
Using Continuous-Time Bayesian Networks
for Standards-Based Diagnostics and Prognostics

Logan Perreault, John Sheppard, Houston King, and Liessman Sturlaugson
Department of Computer Science

Montana State University
357 EPS Building, PO Box 173880

Bozeman, Montana 59717
logan.perreault@msu.montana.edu, john.sheppard@cs.montana.edu, houston.king@msu.montana.edu, listurlaugson@gmail.com

Abstract—In this paper we present a proposal for a new
prognostic model to be included in a future revision of the IEEE
Std 1232-2010 Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE). Specifically,
we introduce the continuous time Bayesian network (CTBN) as an
alternative to the previously proposed dynamic Bayesian network
to provide an additional model for prognostic reasoning. We
specify a semantic model capable of representing a CTBN within
the standard and discuss the advantages of using such a model for
prognosis. As with previous work, we demonstrate the feasibility
and necessity of incorporating prognostic capabilities into the
standard.

I. INTRODUCTION

Recently, the US Department of Defense has been funding
research into how to advance and deploy standards-based prod-
ucts supporting equipment diagnostics as well as prognostics
and health management (PHM). As part of the DoD Automatic
Test System (ATS) Framework Working Group, several IEEE
standards have been developed and are being maintained in
support of this initiative. One of the standards—IEEE Std
1232-2010 Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE)—focuses
specifically on defining data exchange formats for diagnostic
models as well as a service interface for working with diag-
nostic reasoners.

Previously, we presented work describing the results of
developing an AI-ESTATE-conformant reasoner implemented
in Java that includes extensions for prognostics [1]. In that
work, we described a new tool, the Standards Based Analy-
sis Platform for Predictive Health and Integrated Reasoning
Environment (SAPPHIRETM), that uses an extension of the
AI-ESTATE Bayesian network model that incorporates tem-
poral components for predicting future failures. The resulting
dynamic Bayesian network (DBN) description included rec-
ommendations for how to enhance AI-ESTATE to incorporate
these temporal components and associated services. In this
paper, we introduce another model for addressing prognostic
requirements that has the advantage of relaxing the discrete
time assumption of a DBN. This relaxation has the benefit
of enabling more realistic temporal predictions as well as
providing a cleaner map to reliability-based models that are
well recognized in the weapon system support community.

Specifically, in this paper we describe how a continuous-
time Bayesian network (CTBN) can be used for fault prog-

nosis. In short, a CTBN is a probabilistic graphical model
corresponding to a multivariate Markov process where con-
ditional independence properties are exploited to “factor” the
Markov process into manageable chunks. We also describe
how the CTBN can be processed through the AI-ESTATE
services (including the new services proposed in [1]). We then
provide an EXPRESS model of the CTBN and illustrate how
it can be defined as a straightforward extension to the DBN
model introduced previously.

II. BACKGROUND

A. AI-ESTATE

AI-ESTATE was created in 1990 as a way to apply artificial
intelligence methods to testing and diagnosis tasks. This work
was started under Project Authorization Request (PAR) 1232,
which granted IEEE Standards Coordinating Committee 20
(SCC20) permission to begin development. Since that time,
work has been done to introduce and improve methods for
exchanging diagnostic reasoner models and a standardized
application programming interface (API) to communicate with
diagnostic reasoners. IEEE Std 1232-2010 [2], the most recent
version of the standard, defines fault trees, D-matrices, logic
models, and Bayesian networks as possible diagnostic reasoner
models. The semantics of these four models are described
using the EXPRESS information modeling language [3], and
have been used to derive eXtensible Markup Language (XML)
schemata based on the International Organization for Standard-
ization’s (ISO’s) Standards for the Exchange of Product model
data (STEP) [4].

Previous work from 2008 evaluated the semantic inter-
operability of AI-ESTATE-conformant diagnostic models [5].
Results showed that the standard allows for effective semantic
modeling in information exchange while maintaining a rea-
sonable engineering burden. In 2009, another study was done
on reasoner interoperability based on the AI-ESTATE service
specification and likewise showed the standard to be effective
[6]. These works were later extended in 2013 by adding
prognostic extensions to the AI-ESTATE implementation of
SAPPHIRE [1]. In particular, a dynamic Bayesian network
(DBN) model was created to support inference over a time
series. This work further demonstrated the diagnostic capa-
bilities of AI-ESTATE and supported the notion of using this
standard for prognostic tasks as well. At the time we published

the SAPPHIRE paper [1], the tool had yet to implement all
of the services defined by the AI-ESTATE standard. Since that
time, however, the remaining services have been added to make
SAPPHIRE fully AI-ESTATE conformant.

B. Bayesian Networks

Both DBNs and CTBNs depend upon Bayesian networks
in some way. Naı̈vely, a full joint probability distribution over
a set of random variables exhibits a state space whose size
is exponential in the number of random variables. Bayesian
networks provide a means to control this complexity through
the exploitation of conditional independence between vari-
ables. In probability, a random variable X1 is said to be
conditionally independent of another variable X2 given Y if
P (X1|Y,X2) = P (X1|Y). The presence of the variable Y
reduces the total complexity of the distribution relative to X1

and X2.

Using these independencies, we formalize a Bayesian
network as follows: a Bayesian network, B, over a set of
random variables, X, is a compact and factored representation
of a joint probability distribution. The network is given as
a directed acyclic graph, G, over nodes Xi ∈ X. In this
representation, each Xi node represents a random variable
and directed edges represent dependencies between variables.
Associated with each node is a conditional probability distri-
bution, P (Xi|Pa(Xi)), where Pa(Xi) represents the parents
of node Xi. Under this definition, it is immediate that the
factored representation can be made explicit as

P (X) =
∏

Xi∈X

(Xi|Pa(Xi)).

C. Dynamic Bayesian Networks (DBNs)

A dynamic Bayesian network (DBN) is an extension to
Bayesian networks that explicitly models probability distribu-
tions over sequential data [7]. A dynamic Bayesian network
is a tuple (B0,B2T): B0 is a Bayesian network over an initial
distribution, X0, and B2T is a Bayesian network that provides
a conditional transition model from Xi to Xi+1. In a DBN, B0
defines the probability distribution over the initial time step or
‘slice’ of the sequence being modeled, while B2T defines the
distribution between consecutive slices of the sequence. Under
this representation, intra-slice arcs connect variables within a
slice, and inter-slice arcs connect variables in one slice to the
next.

D. CTBNs

A continuous-time Bayesian network is a factored repre-
sentation of continuous-time Markov processes [8]. A continu-
ous time Markov process, X with state space {x1, x2, ..., xN}
is a random variable, which is defined as an initial probability
distribution over these states, PX

0 , and a Markovian transition
model (usually represented as an intensity matrix, QX) of the
form:

QX =


−q1 q12 · · · q1N
q21 −q2 · · · q2N

...
...

. . .
...

qN1 qN2 · · · −qN

 ,

with qi =
∑

i 6=j qij and qi, qij ≥ 0. Each qij is a parameter
that represents the instantaneous rate at which X may transi-
tion from state xi to xj . Each qi represents the instantaneous
rate at which X may leave xi for any other state. From this,
the probability density function and cumulative distribution
for X(t) staying equal to xi are f(t) = qi exp(−qit) and
F (t) = 1 − exp(−qit) respectively with t being the amount
of time spent in state xi, making the probability of remaining
in a state decrease exponentially with respect to time.

The expected sojourn time for state xi is 1/qi. Each row
is constrained to sum to zero, meaning that the transition
probabilities from state xi can be calculated as θi,j = qij/qi,
∀j, i 6= j. Because the sojourn time uses the exponential
distribution, which is “memory-less,” the Markov process
model exhibits the Markov property, namely, that all future
states of the process are independent of all past states of the
process given its present state. In other words,

P (X(t+ ∆t)|X(t), X(s)) = P (X(t+ ∆t)|X(t))

for 0 < s < t < ∞. Note that the model does not specify
a particular time unit for the sojourn times. The modeler is
responsible for choosing an appropriate time-scale (minutes,
hours, days, etc.) for the specific application. The parameters
are then set and interpreted accordingly.

With this, a continuous-time Bayesian network can be
defined. Let X be a set of continuous-time Markov processes,
X1, . . . , Xn, each of which can take on a discrete set of values.
A continuous time Bayesian network, N , over X consists of
two components. First, an initial distribution P 0

X, which can
be specified as a Bayesian network B over X. Second, a
continuous transition model, specified as a directed graph G
whose nodes are Xi ∈ X and a set of conditional intensity
matrices, QXi|Pa(Xi). For each Xi, there is a corresponding
conditional intensity matrix for every combination of states that
Pa(Xi) can take on. Each of these matrices are continuous
time Markov processes representative of the behavior of Xi

when Pa(Xi) are in a particular state combination.

CTBNs have found use in wide variety of temporal appli-
cations, including the following:

• Robot monitoring [9],

• Modeling server farm failures [10],

• Modeling social network dynamics [11],

• Modeling sensor networks [12],

• Building intrusion detection systems [13], [14],

• Predicting the trajectory of moving objects [15],

• Diagnosing cardiogenic heart failure and anticipating
its likely evolution [16].

One of the key concepts behind the CTBN is the use
of conditional intensity matrices. That is, the dynamics of a
child node can change, depending on the states of the parent
nodes. Figure 1 shows an example two-node CTBN. The XY
node is a traditional Markov process, while the ABC node
is a conditional Markov process in which the conditionally
intensity matrices are different given the different states of
XY .

Fig. 1: Example Two-Node CTBN

E. CTBNs versus DBNs

As previously described, DBNs directly model time-sliced
domains; however, these models have several potential failings.
Consider a system where the health state of the components of
the system change at differing rates (which is highly likely).
For example, a particular capacitor in a circuit may fail
ten times more often than any other component. To model
such a system for diagnosis and prognosis effectively with
a DBN, the estimates of the states of the system must be
propagated at the finest rate of evolution present in the system,
increasing the computational cost of reasoning over such a
system. Furthermore, consider a system where observations
are made at irregularly spaced intervals, such as occurs with
unscheduled maintenance and testing or onboard monitoring
at different sample rates. To apply such evidence to a DBN,
the model may need to be sliced either incredibly finely, or
a discretization scheme may need to be applied, resulting
in a of loss of information from the collected evidence and
observations.

Continuous-time Bayesian networks, as their name sug-
gests, bypass the discretely-sliced structure inherent in DBNs,
while maintaining an analogue of the factored representation
present in Bayesian Networks. These networks inherently
model the temporal dynamics of a system allowing for infer-
ence at arbitrary points in the future and allowing evidence to
be propagated at arbitrary points through time. This enhanced
temporal capability motivates the use of CTBNs for diagnostics
and prognostics.

III. AI-ESTATE CTBN MODEL

Similar to [1], in this paper we propose an extension to the
current AI-ESTATE standard to use another reasoner model.
Specifically, we introduce the CTBN model that may be more
suited for particular prognostics tasks than a DBN. We present
a new EXPRESS model for modeling CTBNs and describe
how the Reasoner Manipulation Services can interface with
such a model for the purposes of diagnostics and prognostics.

A. EXPRESS Model

Similar to our description above, recent applications of
artificial intelligence to fault prognosis have involved using
Bayesian inference with temporal models to drive the progno-
sis. The AI ESTATE CTBN captures information necessary
for creating prognostic continuous time Bayesian networks.
Assumptions made with this model include that Markov pro-
cesses corresponding to tests can only depend on diagnosis
variables. In addition, the intensity matrices are to be fully
explicated, assuming an exponential distribution, and array
position in the matrix rows corresponds to array position in
the dependence array. Note that the exponential distribution
assumption can be relaxed using phase type distributions [17].

A variety of new entities and model constraints were
necessary to specify the CTBN model, although only a subset
of the more important components is discussed here. The
complete EXPRESS-G model for a CTBN is shown in Figure
2.

Two major components required for CTBNs to perform
diagnostic or prognostic tasks are the CTBNDiagnosis and
CTBNTest entities. The CTBNDiagnosis entity corresponds
to an individual diagnosis within the CTBN model. Since
CTBNDiagnosis is a subtype of Diagnosis in the original
AI-ESTATE Common Element Model, it inherits all of the
characteristics of the Diagnosis entity. Similar to the AI-
ESTATE Bayesian network model, a CTBNDiagnosis can be
subtyped as a CTBNFault or a CTBNFailure. The CTBNTest
entity corresponds to an individual test within the CTBN
model. Here again, CTBNTest is a subtype of the AI-ESTATE
Test and therefore inherits all the characteristics of a diagnostic
test.

Within the original AI-ESTATE model, tests and diagnoses
indicate the corresponding outcomes are optional; however,
they are only optional if they do not occur at the leaves of the
model. In a CTBN, this does not make sense since intensity
matrices will be defined to indicate how states evolve in time.
The states correspond to these outcomes; therefore, for both

Fig. 2: AI ESTATE CTBN EXPRESS-G diagram

CTBNTest and CTBNDiagnosis (and its subtypes), outcomes
are required at all levels.

Another crucial component for the CTBN is the Intensi-
tyMatrix entity. Figure 3 shows the EXPRESS code for an
intensity matrix as encapsulated in the CTBN model. The
IntensityMatrix entity directly represents any Qx within a

CTBN. This entity specifies the set of rows in the intensity
matrix of the Markov process, thereby defining the transition
probabilities between states. It is defined as a list of lists to
impose order on the entries in the matrix. This list of lists has
the ability to represent an unbounded size ordered array. To
ensure that the matrix is square, a model constraint is imposed

ENTITY IntensityMatrix;
matrixRows :

LIST [2:?] OF IntensityRow;
WHERE

isSquare :
squareCheck(SELF.matrixRows);

properDiagonal :
nonPosDiag(SELF.matrixRows);

properOffDiagonal :
nonNegOffDiag(SELF.matrixRows);

END_ENTITY;

Fig. 3: IntensityMatrix Entity EXPRESS Specification

that verifies that each sublist is the same length as the outer list.
Additional model constraints are also applied that ensure the
values contained within the matrix form a valid representation
of a CTBN intensity matrix. In particular, rules are in place to
ensure that diagonal entries are negative, off-diagonal entries
are positive, and rows sum to zero. As shown in Figure 4.
the nonNegOffDiag constraint iterates over all non-diagonal
cells, raising a flag if a negative cell is encountered. The
non-positive diagonal constraint (not shown) is implemented
similarly. Figure 5 shows that the row sum constraint simply
sums the given row and raises a flag if the result is not zero.

A notable addition to the CTBN EXPRESS model is the
inclusion of the processNames attribute. The first benefit of
such an attribute is obvious: there is a central location that
is used to name all Markov processes (tests and diagnoses)
within the model. The second more subtle benefit comes from
processNames being a list, which imposes an ordering upon
the names.

Within a CTBNTest there is one conditional Intensity-
Matrix per combination of values that the parent CTBN-
Diagnoses can assume. From this, there must be a way
to identify the matrix of interest based upon the current
state of the parents. By including the processNames list, a
standardized ordering is imposed upon the testDynamics of
all CTBNTests: the matrices should be stored by iterating
through the states of the parents, with the parents aligned
according to the processNames list. For example, consider a
CTBN with processNames = [A,B,C,D]. Let A-C be diagnoses
and let D be a test which depends only on A and C. If
A has 2 possible states and C has 3 possible states then
the IntensityMatrices in testDynamics must be ordered as:
[QA0B0

, QA1B1
, QA0B2

, QA1B0
, QA0B1

, QA1B2
,]. While this

constraint is not included explicitly within the EXPRESS
model, it will be programmatically enforced.

It should be noted that the ordering of conditional prob-
ability tables in the Bayesian Network Model currently has
no standardized way to describe and enforce an ordering on
the structure of the tables, leading to potential ambiguity
when exchanging data models using the standard. The addition
of a similar ‘variableNames’ attribute will be suggested for
inclusion in a future version of the standard to address this
shortcoming.

FUNCTION nonNegOffDiag
(matrix:LIST OF IntensityRow):BOOLEAN;
LOCAL

i,j : INTEGER;
flag: BOOLEAN := TRUE;
cell : REAL;
row : IntensityRow;

END_LOCAL;

REPEAT i := LOINDEX(matrix)
TO HIINDEX(matrix);

REPEAT j := LOINDEX(matrix)
TO HIINDEX(matrix);

IF (i = j) THEN
row := matrix[i];
cell := row[j];
IF (cell < 0) THEN

flag := FALSE;
END_IF;

END_IF;
END_REPEAT;

END_REPEAT;
RETURN(flag);

END_FUNCTION;

Fig. 4: EXPRESS Non-Negative Off-Diagonal Constraint
Function

FUNCTION rowSum
(row:LIST of REAL):REAL;
LOCAL

sum : REAL := 0.0;
i : INTEGER;

END_LOCAL;

REPEAT i := LOINDEX(row) TO HIINDEX(row);
sum := sum + row[i];

END_REPEAT;
RETURN(sum);

END_FUNCTION;

Fig. 5: EXPRESS Row Sum Constraint Function

B. AI-ESTATE Service Extensions

The AI-ESTATE extensions added for DBN-based prog-
nostic reasoning in our previous work are nearly identical
to the extensions required for CTBN-based reasoning [1].
The most notable of these are the changes to the Reasoner
Manipulation Services. These services will be incorporated
into a future CTBN-based AI-ESTATE-conformant tool with
the expectation that they will eventually be adopted into the
standard. For prognostic use with a CTBN, the applyActions
service must be modified to accept time series based data,
where test results may only be valid for particular intervals.
To support the inference process, the getDiagnosticResults
service must be modified to include an additional parameter,
specifying the future timestamp at which to reason about the
diagnostic state of the system. Furthermore, several CTBN

inference algorithms support queries regarding the estimated
time to state transitions, which could inform the introduction
of a new service, getTimetoFailure. This function could either
be passed a particular CTBNFailure to calculate, or if omitted,
the service could return the first failure to occur.

C. CTBN Classification and Inference

One of the reasoning tasks that must be accomplished
with an AI-ESTATE conformant tool is the computation of
diagnoses and, with our extensions from [1], prognoses. With
the structure imposed by the EXPRESS model, this compu-
tation becomes strongly analogous to the traditional idea of
classification from machine learning, where CTBNDiagnoses
represent a class variable to be inferred and where CTBNTests
represent feature variables. For our purposes, we must classify
the diagnosis variables in a model, that is, determine the most
likely diagnosis (or future prognosis) given a variety of test
information.

Classification in CTBNs has been subject to past re-
search. In 2012, two network structures where introduced:
the continuous-time naive Bayes classifier and the continuous-
time tree augmented naive Bayes classifier. [18]. This work
was extended in 2014, with the introduction of the open
CTBNCToolkit [19]. This open toolkit implements structure
and parameter learning for CTBN classifiers, as well as a
specialized inference algorithm which performs the task of
classification. Unfortunately, this state-of-the-art classifier car-
ries a strong requirement: complete knowledge of all features
(CTBNTests) over the entire history of the object of interest. A
centralized and standardized repository of testing information
is often, at best, a lofty goal for many real-world diagnostic and
prognostic systems. Whether or not a more efficient algorithm
can be developed for the task of classification in the absence
of complete feature information is an open research question.

In light of this, traditional inference algorithms will be our
preferred method for performing classification. Exact inference
in CTBNs has been shown to be NP-Hard, even when the
initial distribution is known. [20] A wide variety of approxi-
mate inference algorithms for CTBNs have been introduced,
including the following:

• Importance sampling [20],

• Rejection sampling [21],

• Gibbs sampling [22],

• Metropolis-Hastings [23],

• Expectation propagation [24],

• Mean-field variational approximation [25],

• Belief propagation [26],

• Particle filtering [27].

The specific algorithm to be used as part of this work is, as
of yet, undecided. However, it should be noted that the AI-
ESTATE standard permits the specific choice of an engine
to be distinct from the CTBN model and interface, allowing
the selection of an algorithm to be made independent of the
representation of the CTBN.

IV. SOFTWARE IMPLEMENTATION

As part of a Navy-funded SBIR, an existing implementa-
tion of a CTBN has been converted from C# to Java. This was
done to bring the code in-line with the SAPPHIRE project
discussed in previous work [1]. In addition to the CTBN code,
work has been done to integrate data conforming to other
standards into the project, including IEEE Std 1636.1-2013
Software Interface for Maintenance Information Collection
and Analysis (SIMICA): Exchanging Test Results and Session
Information via the Extensible Markup Language (XML) (Test
Results) [28] and IEEE Std 1636.2-2010 Software Interface for
Maintenance Information Collection and Analysis (SIMICA):
Maintenance Action Information (MAI) [29]. We have imple-
mented code to parse and perform schema validation for Test
Results and MAI data. Continued efforts are being made to
use information from these files to set evidence and perform
model learning for the CTBN via the AI-ESTATE services.

V. FUTURE WORK

We plan to continue work on the standards-based CTBN
implementation. Although functional, the CTBN code is not
yet standards-conformant (even assuming all of our proposals
would be accepted). We plan to make the necessary modifica-
tions so that interactions with the model will be done via the
AI-ESTATE services. We also plan to store representations of
CTBN models in the form of the AI ESTATE CTBN model
proposed in this paper. The format would be based on an
XML schema derived from the EXPRESS model, similar to
the XML schemata currently being used by AI-ESTATE. This
would provide a working demonstration of an implemented
AI ESTATE CTBN that may support the decision to adopt it.

Additionally, the CTBN model itself will eventually need
to be imported from and exported to a standards-conformant
XML file. In the case of importing, the XML file will need
to be validated against the schema, imported, and finally the
model will need to be programmatically validated against
the semantics of the defined EXPRESS model. In the case
of exporting, the reverse process occurs; first the model is
validated, then exported, and finally the resulting XML file
is validated against the schema.

Often, CTBN applications described in the literature use
the notion of a trajectory. A trajectory is a mapping of
state transitions over time. For example, a component in
a diagnostic system could transition from an initial state
of GOOD to DEGRADED at some time t, and then at a
later time, s transition from DEGRADED to BAD. These
state changes could be encapsulated in a trajectory such as
[(0,GOOD), (t,DEGRADED), (s,BAD)]. It would be pos-
sible to encapsulate such structures as additional EXPRESS /
XML objects within the AI-ESTATE standard. Once encapsu-
lated in this way, services could be designed specifically to
handle trajectories as a special kind of evidence specific to
prognostic reasoning, where a series of state transitions over
time can inform the reasoning process. Given constraints on
the times at which transitions could occur, trajectories could
serve the same function within the context of DBNs as well
as CTBNs.

Finally, upon the completion of the CTBN project, we
hope to compare its performance to that of the DBN. This

would provide benchmarks for a variety of prognosis tasks
for two independent, standards-conformant reasoner models.
This information may elucidate which tasks are biased toward
CTBNs and those that work better with DBNs. Since both
models will be accessible via AI-ESTATE, client software
will easily be able to change the reasoner model to better
suit the problem. Furthermore, this provides added options
and capabilities for satisfying the prognostic data (PROD)
and prognostic service (PROS) elements of the DoD ATS
Framework.

VI. CONCLUSION

This work primarily focuses on the introduction of a
new CTBN reasoner model as a possible extension to IEEE
Std. 1232-2010 (AI-ESTATE). Like previous work involving
DBNs, the addition of a CTBN model provides AI-ESTATE
with the ability to perform prognosis tasks in addition to
diagnosis. The primary contribution that CTBNs offer is the
ability to perform inference over a continuous time interval, as
opposed to using discrete time slices. This is especially useful
when evidence is provided at inconsistent time intervals and
avoids having to unroll a network using an unnecessarily small
granularity of time.

Work relating to the CTBN model further supports the
notion that AI-ESTATE can and should be used for prognosis.
Models such as the CTBN presented in this paper and DBN
presented in [1] are currently being used successfully for
prognostic tasks. Standardization efforts should strive to meet
the requirements for these applications. This paper shows the
feasibility of creating EXPRESS-based models for prognostic
reasoners, further demonstrating the benefits of incorporating
prognostic capabilities into the standard.

ACKNOWLEDGMENTS

This project was supported as an SBIR under US Navy
contract N132-091-0713. We thank Kihoon Choi and Deepak
Haste of Qualtech Systems Inc. for their collaboration with
this SBIR.

REFERENCES

[1] L. Sturlaugson, N. Fortier, P. Donnelly, and J. W. Sheppard, “Im-
plementing AI-ESTATE with prognostic extensions in Java,” in AU-
TOTESTCON, 2013 IEEE. IEEE, 2013, pp. 1–8.

[2] IEEE Std. 1232-2010, IEEE Standard for Artificial Intelligence Ex-
change and Service Tie to All Test Environments (AI-ESTATE), Pis-
cataway, NJ: IEEE Standards Association Press, 2010.

[3] ISO 10303-11:1994, Industrial Automation Systems-Product Data Rep-
resentation and Exchange-Part 11: The EXPRESS Language Reference
Manual., Geneva, Switzerland: The International Organization for Stan-
dardization, 1994.

[4] ISO 10303-28:2007, Industrial Automation Systems-Product Data Rep-
resentation and Exchange-Part 28: XML Representation of EXPRESS
Schemas and Data Using XML Schemas, Geneva, Switzerland: The
International Organization for Standardization, 1994.

[5] J. W. Sheppard, S. G. Butcher, P. J. Donnelly, and B. R. Mitchell,
“Demonstrating semantic interoperability of diagnostic models via AI-
ESTATE,” in Aerospace Conference, 2009 IEEE. IEEE, 2009, pp.
1–13.

[6] J. W. Sheppard, S. G. Butcher, and P. J. Donnelly, “Demonstrating
semantic interoperability of diagnostic reasoners via AI-ESTATE,” in
Aerospace Conference, 2010 IEEE. IEEE, 2010, pp. 1–10.

[7] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT press, 2009.

[8] U. Nodelman, C. R. Shelton, and D. Koller, “Continuous time Bayesian
networks,” in Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 2002, pp.
378–387.

[9] B. Ng, A. Pfeffer, and R. Dearden, “Continuous time particle filtering,”
in International Joint Conference on Artificial Intelligence (IJCAI),
2005, pp. 1360–1365.

[10] R. Herbrich, T. Graepel, and B. Murphy, “Structure from failure,” in
Proceedings of the Second USENIX Workshop on Tackling Computer
Systems Problems with Machine Learning Techniques. USENIX
Association, 2007, pp. 1–6.

[11] Y. Fan and C. Shelton, “Learning continuous-time social network dy-
namics,” in Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence (UAI). AUAI Press, 2009, pp. 161–168.

[12] D. Shi, X. Tang, and J. You, “An intelligent system based on adaptive
CTBN for uncertainty,” Intelligent Automation & Soft Computing,
vol. 16, pp. 337–351, 2010.

[13] J. Xu and C. R. Shelton, “Continuous time Bayesian networks for host
level network intrusion detection,” in Machine Learning and Knowledge
Discovery in Databases. Springer, 2008, pp. 613–627.

[14] J. Xu and C. Shelton, “Intrustion detection using continuous time
Bayesian network,” Journal of Artificial Intelligence Research (JAIR),
vol. 39, pp. 745–774, 2010.

[15] S. Qiao, C. Tang, H. Jin, T. Long, S. Dai, and Y. Ku, “PutMode: pre-
diction of uncertain trajectories in moving objects databases,” Applied
Intelligence, vol. 33, pp. 370–386, 2010.

[16] E. Gatti, D. Luciani, and F. Stella, “A continuous time Bayesian
network model for cargiogenic heart failure,” Flexible Services and
Manufacturing Journal, pp. 1–20, 2011.

[17] U. Nodelman, C. R. Shelton, and D. Koller, “Expectation maximization
and complex duration distributions for continuous time Bayesian net-
works,” in Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, 2005.

[18] F. Stella and Y. Amer, “Continuous time Bayesian network classifiers,”
Journal of Biomedical Informatics, vol. 45, no. 6, pp. 1108–1119, 2012.

[19] D. Codecasa and F. Stella, “Ctbnctoolkit: Continuous time bayesian
network classifier toolkit,” arXiv preprint arXiv:1404.4893, 2014.

[20] Y. Fan, J. Xu, and C. R. Shelton, “Importance sampling for continuous
time bayesian networks,” The Journal of Machine Learning Research,
vol. 11, pp. 2115–2140, 2010.

[21] J. C. Weiss, S. Natarajan, and C. D. Page Jr, “Learning when to reject
an importance sample.” in AAAI (Late-Breaking Developments), 2013.

[22] T. El-Hay, N. Friedman, and R. Kupferman, “Gibbs sampling
in factorized continuous-time markov processes,” arXiv preprint
arXiv:1206.3251, 2012.

[23] B. Miasojedow, W. Niemiro, J. Noble, and K. Opalski, “Metropolis-
type algorithms for continuous time bayesian networks,” arXiv preprint
arXiv:1403.4035, 2014.

[24] U. Nodelman, C. R. Shelton, and D. Koller, “Expectation maximiza-
tion and complex duration distributions for continuous time Bayesian
networks,” arXiv preprint arXiv:1207.1402, 2012.

[25] I. Cohn, T. El-Hay, N. Friedman, and R. Kupferman, “Mean field
variational approximation for continuous-time bayesian networks,” The
Journal of Machine Learning Research, vol. 11, pp. 2745–2783, 2010.

[26] T. El-Hay, I. Cohn, N. Friedman, and R. Kupferman, “Continuous-time
belief propagation,” 2010.

[27] B. Ng, A. Pfeffer, and R. Dearden, “Continuous time particle filtering,”
in International Joint Conference on Artificial Intelligence, vol. 19.
LAWRENCE ERLBAUM ASSOCIATES LTD, 2005, p. 1360.

[28] IEEE Std. 1636.1-2013, Software Interface for Maintenance Informa-
tion Collection and Analysis (SIMICA): Exchanging Test Results and
Session Information via the eXtensible Markup Language (XML), Pis-
cataway, NJ: IEEE Standards Association Press, 2013.

[29] IEEE Std. 1636.2-2010, Software Interface for Maintenance Informa-
tion Collection and Analysis (SIMICA): Exchanging Maintenance Ac-
tion Information via the Extensible Markup Language (XML), Piscat-
away, NJ: IEEE Standards Association Press, 2010.

