integrate them
together by exploiting the semantics of the information they
process. This is done by mapping the underlying data to
several domain ontologies.

For future work, we are continuing to integrate the capabil-
ities of the tools in the toolset. This next step in integration
involves redesigning each of their respective databases to use
common schemas based on the underlying OWL ontologies.
We anticipate additional ontologies (and associated data) be-
ing incorporated into the toolset based, for example, on the
schemas that have been defined for the Automatic Test Markup
Language [22].

Another area of future work is to allow ModelMat and EGG
to interact more directly. Currently, EGG can locate desired
maintenance event data, but users must manually export the
data for analysis by ModelMat by using another external tool.
One feature that is being added allows EGG to export the data
directly to ModelMat.

Finally, we are in the process of directly integrating the

above-mentioned knowledge discovery algorithms into either
EGG or the toolset as a whole. One related are of integration
that we are considering is incorporating one or more diag-
nostic reasoners so that we can also use associated inference
procedures to evaluate the results of any recommended modifi-
cations or to test hypotheses relative to discrepancies that have
been detected. We can also use these reasoners to evaluate the
effects of modeling discovered relationships and properties,
arising from the various knowledge discovery tools.
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