
Deriving Prognostic Continuous Time Bayesian
Networks from D-matrices

Logan Perreault, Monica Thornton, Shane Strasser, and John W. Sheppard
Computer Science Department

Montana State University
Bozeman, MT 59717

{logan.perreault, monica.thornton, shane.strasser, john.sheppard}@cs.montana.edu

Abstract—Probabilistic graphical models are widely used in
the context of fault diagnostics and prognostics, providing a
framework to model the relationships between faults and tests
in complex systems. Bayesian networks have sufficient repre-
sentational power as a model for system-level diagnosis but
are inadequate for domains involving prognosis. In order to
perform fault prognostics, a model must have the capability
to perform probabilistic reasoning over time. One model well
suited to this problem is the continuous time Bayesian network
(CTBN). In this paper, we propose a method of constructing a
continuous time Bayesian network from a D-matrix, a common
matrix representation of a diagnostic model. Additionally, we
provide procedures for parameterizing the CTBN using reliability
information such as the mean time between failures, as well as the
false alarm and non-detect probabilities. Through experiments
on two different datasets, we demonstrate the correctness of our
parameterization process. We also explore the ways in which
applying evidence impacts the query results over the network.
Finally, we demonstrate the real–world applicability of this
approach by performing incremental tests for the purpose of
diagnosing and prognosing a fault in the system.

I. INTRODUCTION

As systems increase in complexity and we become more
dependent on those systems, accurate testing procedures and
fault diagnosis become a significant concern. Within an
aerospace context, an unobserved faulty component may result
in loss of mission, or more catastrophically, loss of life.
The ability to predict faults before they occur is not only a
worthwhile problem, but it is also an extremely difficult one.

A diagnostic model requires information about the system
as provided by tests, where the results of those tests indicate
the likely presence or absence of faults in the system [1].
In addition to the difficulty of designing tests to correctly
detect and isolate faults, one must also consider the impact
of imperfect testing in the form of false alarm and non-
detect events. False alarms and non-detects introduce false
indication and false assurance into the testing process, further
complicating the process of diagnosing faults.

Probabilistic graphical models provide a convenient means
for performing diagnosis in complex systems, as reasoning
about the model reflects reasoning about uncertainties in the
actual system. This allows for the implementation of multiple
diagnostic strategies to evaluate the one best suited for the
system [2]. These models are very useful but difficult to
build, often requiring the application of learning algorithms
or domain knowledge.

If fault diagnosis is a difficult problem, harder still is
forecasting what problems are likely to occur in the future.
This is the problem of prognostics. Bayesian networks (BNs)
have difficulty with this task, as they are incapable of dealing
with continuous time. The continuous time Bayesian network
(CTBN) is a model that is well suited for applications requiring
reasoning in continuous time, and the focus of our work is
on using them in prognostic contexts. This paper presents a
method of building a CTBN using a D-matrix, an adjacency
matrix that encodes the relationships between faults and tests in
the system. Unfortunately, the D-matrix, while useful for con-
structing networks, does not contain the necessary information
to parameterize the network. To remedy this, we also propose
a method for parameterizing the CTBN using information
readily available from historical data or domain knowledge.

II. BACKGROUND

Prior to describing our proposed method for constructing
prognostic CTBNs, we provide a brief overview of the related
concepts required to describe the contributions of this work.

A. Notation

Before going into any technical detail, we first describe
the notation we will use throughout the paper. A capital letter
with a value in parentheses, such as X(t), is used to describe a
state instantiation for variable X at time t. A specific state for
variable X is often denoted with a corresponding lowercase xi,
where i is the discrete index of the state. Capital letters Fi and
Tj are used to denote faults and tests respectively, where the
subscript represents the index of the component in the system.
A hollowed Fi is the vector of faults that are detected by a test
Ti, therefore Fi[j] signifies the jth fault detected by Ti. λi and
µi are used to describe the failure and repair rates respectively
for fault Fi. Similarly, NDi and FAi are the non-detect and
false alarm probabilities respectively associated with test Ti,
which describe the probabilities of the test failing to do its
job. NDi,j and FAi,j also describe non-detect and false alarm
probabilities, but do so for the specific test Ti and fault Fi[j]
pair. Rather than describing the probability of complete test
failure, NDi,j and FAi,j capture the notion that a test may
fail to detect a single fault, while remaining operational. These
symbols and their meanings are summarized in Table I.

B. D-matrix

To perform system diagnosis and prognosis, we require
certain information about the current state of the unit under

TABLE I. TABLE OF NOTATION

Fi , The ith fault in the network
Ti , The ith test in the network
Fi , The vector of faults monitored by Ti (the parent set of Ti)
λi , Failure rate for fault Fi

µi , Repair rate for fault Fi

NDi , The non-detect probability for test Ti

FAi , The false alarm probability for test Ti

NDi,j , The non-detect probability for the test-fault relationship
between Ti and Fi[j]

FAi,j , The false alarm probability for the test-fault relationship
between Ti and Fi[j]

test (UUT). This information is collected via tests performed
on the UUT, and the outcome of these tests indicate the
presence or absence of faults in the system [1]. In a complex
system, this interplay of tests and faults can make diagnosis
and maintenance difficult - as a single fault may be monitored
by multiple tests, and a single test may monitor multiple faults.
To manage this complexity, the relationships between the faults
and tests can be represented explicitly and compactly in an
adjacency matrix that we call a D-matrix. Within this matrix,
the columns correspond to tests and the rows correspond to
the potential failures observed by the tests. The D-matrix, has
been adopted by a number of modeling tools used to perform
fault diagnosis, and the aerospace community is one of the
major communities using these tools [3].

Constructing a D-matrix involves assembling the diagnostic
signatures for every potential fault within the UUT. Given a
set of faults F and a set of tests T, we can define the function
eval(Fi, Tj) as follows:

eval(Fi, Tj) =

{
1, if Tj detects Fi
0, otherwise.

For some fault Fi, when we apply this function to each
Tj ∈ T, the result is the diagnostic signature Fi =
[eval(Fi, T1), . . . , eval(Fi, T|T|)] for that fault [3], [4]. This
diagnostic signature is constructed for each Fi ∈ F. Each
signature Fi forms the ith row of the D-matrix.

The relationships between tests and faults, described by
a D-matrix, do provide information about how to diagnose
the UUT, but they do not offer the complete picture. The
logical relationships between the tests and faults are codified
in the D-matrix, but probabilistic information is not captured
by this format [4]. Similarly, the D-matrix does not provide
information on fault-to-fault or test-to-test relationships. For
these reasons, although the D-matrix is used to assist in
producing a network structure as detailed in Section IV of this
work, additional information is required to parameterize the
model used to perform diagnosis and prognosis on the UUT.

C. Continuous Time Bayesian Networks

A continuous time Markov process (CTMP) is a model
describing a set of discrete state variables X that evolves in
continuous time. This model consists of an initial distribution
over the state space P (X(0)), and an intensity matrix QX
that describes state transition behavior. Each entry qi,j in
row i, column j of QX provides the rate parameter for an
exponential distribution that indicates how quickly X will
transition from state xi to state xj . A diagonal entry qi,i is

constrained to be the negative sum of the remaining entries in
the row, forcing each row to sum to zero. The absolute value
of the diagonal entry in row i is the rate for an exponential
distribution indicating when the system will transition away
from state i and into any other state.

Unfortunately, the size of the state space of X is expo-
nential in the number of variables in the system, which in turn
implies that the size of the initial distribution P (X(0)) and the
intensity matrix QX are exponential as well. CTBNs factor
CTMPs by taking advantage of conditional independencies
between variables in the system [5]. These independencies are
encoded using a directed graphical network G, where each
node represents a variable in the system. An arc from node A
to node B indicates that the behavior of variable B depends
on the state of A. Note that the graph G in a CTBN factors
a Markov process in much the same manner as a directed
acyclic graph in a Bayesian network factors a joint probability
distribution. One key difference, however, is that the graphical
structure of the CTBN need not be acyclic.

This factored representation provides significant modeling
advantages in that, rather than requiring parameterization of a
model with a single exponentially sized probability distribution
and intensity matrix, define separate local probability distribu-
tions and intensity matrices over the domain of each variable
individually. The parents of a node in the graph influence the
behavior of the node, so a set of intensity matrices are defined
for each state instantiation to a node’s parents only. These
matrices are conditioned on the states of the parents, and are
therefore referred to as conditional intensity matrices (CIMs).

Performing exact inference in CTBNs requires the use of
the amalgamation operation, which combines two nodes in the
network into a single node over an expanded state space. If all
nodes in a CTBN are amalgamated, the result is the original
unfactored CTMP, which allows for exact inference using
the matrix exponential operation. Unfortunately this expansion
process results in an initial distribution and intensity matrix
that is exponential in size, which nullifies the benefits gained
by factorization. To bypass this issue, several approximate
inference algorithms have been developed for CTBNs, con-
sisting of both variational and sample-based methods. These
algorithms provide a means to infer approximately correct
information from the network within a shorter period of time.

Diagnostics and prognostics can be achieved by inferring
the state of faults within a model. To represent existing
knowledge about a system, evidence may be set to indicate
known states. Traditionally, reliability models consist of a
network with fault and test nodes. In this case, evidence is
always set on the test nodes that describes the test outcomes,
and the state of faults is inferred. In some cases there are
effects that depend on faults, which can also be inferred from
the test results via the fault nodes. For CTBNs, evidence and
queries can be applied over the course of time. This means
that evidence may describe the state of a test at a particular
point in time, or may indicate the state of a test of an entire
interval of time. Similarly, queries about faults, effects, or even
unknown tests can be made that request probabilities over
specified periods of time.

D. Noisy-OR

Although the size of the probability distributions and inten-
sity matrices are reduced to be linear in the size of the variable,
the total number of CIMs are still exponential in the number of
parents. This representational complexity can be ameliorated
in part through the use of a Noisy-OR gate, which is used to
model disjunctive interaction. Disjunctive interaction occurs
when at least one condition is sufficient to cause an event and
the likelihood of that event does not decrease when more than
one of the conditions transpire concurrently [6]. This model
provides a reduction in the number of necessary parameters,
which has several practical benefits. The disjunctive interaction
captured by the Noisy-OR model provides savings in storage
space, simplified knowledge acquisition, and the potential for
accelerated evidence propagation [7].

The Noisy-OR model is a generalized version of the
logical OR gate, with the additional capability to model non-
determinism through the addition of probabilistic information.
To describe the Noisy-OR model in greater detail, we start with
the familiar OR gate model which has inputs U1, U2, . . . , UN
and output X . If each Ui is treated as an input line that leads
to the Noisy-OR gate, we can associate a non-deterministic
line failure function Ni with each input line. Ni takes as input
the Ui values, and outputs a U ′i value [8]. This line failure
function provides the opportunity for events not modeled in
the system to have an impact on the output X . In this way, the
Noisy-OR gate provides a model with greater representational
power, capable of accounting for non-deterministic disjunctive
interactions.

The Noisy-OR model has demonstrated utility in the con-
text of BNs, where it has been used to simplify the modeling
task by reducing the amount of information required to specify
the relationships between causes and effects [8], [9]. Reducing
required information has the benefits not only of reducing
complexity, but also of being a more accurate reflection of the
limited amount of information often available in real–world
scenarios. Although work to date has primarily been in the
realm of BNs, a recent adaptation to the Noisy-OR gate model
allows it to be used in the contexts of CTBNs as well [10]. In
this case, while normally the number of CIMs for a node is
exponential in the number of parents, Noisy-OR reduces this
set to be linear.

III. RELATED WORK

In certain diagnostic environments, the use of probabilistic
graphical models is a well-established method of modeling
systems with complex interactions. The probabilistic com-
ponent of these models allows for assessing the likelihood
of various scenarios, providing a context-sensitive method
for evaluating the interactions in these systems. Within the
realm of fault diagnostics, the BN has been adopted widely
for numerous practical applications. The advantage gained by
using BNs is that they can model a joint probability distribution
while exploiting conditional independence properties. This
effectively reduces the state space of the problem, and therefore
the computational costs associated with inference [6].

In order to reap these benefits, however, we are faced with
the problem of constructing the model. Model construction
is often accomplished either via learning from historical (or

simulated) data or by building the model by hand using domain
knowledge [4]. While both of these methods are effective,
they can be prohibitively expensive in terms of the time and
resources required. An attractive alternative is to derive these
models from the kinds of diagnostic models already used in
the UUT, and work has been done to this end with BNs [4],
[11], [12].

For all of their advantages in combating representational
complexity, BNs are not without their limitations. By design,
BNs reason about static processes. While this is often sufficient
for performing diagnostics, the task of prognostics requires
that a system is modeled with respect to time. To avoid this
limitation, dynamic Bayesian networks (DBNs) have been
developed as an extension to static Bayesian networks that
are capable of modeling system change in discrete time. By
using multiple copies of a static BN, DBNs provide a method
for modeling time indirectly, without changing the semantics
of the underlying model.

DBNs have been successfully applied to many prognostic
tasks. McNaught and Zagorecki used DBNs to model equip-
ment that deteriorates over time and is monitored by imper-
fect sensors [13]. They consider multiple repair policies, and
investigate how this effects the ability to inform maintenance
decisions. DBNs have also been applied to the task of online
health estimation [14]. In this case, a DBN is learned during
an off-line data collection phase, and the resulting model is
used in conjunction with routinely polled sensors to predict
the remaining useful life of the system.

In addition to monitoring system health, DBNs have also
demonstrated utility for making predictions about complex
medical domains. Work has been done to use DBNs to
construct prognostic models for clinical patient management
[15]. In their work with carcinoid patients, vanGerven et al.
were able to construct models that took into account temporal
dynamics, as well as statistical data, domain literature, expert
knowledge and causal factors in order to make predictions
about the health state of the patient through time.

The IEEE Std 1232-2010 Standard for Artificial Intelli-
gence Exchange and Service Tie to All Test Environments
(AI-ESTATE) was introduced to provide a shared framework
for testing and diagnostic applications that make use of ar-
tificial intelligence (AI) [16]. Recent work has been done to
incorporate DBNs into the AI-ESTATE framework, extending
the scope of the AI-ESTATE standard beyond data driven di-
agnosis, to include the ability to perform data driven prognosis
as well [17], [18].

Although DBNs do have the ability to model dynamic
processes, they are still limited to working in discrete time.
In order to perform prognostic tasks, DBNs requires the
imposition of a uniform time granularity on the system. For
systems with naturally occurring time slices, this is not a
problem. However, in many real–world systems, observations
can be erratic, making the selection of a uniform time gran-
ularity infeasible. For this reason, DBNs are ineffective for
structured stochastic processes that evolve over continuous
time. Problems that stress the importance of state changes in
continuous time occur frequently in the real–world, and are
exactly the sort of problems that are well suited to a CTBN
model.

While work has been done on deriving BNs from D-
matrices, no work to date has explored the process of deriving
CTBNs from D-matrices. Given the advantages of the CTBN
framework, as well as the prevalence of D-matrices in com-
munities concerned with system-level diagnostics, we chose to
extend the algorithm for constructing BNs using D-matrices
to CTBNs. Our methods for constructing and parameterizing
CTBNs comprise Sections IV and V of this work.

IV. DERIVING CTBN NETWORK STRUCTURE

In order to take advantage of the prognostic abilities
of a CTBN framework, we must produce the correct net-
work structure and parameterize it accordingly. This section
describes the process of constructing the CTBN using the
information contained in the D-matrix. The parameterization
of the CTBN cannot be derived from the D-matrix, but can be
derived from reliability and measurement data. The process of
parameterizing the CTBN is the subject of Section V.

A. Processing a D-matrix

The relationships between faults and tests that are encoded
in a D-matrix can be used to construct a bipartite network
structure for a CTBN. Let G be the network structure for the
CTBN that is being constructed, and let D be a D-matrix with
m rows and n columns. First, fault nodes are added to the
network G that correspond to the rows of D. Next, test nodes
are added to G corresponding to the columns of D. Finally,
arcs are inserted between nodes based on the values in the
matrix D. For each entry in the D-matrix where Dij = 1, an
arc is inserted from fault Fi to test Tj .

The resulting network G has m + n nodes, and∑m
i=1

∑n
j=1 dij arcs, equal to the number of ones in the

matrix. Directed arcs only exist from a fault node to a test
node, so G is bipartite with one layer consisting of the m
faults and the other layer consisting of the n tests. With only
two states in the domain of each node, the intensity matrices
and initial probability distributions are small. The factor that
drives complexity in the network is the total number of CIMs,
which is dependent on the number of parents for each test
node. In the worst case scenario, all faults are a member of
a test’s parent set, and so the number of CIMs for the test is
O(2m). The true number of CIMs for a test node Tj is equal
to 2pj , where pj =

∑m
i=1 dij .

B. Network Construction Example

Consider the following D-matrix.

D =

(T1 T2

F1 1 0

F2 1 1

)
This matrix can be used to construct the graph G as shown in
Figure 1. The columns T1 and T2 are inserted as test nodes into
G, while the rows F1 and F2 are inserted as fault nodes. Each
1 in the matrix indicates that an arc should be inserted from
a fault to a test node, which means that three dependencies
are inserted into G. The parent sets for T1 and T2 are F1 =
{F1, F2} and F2 = {F2}, resulting in a complete bipartite
graph except for the missing arc between F1 and T2.

F1 F2

T1 T2

Fig. 1. Example Network

V. PARAMETERIZATION OF CONSTRUCTED CTBNS

After producing a network structure for a CTBN, the
next task becomes parameterizing the CIMs for each of the
nodes. These parameters can be derived from information
that is already commonly available for diagnostic models. In
particular, failure and repair rates can be used to parameterize
the fault nodes, while non-detect and false alarm values can be
derived from instrumentation data and are sufficient to derive
parameters for the test nodes [19]. In this section, we describe
the parameterization process for both fault and test nodes. In
this work, we assume binary states for both fault and test
nodes.

A. Parameterizing Fault Nodes

By definition, fault nodes in the network have no parents.
This is advantageous as it associates each fault node with a
single unconditional intensity matrix. This matrix describes
the transition behavior of the fault between the states in its
domain. In the binary case, this means that the CIM defines
the probability distributions associated with transitioning to
a failing state, and transitioning back to a non-failing state.
Domain knowledge and historical data are able to provide
failure and repair rates for each fault. Here, a failure rate λ
indicates the rate at which a failure will occur given that no
failure currently exists. Note that the failure rate λ is related to
the mean time between failures (MTBF) in reliability literature
as MTBF = 1/λ.

A repair rate µ indicates the rate at which a fault will
transition back to having no failure, and depending on expected
repair policy is often set to zero. Note that if no repair policy
is implemented, then MTBF is often referred to simply as
the mean time to failure (MTTF), implying that the failure
state is absorbing. Intensity matrices are simply a collection of
transition rates, so parameterization of each matrix is simple.
The failure rate λ is assigned to the entry that describes the
transition from non-failure to failure, and the repair rate µ
is assigned to the reverse direction. As required by the CIM
definition, diagonal values are set to be the negative sum of
the remaining entries in the row.

The intensity matrix for fault Fi is shown below, where λi
and µi are the failure and repair rates respectively for fault Fi.

QFi =

(f0i f1i

f0i −λi λi
f1i µi −µi

)
(1)

Ui,1

...

Ui,j

...

Ui,n

ui,1

ui,j

ui,n

u′i,1

u′i,j

u′i,n

Vi
vi v′i

Fig. 2. Line Failure Model

B. Line Failure Model

Prior to discussing the method used to parameterize the
test nodes, it is necessary to examine the relative probability of
erroneous results in the unit under test. These erroneous results,
known collectively as false indications, occur when the tests
do not accurately reflect the faults present in the unit under
test. False indications can be of two types, false alarms or non-
detects, and we adhere to the definitions provided by Sheppard
and Kaufman to describe them [19]. A false alarm is defined
as an indicated fault where no fault exists, and conversely
a non-detect is defined as an indication of no fault where a
fault exists. For each of these types of false indications, there
can be two potential sources of failure that contribute to the
occurrence of either a false alarm or a non-detect event. One
failure source is specific to each fault and affects the input
received by test Ti from the failure Fi[j]. We denote these
failures as NDi,j and FAi,j . The second type of test failure
occurs due to a malfunction with the test itself. This type of
failure will occur regardless of the inputs the test receives, and
for test i is denoted NDi and FAi.

To parameterize the CIMs for the test nodes in terms
of non-detect and false alarm values, we conceptualize the
relationship between faults and tests as a line failure model
shown in Figure 2. Here, each value ui,j represents the true
value for fault Fi[j], and each u′i,j is the value received
by the test node Ti. The Ui,j modules are functions that
probabilistically alter the value of the line based on non-detect
and false alarm values. Specifically, if the input ui,j to Ui,j is
1, the output u′i,j will be 0 with probability NDi,j . Similarly, if
the input is 0, the line will be switched to 1 with a probability
of FAi,j . A failing output in the test requires at least one
fault, so each u′i,j value is fed into an OR gate, whose output
vi represents the input received by the test node. This input is
fed through another function Vi, which emulates the failure of
the test itself. Similar to each Ui,j , the Vi function switches
the line value according to NDi and FAi and produces a final
value of v′i for test Ti.

C. Parameterizing Test Nodes

We seek to define a probability distribution for each test
node given the faults that they monitor. In terms of the line
failure model, this corresponds to the probability distribution
over the value v′i given input values ui,j . The probability
that the line failure model outputs a value of 0 is shown by

Equation 2. Note that P (v′i = 0|vi = 1) is the likelihood
that the test i is unable to detect any fault it monitors (NDi),
and P (v′i = 0|vi = 1) is the likelihood of a false alarm not
occurring for test i (1− FAi). After replacing these terms in
Equation 2, we are left with a formula that accounts for the
Vi failure function, as shown in Equation 3.

P (v′i = 0|ui) = P (v′i = 0|vi = 1)P (vi = 1|ui) (2)
+ P (v′i = 0|vi = 0)P (vi = 0|ui)

P (v′i = 0|ui) = (NDi)P (vi = 1|ui) (3)
+ (1− FAi)P (vi = 0|ui)

Next, we focus our efforts on calculating the remaining
P (vi = 0|ui) term, which will also provide a value for
P (vi = 1|ui). As shown by the line failure model, vi is the
output of a logical OR gate, which takes as input the values u′i.
This means that P (vi = 0|ui) can equivalently be interpreted
as
∏
j P (u

′
i,j |ui,j). Note that each input to the OR gate is

independent, which is why the conditionals for each probability
can be reduced only to the value corresponding to the current
line. The probability of each value u′i,j can be written in terms
of the non-detect and false alarm values associated with line
failure function Ui,j . This is similar to how the probability for
v′i was calculated, except that each ui,j is assumed to be a
particular value based on the conditional intensity matrix we
are currently parameterizing. The likelihood that vi is 0 given
a fixed set of values ui is as follows:

P (vi = 0|ui) =
∏

{ui,j∈ui}

P (u′i,j |ui,j) (4)

=
∏

{ui,j∈ui|ui,j=0}

P (u′i,j = 0|ui,j = 0)·

∏
{ui,j∈ui|ui,j=1}

P (u′i,j = 0|ui,j = 1)

=
∏

{ui,j∈ui|ui,j=0}

(1− FAi,j)·∏
{ui,j∈ui|ui,j=1}

(NDi,j).

For each CIM, P (vi = 0|ui) can be calculated using the
parent states associated with the CIM. The inverse of this value
is the probability that vi takes on a value of one (1− P (vi =
0|ui)) = P (vi = 1|ui). These two values can be inserted into
the corresponding terms in Equation 3, producing a formula for
P (v′i = 0|ui) written as a function of the non-detect and false
alarm values for test i, and all fault relationships associated
with that test. Since the non-detect and false alarm values for
the fault-test relationships depend on the state of the faults,
the value for P (v′i = 0|ui) is potentially unique for each CIM.
The line failure model describes how faults ultimately affect
the tests. Each ui,j is the value for each of the faults, while
v′i is the value for the test; therefore, P (v′i|ui) ≡ P (Ti|Fi) by
construction.

We are now able to calculate the likelihood that each test
is in state zero for each of its CIMs. Again, we can obtain the
likelihood of being in state one by simply taking the inverse
(P (Ti = 1|Fi) = (1 − P (Ti = 0|Fi))). These values can be

used to parameterize the CIMs that they are associated with.
The expected value obtained from an exponential distribution
with a rate of λ is 1/λ, which corresponds to the MTBF. To
produce the expected transition behavior, the entries in row x
of the CIM are assigned a value of P (Ti = x|Fi)−1. This
equates to spending P (Ti = 0|Fi) portion of the time in state
zero, and P (Ti = 1|Fi) amount of time in state one. Since
these are the likelihoods for being in each of these states, and
the expected transition behavior conforms to this, inference in
a CTBN constructed in this fashion will result in probabilities
consistent with the conceptual model. A CIM for a test node
with entries defined in terms of the state likelihoods is shown
in the following:

QTi|Fi
=

(t0i t1i

t0i −P (Ti = 0|Fi)−1 P (Ti = 0|Fi)−1

t1i P (Ti = 1|Fi)−1 −P (Ti = 1|Fi)−1

)
.

(5)

D. Special Case of Test Node Parameterization

Although it is useful to have a general method for parame-
terizing CIMs given the non-detect and false alarm values for
tests and fault-test relationships, it may be unreasonable to ex-
pect that these values are available for the system in question.
The number of non-detect and false alarm values necessary is
equal to the number of edges in the CTBN network, plus the
number of total tests: O(|E|+ |V |). Although this number is
quite manageable from a computational standpoint, it may be
that no data exists to describe the non-detect and false alarm
values for specific fault-test relationships.

One method that may be used to reduce the number of
necessary parameters is to assume that the non-detect and false
alarm values for fault-test relationships are all zero. In terms
of the line failure model, the failure functions Ui,j never fail,
and the input is always passed directly to the output (ui,j =
u′i,j). Any non-detect or false alarm events that may occur are
summarized by the NDi and FAi values for test i.

By assuming that no line failure exists for each Ui,j
function, the number of parameters that must be specified is
drastically reduced. The only non-detect and false alarm values
that need to be specified are for the test nodes: O(|V |). Obtain-
ing this subset of the parameters is a more manageable task,
and may be a necessary alternative if the task of collecting non-
detect and false alarm values for each fault-test relationship is
too difficult. An additional benefit to this assumption is that
Equation 3 is sufficient to describe the probability distribution
for a test node without further computation. By setting all non-
detect and false alarm values for the fault-test relationships to
the same value (zero), P (vi|ui) is deterministic based on the
value produced by the OR gate.

The OR gate forces P (vi|ui) to take on a value of either
1.0 or 0.0, depending on whether or not a fault has occurred.
In the event that no faults have occurred, P (vi = 0|ui) = 1.0,
and the Equation 3 reduces to the term (1− FAi). For cases
where at least one fault is on, the probability is forced to zero,
and the equation reduces to (NDi). The CIM constructed for
the former case is shown in Equation 6, while the latter case

is given by Equation 7.

Q{Ti|(∧F∈FiF=0} =

(t0i t1i

t0i −(1− FAi)−1 (1− FAi)−1

t1i (FAi)
−1 −(FAi)−1

)
(6)

Q{Ti|(∨F∈FiF=1)} =

(t0i t1i

t0i −(NDi)
−1 (NDi)

−1

t1i (1−NDi)
−1 −(1−NDi)

−1

)
(7)

E. Parameterization Example

Continuing the example from Section IV-B, we now param-
eterize the CIMs for the nodes in Figure 1 using the method
that was described in this section. The values we selected to
parameterize this example are shown below.

Failure rates for F1 and F2 λ1 = 0.05, λ2 = 0.02
Repair rates for F1 and F2 µ1 = 0.1, µ2 = 0.01.

ND values for T1 ND1 = 0.05, ND1,1 = 0.03, ND1,2 = 0.01
ND values for T2 ND2 = 0.04, ND2,1 = 0.04
FA values for T1 FA1 = 0.01, FA1,1 = 0.02, FA1,2 = 0.03
FA values for T2 FA2 = 0.08, FA2,1 = 0.04

As discussed in Section V-A, the failure and repair rates for
the fault nodes can be inserted directly into the corresponding
intensity matrices. The intensity matrices QF1

and QF2
for

faults F1 and F2 are given below, based on the parameteriza-
tion shown in Equation 1.

QF1
=

(f01 f11

f01 −0.05 0.05

f11 0.1 −0.1

)

QF2
=

(f02 f12

f02 −0.02 0.02

f12 0.01 −0.01

)

Parameterizing the test nodes is somewhat more compli-
cated. To demonstrate the process, we work out the parameters
for the CIM QT1|F1,1=0,F1,2=1. We start by using Equation
4 to compute P (v1 = 0|u1,1 = 0, u1,2 = 1) = (1 −
FA1,1) · (ND1,2) = (1 − 0.02) · (0.01) = 0.0098. This
value can then be used in Equation 3, along with non-detect
and false alarm values for test T1, to obtain a final value
P (v′1 = 0|u1,1 = 0, u1,2 = 1) = 0.05·(1−0.0098)+(1−0.01)·
0.0098 = 0.059212. Finally, the value is used to produce the
matrix below, according to Equation 5. A similar procedure is
used to produce the remaining CIMs for the test nodes.

Q{T1|F1,1=0,F1,2=1} =

(t01 t11

t01 −16.88847 16.88847

t11 1.06294 −1.06294

)
.

VI. EXPERIMENTS

We conducted three separate experiments meant to il-
lustrate various properties of the constructed networks. The
first experiment is meant to verify the correctness of the
network construction and parameterization process. This is

F1 F3 F2

T1 T3 T2

F4 T4

Fig. 3. Logic Diagram for Synthetic

accomplished by comparing the query results over the con-
structed network to the expected results based on mean time
between failure (MTBF), non-detect and false alarm values.
The details of this experiment along with the results can be
found in Section VI-B. The second experiment was designed
to investigate how the behavior of the network changes when
evidence is applied at various time intervals. This evidence
application experiment is detailed in Section VI-C. Finally,
the third experiment follows the testing procedure that a
technician might perform to diagnose a fault. Here, the model
is queried and a new test is performed repeatedly until enough
information is obtained to correctly identify the fault. This
experiment is reported in Section VI-D.

Note that all experiments use importance sampling as the
underlying inference algorithm. The first two experiments use
a synthetic dataset that we constructed for the purpose of this
study, while the final experiment makes use of another model
that is used in related literature.

A. Datasets

For our experiments, we worked with two different
datasets. The first is a manually constructed dataset consisting
of four faults and four tests. The MTBF for each fault F1,
F2, F3, and F4 is 1, 2, 4, and 8 respectively, measured in
thousands of hours. For these experiments, we assume that
there is no repair rate policy associated with the failures,
therefore we set µ = 0. Furthermore, we assume that all tests
and faults start in a working state at time 0, and therefore
set the initial probability distribution to (1.0, 0.0). The non-
detect probabilities for the tests are set to 0.02, 0.02, 0.01,
and 0.01, while the false alarm probabilities are 0.01, 0.04,
0.02, and 0.01. The structure is determined by the D-matrix,
which is shown below. The corresponding logic diagram is
shown in Figure 3. Going forward, we refer to this network as
“Synthetic”.

D =

T1 T2 T3 T4

F1 1 0 1 0

F2 0 1 0 1

F3 0 1 1 1

F4 0 0 1 1

The second dataset used in our experiments is referred to as

“SimpleModel” and originates from System Test and Diagnosis
[1]. The model consists of nine main faults and seven main

F4

T3T2F2

T5 T7T1TINT1

F6 F5 F8F1FINT1

T4 T6

F7F9F3

Fig. 4. Logic Diagram for SimpleModel

tests. In addition, there is an NF fault that represents no
fault occurring, and an FINT1 and TINT1 that are the
fault and test that describe the input to the model as a
whole. The following D-matrix determines the structure of the
SimpleModel network. The associated logic diagram is shown
in Figure 4.

D =

TINT1 T1 T2 T3 T4 T5 T6 T7

FINT1 1 1 1 1 1 1 1 1

F1 0 1 1 1 1 1 1 1

F2 0 0 1 1 0 0 0 1

F3 0 0 0 1 1 1 1 1

F4 0 0 0 1 0 0 0 1

F5 0 0 0 0 0 0 0 1

F6 0 0 0 0 0 1 0 1

F7 0 0 0 1 1 1 1 1

F8 0 0 0 0 0 0 0 1

F9 0 0 0 1 1 1 1 1

NF 0 0 0 0 0 0 0 0

SimpleModel was chosen to provide more complexity in

terms of the fault-test relationships than the Synthetic model.
Furthermore, SimpleModel has been used in related D-matrix
literature to generate the structure of Bayesian networks, which
is a similar task to our own [4].

Unlike previous work, however, we have proposed a
method for parameterizing the constructed network using
MTBF, false alarm, and non-detect information. SimpleModel
as originally presented does not include this data, so we have
augmented the model with the necessary information. The
MTBFs for the nine faults in order, measured in thousands of

hours, are 1, 2, 4, 8, 1, 2, 4, and 8. The non-detect probabilities
for the seven tests are 0.02, 0.01, 0.01, 0.02, 0.02, 0.01, and
0.01, while the false alarm probabilities are 0.04, 0.02, 0.01,
0.01, 0.04, 0.02, and 0.01.

B. Parameterization Experiment

In the Synthetic model, T1 monitors only a single fault: F1.
The parameterization experiment constructs and parameterizes
a CTBN based on the D-matrix and reliability information. The
inference algorithm is used to predict the state distribution for
the nodes T1 and F1 in the constructed network starting at time
0 and increasing by 100 hour time slices until a final time of
10 thousand hours, resulting in a total of 100 queries per node.
These query results were then compared to the expected state
distribution for T1 and F1, based on the MTBF, non-detect and
false alarm values.

Recall from Section VI-A that the MTBF for F1 in the
Synthetic model is 1 thousand hours. Since there is no repair
rate and the fault initially starts in a working state, the
probability of a failure at time t is fully specified by the
exponential distribution defined by the first row of the intensity
matrix for F1. More formally, P (F1 = f11) = λe−λt = e−t,
since the MTBF is 1.0. For example, the expected probability
of F1 occurring at 2 thousand hours is e−2. We computed
this expected value for each of the 100 time steps that were
queried for node F1 and compared them to the value returned
by inference. By taking the mean error of these 100 points,
we find that inference over the network results in an error of
0.0002± 0.0005.

We can also compute the expected values for T1 at these
time steps based on the non-detect and false alarm probabili-
ties. The non-detect probability for T1 is 0.02, while the false
alarm probability is 0.01. Given that test T1 only monitors F1,
the state distribution for T1 at time t can be written in terms
of F1. Specifically, P (T1 = t11|F1) = P (F1 = f11)(1−ND)+
P (F1 = f01)(FA) = P (F1 = f11)(0.98) + P (F1 = f01)(0.01).
Here, the probability of each fault is computed as before by
using an exponential distribution with a rate of 1.0. Just as
before, the expected state distribution for T1 is computed for
each of the 100 time slices and compared to the inferred values.
In this case, we find that the mean error when inferring the
state of T1 is 0.0111±0.0030. Figure 5 shows the queried and
expected state distribution for T1 over the 10 thousand hours
of interest.

The results of this experiment verify that the construction
and parameterization of the CTBN network correctly describes
the expected behavior of the model. The faults are relatively
simple to model, as their behavior does not depend on any
other faults or tests. This is reflected by the extremely low
error produced by the inference over F1. Tests are somewhat
more complex, as their behavior is dependent on a subset
of the faults in the model, meaning any error that occurs
while inferring the state of a fault will in turn produce error
when inferring the test. Despite this, the error produced during
inference on T1 is relatively low, and can expected when
using an approximate inference algorithm. Figure 5 illustrates
how closely the inference results match the expected results
for T1. This affirms the mathematical justification for the
parameterization process from Section V-C.

Fig. 5. Probability of F1 through time in the constructed and parameterized
synthetic network.

Fig. 6. Probability of F2 through time in the synthetic network where
evidence is applied for T3 and T4 at different points in time.

C. Evidence Application Experiment

The next experiment was designed to investigate how
evidence affects the probability distributions returned by the
model. This experiment again worked with the Synthetic
model, but in this case the nodes of interest were T3, T4, and
F2. The evidence that was applied set T3 = t03 and T4 = t14.
Note that based on the D-matrix for the Synthetic model, the
only fault that would produce such assignments to the tests
is F2. To observe how this evidence affects the network, we
consider three cases: one where evidence is set at time 2.5,
another where evidence is set at time 1.0, and finally a baseline
case where no evidence is set. The results are shown in Figure
6.

As expected, evidence significantly changes the state dis-
tribution for F2 over time. The natural behavior of F2 with
no evidence applied is shown by the green squares, which
equates to an exponential distribution with a rate parameter
of 2, corresponding to the MTBF for F2. The blue triangles
show how this distribution changes over time when evidence
is applied at time 2.5. Specifically, the probability of F2

occurring is forced to one by time 2.5 thousand hours, which
is necessary to account for the evidence applied to T3 and T4.
Similarly, when the same evidence is applied at time 1.0, the
probability of F2 is forced to one even faster, as shown by the
red Xs. These results demonstrate the expected behavior of the
model, and again support the construction and parameterization

Fig. 7. Probability of F4 through time in the SimpleModel as tests are
incrementally performed to diagnose the fault.

process.

D. Incremental Diagnosis and Prognosis Experiment

The final experiment is meant to show the applicability
of the constructed model by demonstrating a potential use-
case. For this experiment the SimpleModel is used, which
incorporates a larger number of faults and tests than the
Synthetic model. Using the D-matrix, MTBF, non-detect and
false alarm values from Section VI-A, a CTBN network with
eight tests and eleven faults is constructed using the methods
described in this paper. The assumption is that this D-matrix
and the corresponding parameters are available for a real–
world system, and upon construction of the CTBN network the
goal is to use the model to diagnose and prognose a failure.

Suppose that the system has been running for 1 thousand
hours, at which point something appears to be functioning
incorrectly. Without any further knowledge, inference can be
run over the network to determine the natural tendency of
each of the faults in the network. For F4, this distribution
is shown by the green squares in Figure 7, which is defined
by an exponential distribution with a rate of 8, based on the
MTBF for F4.

After viewing the probability of each of the faults, the
maintenance aid (or technician) would choose a test to run
that will most effectively identify the suspected faults while
weighing the cost to run the test itself. In this scenario, let us
assume that the maintenance aid chooses to run test 2 and the
technician finds that the test passes (T2 = t02). The model can
be queried again after applying this new evidence, and in the
case of F4, we see by the red Xs in Figure 7 that there is not
much change in the distribution.

Testing may proceed by running test 3 and finding that it
failed (T3 = t13), which slightly increases the probability of
F 4 occurring, as indicated by the blue triangles in Figure 7.
Finally, the technician runs test 4 and sees that the test passes
(T4 = t04). This results in a drastic change in the probability
of F4, shown in the figure as the purple diamonds.

By inspection of the D-matrix, fault F4 is the only fault
that can produce the three test results seen by the technician.
For this reason, it may seem as though the model is underes-
timating the probability of F4, since even after all three tests
are run the probability of F4 at 1 thousand hours is still less

than 70%, and steadily increases to a probability of 80% by
time 10 thousand hours. What the D-matrix does not consider
however, is the MTBF, non-detect, and false alarm values.
Although F4 may in theory be the only fault that produces
the test results that the technician encounters, that might not
necessarily be the case if there is a non-detect or false alarm
event. Furthermore, F4 is less likely to occur than the other
faults in the network due to the larger MTBF associated with
it, and the constructed model takes this into account. Even this
relatively simple example demonstrates the usefulness of the
constructed model in a real–world scenario, where fault-test
relationships may be initially misleading.

VII. CONCLUSION

We have demonstrated that the graphical network structure
for a bipartite CTBN consisting of fault and test nodes can
be constructed directly from the relationships identified by a
D-matrix. Furthermore, we showed how the CIMs for the fault
nodes in the network can be parameterized using information
about the mean time between failures. Next we presented a
method for parameterizing the test node CIMs using the non-
detect and false alarm values associated with each fault-test
relationship and for the test alone. Finally, a special case of
the test node parameterization was presented where all non-
detect and false alarm values for fault-test relationships are set
to 0.0. This greatly simplifies the parameterization process,
and is suitable for many real–world scenarios where non-
detect and false alarm information is not available for fault-test
relationships, but rather for just the test itself. It also provides
a method to field a working model and gather historical data
to estimate the non-detect and false alarm values.

We demonstrate the correctness and effectiveness of our
approach with three experiments. The first experiment com-
pared the results returned by inference to the expected value
of the system. The error introduced by querying the network
was minimal in the case of tests, and negligible in the case
of faults. The second experiment showed how the application
of evidence to the model affects the distributions returned by
inference. This verifies that if evidence is applied that forces
the behavior of another node in the network, the distribution
of the node is adjusted to enter the state by the time of
evidence. Finally, our third experiment demonstrates how a
CTBN constructed and parameterized using our approach can
be used in a real–world diagnostic environment. Specifically,
a scenario was described where a technician incrementally
performs three tests in an attempt to diagnose a fault in
the system. Although the structure provided by the D-matrix
indicated with absolute certainty that a particular fault had
occurred, the query results instead reported about a 70%
confidence that a fault had occurred based on MTBF, non-
detect and false alarm information. This further demonstrates
how CTBNs, which include probabilistic information, can
be more informative than a D-matrix alone, which can only
describe basic dependence relationships.

VIII. FUTURE WORK

One possible avenue for future work is the introduction
of logical closure and transitive reduction to the network
construction process. Existing test nodes in the network are
assumed to follow the Noisy-OR model, which allows for

a set of CIMs that are linear in the number of parents
rather than exponential. Although this is a drastic reduction,
at times there are still a significant number of faults that
are monitored by a single test. For this reason, it may be
beneficial to reduce the number of parents that a node has
altogether. Logical closure provides a method for introducing
dependencies between tests, which in turn allows transitive
reduction to remove dependencies from faults to tests. The
result is a network that is potentially less complex from
a computational standpoint, while also being more readily
understandable to a technician. While the network structure can
be modified easily to accommodate the altered dependencies
from logical closure and transitive reduction, more work is
needed to properly parameterize the new network.

Another interesting area of research involves the use of
fault trees for the purpose of CTBN network construction.
The work we have presented uses D-matrices to construct
a bipartite network between faults and tests. While useful,
many models also include the effects that occur as a result
of the faults. This effects might include Mission Failure, Loss
of Equipment, or Loss of Life. The relationship between the
faults and these effects are typically represented as a fault
tree, where each node is connected to its children using logic
gates. We are currently in the process of deriving a bipartite
CTBN consisting of fault and effect nodes. Here the structure
is obtained directly from the structure of the fault tree, and the
CIMs for the nodes are parameterized based on the logic gates
associated with the nodes. Further work in this area involves
reducing the complexity of the resulting network by pruning
unnecessary dependencies. Network construction from fault
trees, in combination with the work presented in this paper,
would allow for a more complete representation of a system
involving tests, faults, and effects.

ACKNOWLEDGMENTS

This paper was developed in part due to work that was per-
formed under the NASA STTR T13.01-9887 contract. Without
the support and guidance from our contacts at NASA and the
people at Qualtech Systems, Inc, this work would not have
been possible. We would also like to thank the members of the
Numerical Intelligent Systems Laboratory (NISL) at Montana
State University for their input during the development stages
of this paper.

REFERENCES

[1] W. R. Simpson and J. W. Sheppard, System Test and Diagnosis.
Norwell, MA: Kluwer Academic Publishers, 1994.

[2] J. W. Sheppard and W. R. Simpson, Research Perspectives and Case
Studies in System Test and Diagnosis. Norwell, MA: Kluwer Academic
Publishers, 1998.

[3] J. Sheppard and S. Butcher, “A formal analysis of fault diagnosis with
D-matrices,” Journal of Electronic Testing, vol. 23, no. 4, pp. 309–322,
2007.

[4] S. Strasser and J. Sheppard, “An empirical evaluation of Bayesian net-
works derived from fault trees,” in Proceedings of the IEEE Aerospace
Conference, March 2013, pp. 1–13.

[5] U. Nodelman, C. R. Shelton, and D. Koller, “Continuous time Bayesian
networks,” in Proceedings of the Eighteenth conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 2002, pp.
378–387.

[6] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[7] F. J. Dı́ez, “Parameter adjustment in Bayes networks. The generalized
noisy or-gate,” in Proceedings of the Ninth Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann, 1993, pp. 99–105.

[8] S. Srinivas, “A generalization of the noisy-or model,” in Proceedings of
the Ninth Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann, 1993, pp. 208–218.

[9] S. Parsons and J. Bigham, “Possibility theory and the generalised noisy
or model,” in Proceedings of the Sixth International Conference on
Information Processing and the Management of Uncertainty, 1996, pp.
853–858.

[10] L. Perreault, S. Strasser, M. Thornton, and J. W. Sheppard, “The noisy-
or gate model for continuous time Bayesian networks,” Department of
Computer Science, Montana State University, Bozeman, Montana, Tech.
Rep. MSU-NISL-15-1, July 2015.

[11] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Improving
the analysis of dependable systems by mapping fault trees into Bayesian
networks,” Reliability Engineering & System Safety, vol. 71, no. 3, pp.
249–260, March 2001.

[12] G. Hulten, “Learning Bayesian networks from dependency networks: A
preliminary study,” in Proceedings of the Ninth International Workshop
on Artificial Intelligence and Statistics, 2003.

[13] K. McNaught and A. Zagorecki, “Using dynamic Bayesian networks
for prognostic modelling to inform maintenance decision making,”
in Industrial Engineering and Engineering Management, 2009. IEEM
2009. IEEE International Conference on, 2009, pp. 1155–1159.

[14] D. Tobon-Mejia, K. Medjaher, and N. Zerhouni, “CNC machine tool’s
wear diagnostic and prognostic by using dynamic Bayesian networks,”
Mechanical Systems and Signal Processing, vol. 28, pp. 167 – 182,
2012.

[15] M. van Gerven, B. G. Taal, and P. J. F. Lucas, “Dynamic Bayesian net-
works as prognostic models for clinical patient management,” Journal
of Biomedical Informatics, vol. 41, no. 4, pp. 515–529, 2008.

[16] IEEE Std. 1232-2010, IEEE Standard for Artificial Intelligence Ex-
change and Service Tie to All Test Environments (AI-ESTATE), Pis-
cataway, NJ: IEEE Standards Association Press, 2010.

[17] H. King, N. Fortier, and J. W. Sheppard, “An AI-ESTATE conformant
interface for net-centric diagnostic and prognostic reasoning,” in Proc.
IEEE AUTOTEST 2014, 2014, pp. 226–232.

[18] H. King, N. Fortier, and J. W. Sheppard, “An AI-ESTATE conformant
interface for net-centric diagnostic and prognostic reasoning,” IEEE
Instrumentation and Measurement Magazine, vol. 18, no. 4, pp. 18–
24, 2015.

[19] J. W. Sheppard and M. A. Kaufman, “A Bayesian approach to diagnosis
and prognosis using built-in test,” IEEE Transactions on Instrumenta-
tion and Measurement, vol. 54, no. 3, pp. 1003–1018, 2005.

