
Implementing AI-ESTATE with Prognostic
Extensions in Java

Liessman Sturlaugson, Nathan Fortier, Patrick Donnelly, and John W. Sheppard
Department of Computer Science

Montana State University
Bozeman, MT 59717

{liessman.sturlaugson, nathan.fortier, patrick.donnelly2, john.sheppard}@cs.montana.edu

Abstract—This paper is part of an ongoing effort to facilitate
wider acceptance and further development of the IEEE Std
1232-2010 Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE). To that
end, we describe a tool named SAPPHIRETM, which includes
an implementation of AI-ESTATE in Java and a corresponding
GUI tool that supports model creation and diagnostic inference
of the standard’s Bayes Network Model (BNM). In addition, we
describe extensions to the BNM as well as additional reasoner
services that allow for representation and inference over dynamic
Bayesian networks (DBNs) for standards-based prognostics.

I. INTRODUCTION

The IEEE 1232-2010 Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE) standard
[1] incorporates concepts specific to the diagnostic domain, fa-
cilitating portability and extensibility of diagnostic knowledge,
and enabling the consistent exchange and integration of diag-
nostic capabilities. In addition, the standard defines interfaces
among reasoners and diagnostic applications, test information
knowledge bases, and more conventional databases [2].

Since its publication in 2010, we have been examining
ways to promote and enhance AI-ESTATE, specifically in
increasing its ability to provide a standards-based approach
for performing online prognostic analysis. We describe an
actual implementation of an AI-ESTATE-conformant model
builder, client diagnostic application, and diagnostic reasoner
for use with the AI-ESTATE BNM. Furthermore, we describe
an implementation of extensions to the BNM for representing
first-order DBNs to enhance the standard to support prognostic
applications and realize the goals of Prognostics and Health
Management (PHM) in a standards-based context. The imple-
mentation of AI-ESTATE with prognostic extensions forms
the core of the software created for this project, called the
Standards-based Analysis Platform for Predictive Health and
Intelligent Reasoning Environment (SAPPHIRE).

II. BACKGROUND

A. AI-ESTATE

In February 1990, the IEEE, seeing the need for a standard-
ized way to incorporate artificial intelligence (AI) techniques
into test and diagnosis applications, approved Project Autho-
rization Request (PAR) 1232, authorizing the IEEE Standards
Coordinating Committee 20 (SCC20) to begin development of

Al-ESTATE [3]. Since then, the IEEE has continued develop-
ment of AI-ESTATE for supporting diagnostic model exchange
and for defining a standard application programming interface
(API) for interacting with a diagnostic reasoner. The current
version of AI-ESTATE, IEEE Std 1232-2010 [1], defines four
semantic models using the EXPRESS information modeling
language [4]. These models are fault trees, D-matrices, logic
models, and Bayesian networks. The Extensible Markup Lan-
guage (XML) schemata have been derived from these semantic
models according to the Standards for the Exchange of Product
model data (STEP) from the International Organization for
Standardization (ISO) [5]. Furthermore, services have been
defined for standardized interactions between a test application
and a diagnostic reasoner. We demonstrated AI-ESTATE’s
model exchange and reasoner interoperability in 2008 [6]
and 2009 [7], respectively. In our previous work investigat-
ing extensions to AI-ESTATE to address requirements for
prognostics and health management, we showed how AI-
ESTATE can incorporate gray-scale health information. We
demonstrated the extensions by extending the AI-ESTATE
Fault Tree Model to encode a fuzzy fault tree [8].

A previous version of the AI-ESTATE standard (consisting
of IEEE Std 1232-1995 AI-ESTATE: Overview and Archi-
tecture [9], IEEE Std 1232.1-1997 AI-ESTATE: Data and
Knowledge Specification [10], and IEEE Std 1232.2-1998 AI-
ESTATE: Service Specification [11]), had been implemented
previously under Phase I [12] and Phase II [13], [14] of an
SBIR funded by the Air Force. The intent of the project was
to demonstrate the feasibility of implementing AI-ESTATE in
a component-based Automatic Test System (ATS), with the
results summarized in [15]. Subsequently, under contract to
the US Navy, preliminary versions of the recent standard were
implement to demonstrate the validity of both model exchange
and service interoperability, with results reported in [6] and [7]
respectively. Here, we discuss implementation of the most cur-
rent version of the standard along with extensions to the BNM
and services for prognostics, in order to motivate prognostic
extensions such as these to be eventually incorporated into the
standard.

B. Bayesian Networks

1) Static Bayesian Network: Bayesian networks are proba-
bilistic graphical models that use nodes and arcs in a directed

978-1-4673-5683-1/13/$31.00 ©2013 IEEE

acyclic graph to represent a joint probability distribution over
a set of variables [16]. Formally, suppose that P (X) is a joint
probability distribution over n variables X1, . . . , Xn ∈ X,
with each variable Xi being represented by a node in the
graph and Pa(Xi) denoting the parents of node Xi in the
graph. The graph representation factors the joint probability
distribution as:

P (X) =
n∏

i=1

P (Xi|Pa(Xi)).

2) AI-ESTATE Bayes Network Model: The AI-ESTATE’s
BNM is a type of Bayesian network specific to diagnostics.
In particular, the BNM defines a Bayesian network in which
the nodes are comprised of BayesDiagnosis entities (with
subtypes BayesFault and BayesFailure) and BayesTest entities.
BayesDiagnosis entities are not conditionally dependent on
anything else. BayesTest entities, however, can be condi-
tionally dependent on BayesDiagnosis entities or even other
BayesTest entities.

3) Dynamic Bayesian Network: The dynamic Bayesian
network (DBN) expands on the Bayesian network formulation
defined above by using a series of connected time-slices, each
of which contains a copy of a regular Bayesian network Xt

indexed by time t. The probability distribution of a variable at
a given time-slice can be conditionally dependent on states of
that variable (or even other variables) throughout any number
of previous timesteps. In first-order DBNs, the nodes in each
time-slice are not conditionally dependent on any nodes further
back than the immediately previous time-slice. Therefore, the
joint probability distribution for a first-order DBN factors as:

P (X0, . . . ,Xk) = P (X0)
k∏

t=0

P (Xt+1|Xt).

Spanning multiple time-slices, the DBN can include any
evidence gathered throughout that time and use it to help
reason about state probability distributions across different
time-slices. Often, the conditional probability tables of the
DBN can be defined compactly by defining a prior network
X0 and a single temporal network Xt. The temporal network
Xt is then “unrolled” into X1,X2, . . . ,Xk for k time-slices.

The DBN model has been used in many application areas
that have sequences of observations. Often these problems are
concerned with performing classification only in the current
timestep based on prior evidence. However, DBNs can also
be unrolled further and forecast future states based on the
evolving marginal probabilities. Some predictive tasks that
the DBN has been used for include clinical prognostics, such
as [17] and [18], and mechanical prognostics, such as [19],
[20], [21], and [22]. We show extensions to the AI-ESTATE
BNM that allow for DBNs that are specific to diagnostics and
prognostics.

III. THE SAPPHIRE SOFTWARE

In this section, we review the SAPPHIRE software package.
This project was created over Phase II of a Navy-funded STTR

Fig. 1. Block diagram of SAPPHIRE software system.

whose objectives included development and demonstration of
a concrete implementation of AI-ESTATE, as well as exploring
extensions for standards-based prognostics.

A. Architecture

Generally, the architecture designed for this project is based
on standard methodologies and widely used software libraries
where possible. There are several advantages to this approach:

1) Standardization: Since many projects rely upon these
popular libraries, a de facto standard is realized among
the communities that use them.

2) Documentation: The popularity of the libraries provides
a powerful impetus for the composers of such libraries
to document usage and case scenarios in a detailed,
accurate manner.

3) Performance: The libraries have a proven record among
many entities in the software engineering field.

The software libraries in use include the Commons Math
library [23] from the Apache Jakarta project and the Colt
library from CERN [24], which are two math libraries that
both enjoy a broad user base.

The architecture of our system is shown in Figure 1.
The Model block represents the BNM diagnostic model. The
Graphical User Interface (GUI) allows a user to create and
modify the BNMs and interact with the Inference Engine. The
Inference Engine runs Bayesian inference and reasoning on the
Model as an AI-ESTATE-conformant diagnostic reasoner.

This system provides the framework to allow import and
export (I/O) from many possible model formats by extending
the codebase of the I/O Model Converter. This design per-
mitted future extension to handle import and export of other
common model file formats, such as the Interchange Format
for Bayesian Networks (XMLBIF) [25] or the XDSL format
used by the Structural Modeling, Inference, and Learning
Engine [26]. The GUI tool uses the AI-ESTATE standard as
the primary I/O format.

Fig. 2. Model-View-Controller (MVC) diagram.

The architecture features the typical Model-View-Controller
architectural pattern, shown in Figure 2. This architecture
allows a decoupling between the data being modified (Model)
and the interface which facilitates the modification (View),
mediated by the Controller. Loosening the coupling between
the model and view, which in this case represent our system’s
internal functionality and the front end to this software, re-
spectively, facilitates concurrent development of both systems
independently. This minimizes representation mismatches be-
tween the model and view, and as a result allows a smoother
development process relatively free of the complexities asso-
ciated with model and view integration.

B. Graphical User Interface

The GUI allows a complete BNM model to be created, with
support for all the entities defined in the standard. This is a
significant advancement over [6], which was a scaled-down
version of the BNM to support basic diagnostics, but the GUI
did not offer a way to define the complete set of features found
in AI-ESTATE. A screenshot of the Build tab is shown in
Figure 3. The subtabs organize the entities into their respective
categories, and the split pane on each tab delineate between
required and optional entities.

The GUI also features an interface to a diagnostic reasoner
for performing inference over the loaded BNM. A screenshot
of the Infer tab is shown in Figure 4.

C. Implementation of CEM and BNM

The SAPPHIRE software package, a hierarchical polymor-
phic design of the IEEE STD 1232-2010 AI-ESTATE standard,
has been designed explicitly to mirror the inheritance of the
EXPRESS model. The SAPPHIRE software was developed
entirely in Java and utilizes a highly modular architecture to
facilitate adaptation and expansion as the models are enhanced
to support prognostics. System items (repair items and function
items), actions (tests and repair actions), and diagnoses (faults
and failures) can be specified in the model. The tool also
supports entity (test and diagnosis) dependencies and their
associated probability tables.

The abstract object Entity serves as the superclass of most
objects in the hierarchy. An entity contains the name and
description of the object (if relevant) as well as enforces

Fig. 3. Screenshot of the Build tab in SAPPHIRE

Fig. 4. Screenshot of the Infer tab in SAPPHIRE

methods for validation and exportation to XML as illustrated
in Figure 5. Each object has appropriate access methods (e.g.,
get() and set()) for all object components. Each relevant object
component has appropriate list management operations (e.g.,
add(), remove(), get()). The inverse relationships defined in
the EXPRESS model are faithfully represented, but handled
automatically by the parent object.

Multiple inheritance is a concept of object-oriented software
engineering in which an object can have multiple parents.
While EXPRESS supports multiple inheritance, Java does not.
To support this functionality, multiple inheritance has been
implemented as a series of interfaces in Java. For example,
the entity BayesFault has parents BayesDiagnosis and Fault.
Both BayesDiagnosis and Fault have the same parent class,
Diagnosis. In SAPPHIRE, BayesFault has been implemented
as a subclass of Fault and therefore will inherit all public and
protected methods and variables from the Diagnosis entity.
BayesFault also implements the interface BayesianDiagnosis,
which forces implementation of all methods in the EXPRESS
entity BayesDiagnosis.

Entity
name: NameType
description: DescriptionType
id: UUID

+validate()
+toXML()
+toXMLref()

Fig. 5. Object diagram of Entity class.

The SAPPHIRE software package includes a complete
implementation of the Common Element Model (CEM) and
the Bayes Network Model (BNM). All objects have exhaustive
Javadoc comments in the code so that, when this tool is
released, users can easily follow the design through the API
and readily understand the correspondence to each class’s
counterpart in the EXPRESS model. This Javadoc documen-
tation includes the commentary given in the EXPRESS model
but has also been expanded and revised as it relates to
SAPPHIRE’s particular implementation of the standard.

D. Implementation of DCM and Services

We have also encoded the EXPRESS entities specified by
the Dynamic Context Model (DCM) and the Reasoner Ser-
vice Model (RSM) into SAPPHIRE. The XML import/export
functionality, including validation, has been implemented for
the DCM so that session histories can be saved.

The service API makes use of the RSM and DCM entities
to allow the reasoning functions and procedures defined by
AI-ESTATE to be executed on many different systems. These
functions provide feedback to the client and make changes
to DCM entities as specified in the standard. Currently, the
Bayesian network inference engine developed concurrently
with SAPPHIRE supports the following AI-ESTATE services
as part of its API:

• initializeDiagnosticProcess: This function starts a diag-
nostic session for a given system under test and returns
the new session.

• loadDiagnosticModelFromLocation: This procedure is
used to load a Diagnostic Model that can then be used
by the Reasoner.

• setActiveModel: This procedure activates the given Diag-
nostic Model so that it can be used to obtain diagnostic
results.

• applyActions: This procedure informs the Reasoner of
any actions that have been performed along with any
outcomes that have been observed or costs that have been
incurred.

• getDiagnosticResults: This function obtains a list of diag-
nostic conclusions from the inference engine and returns
a subset of these conclusions to the client based on a set
of input parameters.

These are sufficient for performing a basic diagnostic session
with a BNM. All other functions required for claiming AI-

ESTATE conformance will be implemented as part of the
service API in the near future.

E. EXPRESS and XML Validation

Through inheritance from the Entity superclass, each ob-
ject implements a validate() method. This method validates
the particular entity against the standard, the UNIQUE and
WHERE clauses of the EXPRESS specification. For example,
the validate() method is overridden in the BayesTest and
BayesDiagnosis entities to ensure that their probability dis-
tributions sum to one. For enforcing unique name constraints,
the constructor of the Entity superclass registers the name of
each object with a UniquenessConstraint class, which handles
the uniqueness checking across all entities.

The tool imports valid XML files according to the Bayesian
Network XML schema specified by AI-ESTATE. The valida-
tion portion of this functionality has been tested to ensure that
it finds errors in non-valid XML files. This feature is also used
to test the correctness of the XML export functionality.

The EXPRESS constraint validation for the BNM, CEM,
and DCM entities ensures that exported models and diagnostic
session traces do not violate any of the formal propositions
specified by the AI-ESTATE standard. Each of these proposi-
tions describes a specific constraint, such as the requirement
that the structure of Actions and their subActions corresponds
to a directed acyclic graph or the requirement that the sum
of all probabilities given its dependent configuration results
in a value of one. This functionality is crucial because XML
validation alone cannot ensure that these constraints are met.

F. Import and Export Functionality

Whereas the reasoner side of the GUI tool maintains an in-
ternal Bayesian Network representation for efficient inference,
the functionality of the tool to import and export to XML that
conforms to the AI-ESTATE schemas is essential for claiming
AI-ESTATE conformance. The tool must be able to load and
validate BNM XML originating from AI-ESTATE-conformant
applications as well as generate valid BNM XML that can be
loaded into these other applications.

1) Import: Figure 6 shows the sequence for importing and
validating an AI-ESTATE BNM file into the BNM GUI tool.

Fig. 6. Model validation sequence for import.

The tool uses a third-party library for validating XML
against the AI-ESTATE schema. This is done by comparing
the schema against an XML file. Therefore, on import, the
tool first checks the XML file against the schema. The XML
is then imported into the SAPPHIRE representation. Then the
EXPRESS constraints are validated against the SAPPHIRE
model.

2) Export: Each object implements two methods: toXML()
and toXMLref(). These methods convert the content of the
object into an XML Element or Attribute, depending on
the nature of the entity, and depending on if the full XML
specification is required or merely the reference to the XML
element. The components of any object will themselves also
have these XML methods, and therefore an object can be
converted to XML format through bottom-up recursion. This
tool exports valid models to XML files according to the
standards based XML schema.

Figure 7 shows the sequence for exporting and validating
an AI-ESTATE BNM file from the BNM GUI tool.

Fig. 7. Model validation sequence for export.

The order is the opposite from that of import. In this case,
the EXPRESS constraints are checked first. After this, the
XML is generated and written to a file. The third-party library
is then used to check whether this XML validates against the
schema.

G. Diagnostic Bayesian Reasoner

The SAPPHIRE software interfaces with a diagnostic
Bayesian reasoner. While the reasoner supports fully general
Bayesian network inference, it has been specialized in SAP-
PHIRE to work with the BNM to perform diagnostics and
prognostics (as discussed in the next section). Specifically, the
reasoner offers the following inference algorithms.

• Variable Elimination [27]: an exact inference algorithm
based on successively marginalizing out variables.

• Likelihood Weighting [28]: a particle-based approximate
inference algorithm that weights particles based on their
likelihood.

• Gibbs Sampling [29]: a particle-based approximate infer-
ence algorithm as a Markov chain Monte Carlo (MCMC)
method.

• Bootstrap Filter [30]: a particle-based approximate infer-
ence algorithm designed specifically for performing in-
ference over dynamic Bayesian networks without having
to unroll the network before performing inference.

IV. EXTENSIONS TO AI-ESTATE FOR PROGNOSTICS

In this section we describe specific changes that were made
to the standard to allow for DBNs. These changes required
the modification of several EXPRESS information models,
which resulted in new XML schemata. We incorporated them
into SAPPHIRE under the assumption they will eventually be
included in the standard. This will also enable us to provide
the results of our implementation as a demonstration and
validation of the proposed changes to support future adoption,
which is one of the objectives of this project.

Specifically, several modifications were made to the BNM,
CEM, DCM, and RSM. We have created revised information

models and the corresponding XML schemata incorporating
proposed extensions to AI-ESTATE in support of prognostics.

The EXPRESS-G for the updated BNM is shown in Figures
8 and 9. We introduced temporal links from diagnosis to
diagnosis (of the various types) and from test to test. These
temporal links differ from previously existing links between
DependentElements in that self-referencing links may occur.
Currently, we do not permit temporal links between entities
of different types; however, this is being consider as a future
enhancement. Two attributes, timeInterval and intervalUnit,
were introduced to the BayesNetworkModel entity as shown
by the EXPRESS in Figure 10. These represent the time
elapsed between adjacent timesteps in the DBN. The additional
constraint consistentTime ensures that these are attributes are
set together or not at all, in the case of static Bayesian
networks.

In the CEM, we extended the Outcome entity to allow for
multiple user-defined OutcomeValues. This is shown by the
new attribute userName in the Outcome entity as shown by the
EXPRESS in Figure 11. The additional manyNames constraint
forces each user-defined OutcomeValue to be given a custom
name.

In the DCM, the ActualOutcome entity has an additional
optional TimeStamp attribute named timePredicted, referenc-
ing the timestep of the particular Diagnosis, Test, or Action
outcome. This allows Outcomes to be tied to specific timesteps
in the unrolled DBN.

Several changes to the RSM were also required to allow
for DBN support. We extended the ActualAction entity in
the RSM to include a time interval over which the specified
outcomes are valid, as shown below:

timePerformed : OPTIONAL TimeValue;

It is assumed that, if no time interval is specified, the values
are always valid. If no upper limit is specified, the validity
persists unless changed.

For the services, the applyActions service was modified to
include a sequence of time-series test results with associated
validity intervals. A new setTime service enables the baseline
time for analysis to be established. This would be done through
the ActualUsage entity in the DCM. However, it may be
possible to specify the baseline time for analysis through the
existing setUsage service.

To support inference, we defined a getFutureDiagnosticRe-
sults service. This service returns a hypothesis for a diagnostic
state at a specified number of time steps from the current time
associated with the current Step in the DCM. In the future, a
getTimeToFail service will also be added. This service will be
used to estimate the time to failure for a specified diagnosis in
the model. If no diagnosis is specified, the service will return
the time to fail estimate of the failure expected to occur first.
This returned time could be used with getFutureDiagnosticRe-
sults to find the corresponding diagnosis.

Fig. 8. EXPRESS-G with new BayesTemporalTest entity and BayesNetworkModel entity incorporating time.

V. FUTURE WORK

While SAPPHIRE provides a complete representation of
the CEM, BNM, DCM, and RSM, the accompanying BNM
diagnostic reasoner has yet to implement some of the services
defined in the standard. These services include those involving
sending or requesting information beyond test or diagnosis
outcomes (such as setDiscrepancies and recommendActions)
and services for diagnostic session control (pause and resume,
disaster recovery, etc.). All of the services defined in the
standard will be implemented in the near future.

The client diagnostic application and diagnostic inference
engine presented here allow test results to be updated and
inference to be drawn about probable diagnoses. However,
the responsibility of performing tests and reporting the test
results to the client application is left entirely up to the user.
Thus, an important direction for future work is to deploy the
AI-ESTATE-conformant client diagnostic application and the
diagnostic reasoner, integrating them with actual Automated
Test Equipment (ATE) in a real-life and real-time setting.

Another direction for future work is to implement and inte-
grate other standards for test and diagnosis into SAPPHIRE,
such as IEEE Std 1636.2 Software Interface for Maintenance
Information Collection and Analysis (SIMICA): Maintenance
Action Information (MAI) [31] and IEEE Std 1636.1 Software
Interface for Maintenance Information Collection and Analysis
(SIMICA): Exchanging Test Results and Session Information
via the Extensible Markup Language (XML) (Test Results)

[32]. This would allow for tighter, standards-based integration
across the complete process for testing and maintenance. To
that end, we could also look into how SAPPHIRE and Mon-
tana State University’s Bobcat knowledge discovery toolset
[33] could be integrated together to allow for greater coupling
between the diagnostic and maintenance processes, such as is
needed for model maturation.

VI. CONCLUSION

In this paper, we described an actual implementation in
Java of the most current version of the AI-ESTATE standard.
Standards are not intended to stand alone, and their purpose is
realized when concrete applications are created that conform
to the standard. Therefore, this paper seeks to facilitate wider
acceptance and conformance to AI-ESTATE for the exchange
of standardized diagnostic models and their use with standard-
ized interfaces with diagnostic reasoners.

Furthermore, we presented extensions for BNMs to rep-
resent first-order DBNs, further enhancing the standard to
support prognostic applications. In standardization efforts,
existing applications should drive the requirements, rather than
standards requirements drive the applications. Considerable
work is being performed in developing new and better applica-
tions for PHM. Ideally, standardization efforts should accom-
pany advances in PHM technology. Thus, these applications
are demonstrating the need for diagnostic standards to further
incorporate prognostic capabilities such as the one presented
here.

Fig. 9. EXPRESS-G with new BayesTemporalFault, BayesTemporalFailure, and BayesTemporalDiagnosis entities.

ENTITY BayesNetworkModel
SUBTYPE OF (DiagnosticModel);
SELF\DiagnosticModel.modelAction :

SET [2:?] OF BayesTest;
SELF\DiagnosticModel.modelDiagnosis :

SET [2:?] OF BayesDiagnosis;
timeInterval : OPTIONAL TimeValue;
intervalUnit : OPTIONAL TimeUnit;

WHERE
consistentTime :
(EXISTS(SELF.timeInterval)
AND EXISTS(SELF.intervalUnit))
XOR (NOT(EXISTS(SELF.timeInterval))
AND NOT(EXISTS(SELF.intervalUnit)));

END_ENTITY;

Fig. 10. EXPRESS for BayesNetworkModel entity incorporating time.

ACKNOWLEDGMENTS

This project was supported as an STTR under US Navy
contract N68335-11-C-0506. We thank Mike Malesich and
Jennifer Fetherman for the discussions leading to developing
the proposed extensions to this standard. We also thank Patrick
Kalgren and John Gorton of Impact Technologies/Sikorsky
Innovations for their collaboration with this STTR.

REFERENCES

[1] IEEE Std 1232-2010, IEEE Standard for Artificial Intelligence Exchange
and Service Tie to All Test Environments (AI-ESTATE). Piscataway, NJ:
IEEE Standards Association Press, 2010.

ENTITY Outcome
ABSTRACT SUPERTYPE OF(ONEOF(Diagnosis-
Outcome, TestOutcome, ActionOutcome));
maxConfidence :

OPTIONAL ConfidenceValue;
allowedValue : OutcomeValues;
userName : OPTIONAL NameType;

WHERE
manyNames : ((SELF.allowedValue =

UserDefined)
AND EXISTS(SELF.userName))
XOR (NOT(SELF.allowedValue =

UserDefined)
AND NOT (EXISTS(SELF.userName)));

END_ENTITY;

Fig. 11. EXPRESS for Outcome entity with multiple user-defined outcomes.

[2] J. Luo and Z.-Z. Su, “Design and implementation of intelligent diag-
nostic system based on AI-ESTATE,” in Information and Computing
(ICIC), 2011 Fourth International Conference on. IEEE, 2011, pp.
237–240.

[3] L. A. Orlidge, “An overview of IEEE P1232 AI-ESTATE. The standard
for intelligent reasoning based systems test and diagnosis arrives,” in
AUTOTESTCON’96, Test Technology and Commercialization. Confer-
ence Record. IEEE, 1996, pp. 61–67.

[4] ISO 10303-11:1994, Industrial Automation Systems–Product Data Rep-
resentation and Exchange–Part 11: The EXPRESS Language Reference
Manual. Geneva, Switzerland: The International Organization for
Standardization, 1994.

[5] ISO 10303-28:2007, Industrial Automation Systems–Product Data Rep-
resentation and Exchange–Part 28: XML Representation of EXPRESS
Schemas and Data Using XML Schemas. Geneva, Switzerland: The

International Organization for Standardization, 2007.
[6] J. Sheppard, S. Butcher, P. Donnelly, and B. Mitchell, “Demonstrating

semantic interoperability of diagnostic models via AI-ESTATE,” in
Proceedings of the IEEE Aerospace Conference, 2009, pp. 1–13.

[7] J. Sheppard, S. Butcher, and P. Donnelly, “Demonstrating semantic
interoperability of diagnostic reasoners via AI-ESTATE,” in Proceedings
of the IEEE Aerospace Conference, 2010, pp. 1–10.

[8] P. J. Donnelly, L. E. Sturlaugson, and J. W. Sheppard, “A standards-
based approach to gray-scale health assessment using fuzzy fault trees,”
in AUTOTESTCON, 2012 IEEE. IEEE, 2012, pp. 174–181.

[9] IEEE Std 1232-1995, IEEE Standard for Artificial Intelligence and
Expert System Tie to Automatic Test Equipment (AI-ESTATE): Overview
and Architecture. Piscataway, NJ: IEEE Standards Press, 1995.

[10] IEEE Std 1232.1-1997, IEEE Standard for Artificial Intelligence Ex-
change and Service Tie to All Test Environments (AI-ESTATE): Data
and Knowledge Specification. Piscataway, NJ: IEEE Standards Press,
1997.

[11] IEEE Std 1232.2-1998, IEEE Standard for Artificial Intelligence Ex-
change and Service Tie to All Test Environments (AI-ESTATE): Service
Specification. Piscataway, NJ: IEEE Standards Press, 1998.

[12] A. Giarla, “Implementing AI-ESTATE in a component based archi-
tecture. Phase-I,” in AUTOTESTCON ’99. IEEE Systems Readiness
Technology Conference, 1999. IEEE, 1999, pp. 27–33.

[13] A. J. Giarla and W. L. Simerly, “Implementing AI-ESTATE in a com-
ponent based architecture, Phase-II,” in AUTOTESTCON Proceedings,
2000 IEEE. IEEE, 2000, pp. 438–450.

[14] ——, “Implementing an AI-ESTATE based diagnostic engine com-
ponent,” in Digital Avionics Systems Conference, 2000. Proceedings.
DASC. The 19th, vol. 2. IEEE, 2000, pp. 6B3–1.

[15] J. W. Sheppard and A. J. Giarla, “Information-based standards and
diagnostic component technology,” in AUTOTESTCON Proceedings,
2000 IEEE. IEEE, 2000, pp. 425–433.

[16] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[17] M. A. van Gerven, B. G. Taal, and P. J. Lucas, “Dynamic Bayesian
networks as prognostic models for clinical patient management,” Journal
of Biomedical Informatics, vol. 41, no. 4, pp. 515–529, 2008.

[18] K. Exarchos, G. Rigas, Y. Goletsis, and D. Fotiadis, “Towards building
a Dynamic Bayesian Network for monitoring oral cancer progression
using time-course gene expression data,” in Information Technology
and Applications in Biomedicine (ITAB), 2010 10th IEEE International
Conference on, nov. 2010, pp. 1 –4.

[19] F. Camci and R. Chinnam, “Dynamic Bayesian networks for machine
diagnostics: hierarchical hidden Markov models vs. competitive learn-
ing,” in Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE
International Joint Conference on, vol. 3, July-4 Aug. 2005, pp. 1752–
1757 vol. 3.

[20] A. Muller, M.-C. Suhner, and B. Iung, “Formalisation of a new prognosis
model for supporting proactive maintenance implementation on indus-
trial system,” Reliability Engineering & System Safety, vol. 93, no. 2,
pp. 234 – 253, 2008.

[21] M. Dong and Z.-b. Yang, “Dynamic Bayesian network based prognosis
in machining processes,” Journal of Shanghai Jiaotong University
(Science), vol. 13, pp. 318–322, 2008.

[22] K. Medjaher, J.-Y. Moya, and N. Zerhouni, “Failure prognostic by using
dynamic Bayesian networks,” Dependable Control of Discrete Systems.,
vol. 1, pp. 291–296, 2009.

[23] Commons Math: The Apache Commons Mathematics Library. [Online].
Available: http://commons.apache.org/math/

[24] Colt. [Online]. Available: http://acs.lbl.gov/software/colt/
[25] F. G. Cozman, “The interchange format for Bayesian networks,”

http://www.cs.cmu.edu/afs/cs/user/fgozman/www/Research/Interchange
Format, 1998.

[26] M. J. Druzdzel, “SMILE: Structural Modeling, Inference, and Learning
Engine and GeNIe: a development environment for graphical decision-
theoretic models,” in Proceedings of the 16th National Conference on
Artificial Intelligence and the 11th Innovative Applications of Artificial
Intelligence Conference, ser. AAAI ’99/IAAI ’99, 1999, pp. 902–903.

[27] B. D’Ambrosio, “Inference in Bayesian networks,” AI magazine, vol. 20,
no. 2, p. 21, 1999.

[28] R. D. Shachter and M. A. Peot, “Simulation approaches to general
probabilistic inference on belief networks,” in Uncertainty in artificial
intelligence, vol. 5, 1989, pp. 221–231.

[29] R. M. Neal, “Probabilistic inference using Markov chain Monte Carlo
methods,” Technical Report CRG-TR-93-1, University of Toronto, 1993.

[30] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” in IEE Proceedings
F (Radar and Signal Processing), vol. 140, no. 2. IET, 1993, pp.
107–113.

[31] IEEE Std 1636.2-2010, IEEE Trial-Use Standard for Software Inter-
face for Maintenance Information Collection and Analysis (SIMICA):
Exchanging Maintenance Action Information via the Extensible Markup
Language (XML). Piscataway, NJ: IEEE Standards Association Press,
2010.

[32] IEEE P1636.1-2007, IEEE Trial Use Standard for Software Interface for
Maintenance Information Collection and Analysis (SIMICA): Exchang-
ing Test Results and Session Information via the eXtensible Markup
Language (XML). Piscataway, NJ: IEEE Standards Association Press,
2007.

[33] S. Strasser, E. Howard, and J. Sheppard, “An integrated toolset for
ontology-guided diagnostic knowledge discovery,” in AUTOTESTCON,
2012 IEEE. IEEE, 2012, pp. 280–290.

