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Abstract—The problem of performing general prognostics and
health management, especially in electronic systems, continues to
present significant challenges. The low availability of failure data,
makes learning generalized models difficult, and constructing
generalized models during the design phase often requires a
level of understanding of the failure mechanism that elude the
designers. In this paper, we present a new, generalized approach
to PHM based on two commonly available probabilistic models,
Bayesian Networks and Continuous-Time Bayesian Networks,
and pose the PHM problem from the perspective of risk mit-
igation rather than failure prediction. We describe the tools and
process for employing these tools in the hopes of motivating new
ideas for investigating how best to advance PHM in the aerospace
industry.

I. INTRODUCTION

In previous work, we have discussed the development of
tools for diagnostic modeling using Bayesian and dynamic
Bayesian networks. The tool we developed – the Standards-
based Analysis Platform for Predictive Health and Integrated
Reasoning Environment (SAPPHIRE) [1] conforms to IEEE
Std 1232-2010, Standard for Artificial Intelligence Exchange
and Service Tie to All Test Environments (AI-ESTATE) [2].

More recently, we have also presented work utilizing the
same type of information needed for creating diagnostic
Bayesian networks to create more advanced models designed
to prognostics. The models are based on Continuous-Time
Bayesian Networks (CTBN) [3] and represent systems as fac-
tored continuous-time conditional Markov processes. As such,
they are well-suited to addressing problems in Prognostics and
Health Management (PHM). The work we discussed included
methods for converting diagnostic dependency models (i.e., D-
matrices) and reliability fault trees into CTBNs. We have also
provided methods for incorporating performance functions and
decision nodes to produce continuous-time decision networks
(CTDN) [4] that have since been embodied in a new tool called
the Continuous-time Hazard Analysis and Risk Mitigation
(CHARM) system.

Although the two models are natural to combine, there has
been little to no application of these models used in combi-
nation for conducting both diagnostics and prognostics under

a single modeling framework. In this work, we discuss an
approach to combining their use, illustrating that combination
with simple and illustrative models to demonstrate the utility
of this combined modeling strategy. Our intent is not to focus
on the SAPPHIRE or CHARM tools specifically, but rather
to discuss how such models (DBNs and CTDNs) can be used
together in an integrated fashion to support PHM. Therefore,
we use SAPPHIRE and CHARM for example purposes only.

Ultimately, this paper is about describing a new process
for PHM that combines elements of diagnostics and health
state information as a starting point from which predictive
diagnostics (i.e., prognostics) can then be performed. The
proposed process also incorporates the elements of probabilis-
tic risk analysis as an alternative method for evaluating the
effectiveness of the PHM process. Currently, this process is
being formalized under contract with the US Navy in support
of the F-35 Lightening II program to assist the F-35 Joint
Program Office (JPO) in better meeting its requirements for
PHM.

The rest of this paper is organized as follows. In Section
II, we provide necessary background information by defining
what we mean by PHM and covering some of the necessary
material related to Bayesian networks and CTBNs. In Section
III, we present the specific type of Bayesian network we use
for diagnostics. We then explain the prognostic model based
on CTBNs in Section IV. We tie the together by describing a
PHM process in Section V and then wrap up our discussion
in Section VI by considering the path forward.

II. BACKGROUND

The purpose of this section is to provide background in-
formation necessary to follow the method presented in this
paper. To accomplish these, we consider a means for defining
what we mean by Prognostics and Health Management (PHM)
relative to current views in the industry, followed by presenting
the main tools we will employ in our approach.



A. Prognostics and Health Management

Simply put, there is little agreement in the field about the
scope and relevant practice of PHM. Therefore, we begin
by providing some perspectives on how we are using the
term. We take a rather literal approach when considering the
PHM discipline in that we believe PHM must include both
aspects of state estimation (health management) and prediction
(prognostics). This is contrary to many who believe the focus
is on health management as a practice of diagnostics and
condition-based maintenance, which is largely centered on the
state estimation task alone.

In 2006, Vichare and Pecht noted that “The term ‘diag-
nostics’ pertains to the detection and isolation of faults or
failures. ‘Prognostics’ is the process of predicting a future
state (of reliability) based on current and historic conditions.
Prognostics and health management (PHM) is a method that
permits the reliability of a system to be evaluated in its
actual life-cycle conditions, to determine the advent of failure,
and mitigate the system risks [5].” While introducing the
notion of prediction, we see both inspiration and limitation
in this view. The inspiration is that we can use reliability
information during the design phase as a means of creating
initial predictive models and considering the risks associated
with system failure. The limitation is that there is no tie
between the diagnostics and prognostics in this view of PHM.

Also in 2006, Kalgren et al. provide a definition of PHM.
Here they say PHM is “a health management approach
utilizing measurements, models, and software to perform
incipient fault detection, condition assessment, and failure
progression prediction. The capability allows end users to
improve fault isolation, better plan maintenance, reduce or
eliminate inspections, and decrease time-based maintenance
intervals with confidence. When coupled with Autonomic or
Performance-based Logistics, PHM enables improved mission-
critical system reliability and availability, reduced logistics
delay time and tail, on-demand repair actions and sparing,
as well as an overall decrease in life cycle costs [6]. Since
their view includes the concept of incipient fault detection and
condition assessment, we begin to see ties back to the current
health state of the system. However, their views related to
failure progression prediction largely depend upon physics-
of-failure models, which are not generalizable or scalable in
complex systems.

As a third and more recent example begins to pose PHM
more literally, as we do. Specifically, Riu et al. say, “Prognos-
tic and Health Management (PHM) systems support aircraft
maintenance through the provision of diagnostic and prognos-
tic capabilities, leveraging the increased availability of sensor
data on modern aircraft. Diagnostics provide the functionalities
of failure detection and isolation, whereas prognostics can
predict the remaining useful life (RUL) of the system [7].”
In this definition, however, the diagnostics is limited to on-
board systems, and the prognostics is focused specifically on
remaining useful life. We adapt this idea to consider off-board
diagnostics and time-to-failure.

To conclude this section, we also consider the ideas ex-
pressed in the recently approved IEEE Standard 1856, which
divides the definition of PHM into two parts [8]. First, the
standard defines prognostics to be “the process of predicting
an object system’s RUL by predicting the progression of
a fault given the current degree of degradation, the load
history, and the anticipated future operational and environ-
mental conditions to estimate the time at which the object
system will no longer perform its intended function within the
desired specifications.” Once again, the focus is on remaining
useful life and on failure progression, which would largely
be from a PoF point of view. Second, the standard defines
health management as “The process of decision-making and
implementation of actions based on the estimate of the state of
health derived from health monitoring and expected future use
of the system.” This is good in the sense that the dependence is
on state of health, but the issue excludes the health assessment
itself.

We suggest that PHM depends on understanding the current
health state of the system, which is at the heart of diagnostics.
Previously, we have asserted that all aspects of health as-
sessment, including fault detection, localization, isolation, and
even determining there are no faults are diagnostic processes
[9]. Therefore, we assert that the PHM process begins with
diagnosis. From there, the question arises as to when future
failures might occur, and this is the realm of prognosis. We
also like to refer to prognostics and predictive diagnostics in
that we also want to know what faults are occurring when.
This then sets up a pipeline process whereby PHM consists of
a sequence of steps: 1) monitoring, 2) health state assessment
(diagnosis), 3) prediction, 4) assessment, and 5) action. Thus
it is an evidence-based decision making process that leads to
the overall support of the system.

B. Risk-based PHM

As mentioned in Section II-A, we are motivated by the
definition by Vichare and Pecht by drawing on reliability
information in doing PHM. To that end, we employ a “risk-
based” approach to PHM. By this, we mean that we seek to
introduce a cohesive framework that includes both diagnostics
and prognostics and incorporates effects or hazards using the
same model semantics. By building hazards into the model
itself, predictions can be made not only about likely faults,
but also about the effects that may occur as a result of those
faults. Furthermore, our approach incorporates user-specified
performance functions that place value on various system
states, which allows one to assess potential impact on mission
outcomes should the hazards be realized vs averted. The
framework also allows different conditions to be modeled such
that strategies for risk mitigation can be employed directly into
the decision making process. This supports a multi-objective
view, whereby tradeoffs can be assessed when determining the
best course of action in maintaining a system.

The basic approach employed involves combining two dif-
ferent types of models, one focused on diagnostics and the
other on prognostics. We employ Bayesian networks as a way



to address the diagnostics problem, which allows us to reason
with uncertainty so as to best consider the state of health in
the system. Once the health state is determined, we use that
as a form of “virtual evidence” in a companion model based
on a continuous time Bayesian network (CTBN) to reason
through time. The CTBN uses estimates of the health state as
the starting point for this temporal process but also propagates
failures through different hazard scenarios to determine how
best to mitigate the risks associated with future failure.

C. Bayesian Networks

A considerable amount of literature has been written on
Bayesian networks, including by the authors of this paper. For
our purposes here, we will present only a light introduction
and refer the reader to the literature for more detail.

In short, a Bayesian network is a graph-based representation
of a joint probability distribution. Given a set of random
variables X = {X1, . . . , Xn}, the Bayesian network provides
a compact representation of the joint distribution P (X) =
P (X1, . . . , Xn) by applying the product rule of probabilities
and properties of conditional independence among the vari-
ables. As a result, a Bayesian network can be regarded as a
“factored” representation of the joint distribution correspond-
ing to

P (X1, . . . , Xn) =
∏

Xi∈X

P (Xi|Pa(Xi)).

Here, we represent a conditional probability, P (Xi|Xj) in
a directed acyclic graph where the vertex for Xj is con-
nected by an outward directed edge to the vertex for Xi, in
which case we say Xi is the parent of Xi. In other words,
Pa(Xi) = Xj . The complete graph structure, combined with
a parameterization of the local distributions associated with
each random variable Xi corresponds to the specification of
a Bayesian network. More information on Bayesian networks,
including material on representation, inference, and learning,
can be found in the book by Koller and Friedman [10].

Previously, we developed SAPPHIRE to incorporate basic
prognostic abilities as well through the use of “Dyanamic”
Bayesian networks (DBN). In the current discussion, we do not
employ the predictive capabilities of the DBN in SAPPHIRE;
however, work has been done using DBNs for diagnostics by
incorporating temporal measurements from the past to obtain
better estimates of current health state [11]. Therefore, we
briefly describe the primary differences between a Bayesian
network and a DBN.

In a basic DBN, we begin with a normal Bayesian network;
however, we consider that network as a representation of a
“prior” distribution over the state of the system being model.
As a prior distribution, we modify the notation slightly to
reflect this as an initial point in time:

P (X0
1 , . . . , X

0
n) =

∏
X0

i ∈X

P (X0
i |Pa(X0

i )).

Here, the superscript “0” indicates the initial point in time. We
also refer to this as a “template” network where we can then
provide a temporal dependency as

P (Xt|Xt−1)

for all t > 0. Thus this defines a DBN as a first-order
multivariate Markov process.

D. Continuous Time Bayesian Networks

To support the predictive modeling, we propose using a
relatively new model that combines concepts from Bayesian
networks, dynamic Bayesian networks, and Markov processes.
As with the discussion above, we refer the interested reader
to fundamental literature on CTBNs and provide a brief, high-
level (albeit mathematical) description here.

At the heart of a CTBN is what is referred to as a continuous
time Markov Process. We use the definition given by Perreault.
“Let X be a continuous time random process, consisting of
a set of variables X that change as a function of continuous
time. A CTMP is a model over X consisting of two parts:
an initial distribution PX (0) and a transition intensity matrix
QX defined over the states of X . Each entry qi,j in row i,
column j of the matrix QX defines the non-negative intensity
with which the process will transition from state xi to state
xj as a function of time. The diagonal entry for some row i
and column i is denoted qi,i or simply qi, and is constrained
to be the negative sum of the rest of the row. Formally,
qi = −

∑
j ̸=i qi,j [4].” The distribution indicating if the

process remains in state i is exponential with rate qi:

fqi = −qi exp(qit).

If it is determined that a transition out of state i is occuring
at some time t, then X transitions from state xi to state xj

according to a multinomial distribution with probabilities

P (xj |xi, t) = −qj
qi
.

A continuous time Bayesian network is a generalization
of the continuous time Markov process. It is based on a
conditional Markov process where the behavior of the Markov
process depends upon the state of another Markov process.
Similar to the above, we use the definition of a CTBN by
Perreault. “A Continuous Time Bayesian Network N is a fac-
tored representation of a CTMP over a set of discrete random
variables X = {X1, X2, . . . , Xn}. The model consists of two
parts: a graph structure G and a set of parameters P. Graph G is
a directed, possibly cyclic graph with nodes corresponding to
the variables in X. Parameterization P is a set of Conditional
Markov Processes, one for each Xi ∈ X, conditioned on its
parents in graph G [4].” Of note is that the intensity matrices
that go with each CTMP is conditioned on parent states.
We refer to these intensity matrices as “conditional intensity
matrices” (CIM). As described in Section IV, we use this
model to capture the failure and hazard dynamics of the system
under test.



III. DIAGNOSTIC BAYESIAN NETWORKS

In this section, we present the basic formulation for the
diagnostic Bayesian network. Recall that a CTMP (and thereby
a CTBN) requires a prior distribution to kick start the process.
We use the diagnostic Bayesian network as the basis for
that prior distribution. Furthermore, we define the diagnostic
Bayesian network using a formulation that is relatively well
known in the fault diagnostics field known as a D-matrix [12].

A. D-Matrices

A variety of diagnostic models are possible for purposes
of establishing health state. These include models such as
fault trees [9], first principle models [13], expert systems [14],
and Bayesian networks [15]. For our purposes due to the fact
they integrate well in our overall framework, we choose to
use a Bayesian network that is derived from a diagnostics
dependence matrix, also known as a D-matrix [12].

A D-matrix is a binary matrix D that maps faults to tests.
More formally, let F = {F1, . . . , Fd} be a set of a faults
or diagnostic conclusions to be drawn in a system. Assume
each Fi is a Boolean variable that can either by true or false.
Unless otherwise asserted, we assume that all faults are true
unless otherwise indicated. Let T = {T1, . . . , Tn} be a set of
tests or information sources designed to detect the presence
of faults. Assume each test is also a Boolean variable where
“true” indicates the test has failed and “false” indicates the
test has passed. Finally, let D be a d×n binary matrix where

Di,j =

{
1 Fi is detected by Tj

0 otherwise.

Given this, a D-matrix can be represented as a Bayesian
network, similar to the model described by Schwe et al. with
their QMR-DT system [15]. Specifically, each Fi and Tj are
defined as random variables (i.e., vertices) in the network, and
conditional dependence relationships are defined where Di,j =
1 indicates Fi is a parent of Tj . Then, to reduce computational
complexity, the parent relationships of a test Tj are interpreted
to correspond to a “noisy-OR” model, as defined by Judea
Pearl [16]. Prior probabilities on each Fi can be based on
reliability data, and conditional probabilities P (Tj |Fi) can be
defined based on properties of the underlying test system [17].

B. Virtual Evidence

One of the issues associated with probabilistic diagnostic
systems involves accounting for the uncertainty in the evidence
collected (i.e., uncertainty in the test results). Two different
formalisms have been defined to address evidence uncertainty
in Bayesian networks: soft evidence and virtual evidence [18].

Soft evidence corresponds to the process of replacing the
conditional probability P (Tj |Fi) at the time an observation
is made (i.e., the test is performed) to capture, directly, the
confidence in the test result. Inference is then applied using
the new distribution. More formally, if P (Tj) reflects the
probability of a test result we would derive that from the
model by computing P (Tj) =

∑
T\Tj

P (D), meaning we

Fig. 1. Diagnostic Bayesian network with virtual evidence

marginalize out the rest of the network. With soft evidence,
we replace P (Tj) with a revised estimate P ′(Tj) and update
using Jeffrey’s rule:

P ′(D) =
∑
T ′
j

P (D|T ′
j)P (T ′

j).

Virtual evidence, on the other hand, actually inserts an
additional vertex into the model to reflect the confidence of
the evidence, P (obs(Tj)|Tj). This is reflected graphically as
shown in Figure 1. In this case, we pre-set the test confidences
through the definition of the observation distributions and
apply the evidence to those vertices. We then infer the cor-
responding state of the fault vertices using the usual inference
methods.

IV. PROGNOSTIC CTBNS

In the previous section, we spent time setting up tools
for performing probabilistic fault diagnosis. This approach is
beneficial since it allows us to take observation uncertainty,
dependency uncertainty, and failure uncertainty into account
in a unified way. As we will see, it also provide a way to
specify the prior distribution PX (0) for the CTBN that we
will be using for prognosis. In this section, we discuss the
way prognostic CTBNs are constructed.

A. Fault Trees

Within the automatic test systems community, many will
have encountered the concept of a fault tree. The question
facing us, however, is what kind of fault tree? In test program
sets (TPS), a fault tree corresponds to the decision process of
specifying a test, observing an outcome, and branching to the
next step until a diagnosis or call out can be returned. However,
an alternative form of fault tree arising from a process known
as “Fault Tree Analysis” (FTA) [19].

A fault tree arising from FTA corresponds to a directed
acyclic graph that satisfies the properties of a tree where edge
directions all proceed upward, from leaf to root. The leaves of
the tree correspond to faults in the system, which we obtained
from F. Interior vertices of the graph then correspond to
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Fig. 2. Sample Fault Tree [4]

failures, effects, or hazards that might emerge as a result of a
fault occurring. Thus the leaf states propagate upward through
the tree. The interior vertices are then represented using logic
gates (e.g., AND, OR, XOR) where the truth value indicates
whether the corresponding effect is expected to occur as a
consequence of fault(s) at the leaves of the tree. An example
fault tree taken from [4] is shown in Figure 2.

Previously, Perrault et al. showed how to encode a fault tree
as a CTBN [20]. To summarize, to parameterize fault nodes,
we use an intensity matrix for fault F corresponding to

QF =

( f0 f1

f0 −λf λf

f1 µf −µf

)

where fx indicates the logical state of the fault, λf is the
failure rate of the fault, and µf is the repair rate of the fault.
Without loss of generality, if we assume the interior nodes all
have only two children, each of them requires two conditional
intensity matrices. For the AND nodes, the intensity matrices
correspond to

QX|Pa(X) =

( x0 x1

x0 −λX λX

x1 0 0

)
,

when FX(Pa(X)) = 1 (all ones) and

QX|Pa(X) =

( x0 x1

x0 0 0

x1 µX|Pa(X) −µX|Pa(X)

)
,

when FX(Pa(X)) = 0 (not all ones). On the other hand, for
OR nodes, the intensity matrices correspond to

QX|Pa(X) =

( x0 x1

x0 0 0

x1 µX −µX

)
,

when FX(Pa(X)) = 0 (all zeroes) and

QX|Pa(X) =

( x0 x1

x0 −λX|Pa(X) λX|Pa(X)

x1 0 0

)
,

when FX(Pa(X)) = 1 (not all zeroes).

B. Mitigation Strategies

When considering the risk-based approach to PHM, the
intent is to be proactive in mitigating risks. This is gener-
ally captured by implementing condition-based maintenance
strategies that perform system support prior to system failure,
thereby mitigating the potential effects of failure occurring



Fig. 3. Simple mitigation of power loss

during a mission. Within the context of a CTBN, mitigation
strategies can be added in as model components.

To incorporate mitigation strategies, we first extend the
basic CTBN model to incorporate decision nodes. Perreault
referred to the resulting model as a Continuous Time Decision
Network (CTDN) [4]. Specifically, the CTBN is augmented
with two additional types of vertices—decision vertices and
utility vertices. We will discuss utility vertices in the next
subsection. For now, we focus on the decision vertices since
those encode decisions or actions that serve as mitigation
strategies.

Formally, Perreault defines a decision vertex as follows. “A
continuous time decision node X is a special type of CTBN
node that has no parents, and where the state of the process
is known at all times t = [0.0,∞), thereby defining a local
trajectory over the variable σ[X]. The states in the trajectory
σ[X] must conform to a possibly empty set of constraints C,
defining valid decisions for the system. Each constraint c ∈ C
consists of a set of tuples (ts, te,Y) defining the set of possible
states Y that may be assigned over the time interval [ts, te)
[4].” Simply put, a decision vertex is a CTBN vertex where the
state is predefined over the given time interval, thus forcing a
particular child CIM to be activated.

An example mitigation strategy for Figure 2 is shown in
Figure 3. In this example, two different power sources are
available to to power the vehicle. The “PWR-Sw” decision
node is used to switch between PWR1 and PWR2 based on
the health of these two power sources by defining the CIM for
the AND node to be conditioned on the state of the decision
node and the power nodes.

C. Performance Functions

As mentioned in the previous section, another important
component of the CTDN is the inclusion of utility nodes.
In the context of the CTBN literature, these are defined via
performance functions [21]. Utility nodes can be used to
provide a numerical assessment of the quality of the mitigation
strategy in order to trade options against each other. A perfor-
mance function is represented with yet another vertex in the
network; however, this vertex does not have a CIM associated
with it. Rather, the vertex depends upon one or more CTMP

vertices and defines a function based on trajectories defined
over those CTMPs. More formally, let σ[Y] be a trajectory
defined over a set of variables Y ⊆ X. Let ⟨ts, te,Yt⟩ be a
set of observations over these CTMPs. Then the performance
function for Y can be defined as

f(σ) =
∑

⟨ts,te,Yt⟩

fY(ts, te,Yt).

Note that this idea can be extended to include “factored” utility
functions, more detail of which can be found in [22].

V. THE PHM PROCESS

Now that we have described the constituent elements, we are
in a position to outline the process for performing risk-based
PHM. For this discussion, we will use the diagram in Figure
4. As we describe the proposed process, we emphasize that
this process is not employing on-board health monitoring but
is depending upon test information collected from a TPS on
an automatic test system (ATS). The intent is to collect health
data, not only to perform fault isolation, but also to establish
the state of health for the rest of the unit under test (UUT).
Based on state of health, risk assessments can be made based
on failure progression and mitigation/maintenance strategies
assessed while the UUT is still under maintenance.

At the start of the rPHM process is the UUT. At this point,
the UUT has already been pulled from the system and sent
to be tested. The UUT is tested on an ATS, such as the US
Navy’s eCASS system and fault isolated. Once fault isolation
is complete, the UUT is repaired and run through re-test to
determine if it is able to be returned to service.

Following return to service testing, the test results are
captured, perhaps in standard form [23] and provided to
a separate diagnostic engine based on a Bayesian network
derived from a D-matrix. The test results are furnished as
virtual evidence to the Bayesian network to provide a means
to better quantify the uncertainty of the health state. Note that
“fault” conditions would need to be included in the Bayesian
network to account for degraded states since simply relying on
faulty/fault-free states will not provide sufficient granularity
of health. For example, constructs based on fuzzy random
variables could be used to capture degradation information
in the model [24].

Once the health state is determined, the resulting informa-
tion can then be provided to that CTDN that assesses potential
hazards and mitigation strategies. A default mode where
no mitigation is performed can be used to assess baseline
performance using the utility nodes on the CTDN. If the utility
is deemed to be too low, alternative mitigation strategies can
be tested to assess changes from of utility. If it is determined
that additional maintenance is warranted (for example), then
information can be provided to technicians to take action, re-
test, and re-assess health and failure progression.

VI. NEXT STEPS

In this paper, we have described a process where by offboard
diagnostics can be paired with a risk-based, probabilistic as-
sessment of failure progression. The intent is to take advantage



Fig. 4. A probabilistic risk-based PHM process

of existing maintenance practices to improve the overall sup-
portability of a system through condition-based maintenance,
accurate health assessment, probabilistic risk assessment, and
risk-informed decision making.

To date, tools have been created for processing diagnostic
Bayesian networks and prognostic Continuous Time Decision
Networks. The Bayesian network has been implemented in the
SAPPHIRE system, developed under support of the US Navy.
Of particular note is that SAPPHIRE is designed to conform
to the AI-ESTATE standard [2]; however, AI-ESTATE is over-
due for update and re-approval. As a result, the first area of
continued work is to update the standard to accomplish two
things. First the data interchange format needs to be updated
to use a more modern format such as JSON. Second, a model
for CTBNs was proposed previously [25] but was never able
to be considered for inclusion the standard. The update process
would enable this model to be considered for standardization.

In addition to SAPPHIRE, the CHARM system was devel-
oped under support from NASA as a way to address risk-
informed decision making for deep space missions. While
a prototype system has been developed, it was written in
a way that is not compatible with the current SAPPHIRE
system, so it is in the process of being redeveloped and
refactored to create an integrated system. In the process,
inference algorithms are being benchmarked and optimized
to improve computational performance [26].

Of particular importance in this effort is ensuring we are
making maximum use of available standards. We are already
employing the AI-ESTATE standard; however, the current
implementations of SAPPHIRE and CHARM do not support
either the SIMICA Test Results standard [23] or the SIMICA
Maintenance Action Information Standard [27]. To support

the process fully, to include things like model maturation
[28], these standards need to be implement to capture the
historical information necessary for identifying deficiencies in
the model.

Finally, this work is being supported under a contract with
the US Navy with close coordination with the F-35 Joint
Program Office. This will enable the tools to be validated with
actual systems currently being tested on Lockheed LM-STAR
testers. Initial models are in the process of being constructed
based on data collected from fault insertion on three F-35
UUTs.

ACKNOWLEDGMENTS

This work is being supported under a Small Business
Technology Transfer contract in collaboration with GSS LLC.
We would like to thank several people affiliated with the
US Navy and F-35 JPO include Michael Malesich, Jennifer
Fernandi, and Anthony Conway. We would also like to thank
the members of the Numerical Intelligent Systems Laboratory
at Montana State University for their support, encouragement,
and feedback during different points in the development of
this work.

REFERENCES

[1] L. Sturlaugson, N. Fortier, P. Donnelly, and J. W. Sheppard, “Im-
plementing AI-ESTATE with prognostic extensions in java,” in IEEE
AUTOTESTCON Conference Record, 2013.

[2] “IEEE Standard for Artificial Intelligence Exchange and Service Tie to
All Test Environments (AI-ESTATE),” IEEE Std 1232-2010.

[3] U. Nodelman, “Continous time Bayesian networks,” Ph.D. dissertation,
Department of Computer Science, Stanford University, 2007.

[4] L. Perreault, “On the usability of continuous time Bayesian networks:
Improving scalability and expressiveness,” Ph.D. dissertation, Gianforte
School of Computing, Montana State University, 2017.



[5] N. M. Vichare and M. G. Pecht, “Prognostics and health management
of electronics,” IEEE Transactions on Components and Packaging
Technologies, vol. 29, no. 3, pp. 222–229, March 2006.

[6] P. W. Kalgren, C. S. Byington, and M. J. Roemer, “Defining PHM, a lex-
ical evolution of maintenance and logistics,” in IEEE AUTOTESTCON
Conference Record, 2006, pp. 353–358.

[7] R. Li, W. J. Verhagen, and R. Curran, “A systematic methodology
for prognostic and health management system architecture definition,”
Reliability Engineering System Safety, vol. 193, p. 106598, 2020.

[8] “IEEE Standard Framework for Prognostics and Health Management of
Electronic Systems,” IEEE Std 1856-2017.

[9] W. R. Simpson and J. W. Sheppard, System Test and Diagnosis.
Springer, 1994.

[10] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

[11] S. Singh, K. Choi, A. Kodali, K. Pattipati, J. Sheppard, S. M. Namburu,
S. Chigusa, D. V. Prokhorov, and L. Qiao, “Dynamic multiple fault
diagnosis: Mathematical formulations and solution techniques,” in Pro-
ceedings of the 18th International Workshop on Principles of Diagnosis
(DX-07), Nashville, TN, May 2007, pp. 383–390.

[12] J. W. Sheppard and S. G. W. Butcher, “A formal analysis of fault
diagnosis with d-matrices,” Journal of Electronic Testing: Theory and
Applications, vol. 23, no. 4, pp. 309–322, 2007.

[13] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, pp. 57–95, 1987.

[14] E. Shortliffe, “Mycin: A knowledge-based computer program applied
to infectious diseases,” in Proceedings of the Annual Symposium on
Computer Applications in Medical Care, October 1977, pp. 66–69.

[15] M. A. Shwe, B. Middleton, D. E. Heckerman, M. Henrion, E. J.
Horvitz, H. P. Lehmann, and G. F. Cooper, “Probabilistic diagnosis
using a reformulation of the INTERNIST-1/QMR knowledge base: I. the
probabilistic model and inference algorithms,” Methods of Information
in Medicine, vol. 30, pp. 241–255, 1991.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, 1988.

[17] J. W. Sheppard and M. A. Kaufman, “A bayesian approach to diagnosis
and prognosis using built-in test,” IEEE Transactions on Instrumentation
and Measurement, vol. 54, no. 3, pp. 1003–1018, 2005.

[18] J. Bilmes, “On virtual evidence and soft evidence in bayesian networks,”
May 2004, University of Washington Electrical Engineering Technical
Report UWEETR-2004-0016.

[19] L. Xing and S. V. Amari, “Fault tree analysis,” in Handbook of Per-
formability Engineering, K. B. Misra, Ed. London: Springer London,
2008, pp. 595–620.

[20] L. Perreault, M. Thornton, and J. W. Sheppard, “Deriving prognostic
continuous time Bayesian networks from fault trees,” in Proceedings
of the Annual Conference of the Prognostics and Health Management
Society, 2016.

[21] L. Sturlaugson, “Extensions to modeling and inference in continuous
time Bayesian networks,” Ph.D. dissertation, Department of Computer
Science, Montana State University, 2014.

[22] L. Sturlaugson and J. Sheppard, “Factored performance functions with
structural representation in continuous time bayesian networks,” in
Proceedings of the International Florida Artificial Intelligent Research
Society Conference, 2014, pp. 512–517.

[23] “IEEE Standard for Software Interface for Maintenance Information Col-
lection and Analysis (SIMICA): Exchanging Test Results and Session
Information via the eXtensible Markup Language (XML),” IEEE Std
1636.1-2018.

[24] N. Ryhajlo, L. Sturlaugson, and J. W. Sheppard, “Diagnostic bayesian
networks with fuzzy evidence,” in IEEE AUTOTESTCON Conference
Record, 2013.

[25] “Using continuous-time Bayesian networks for standards-based diag-
nostics and prognostics,” in IEEE AUTOTESTCON Conference Record,
2014.

[26] J. Schupbach, E. Pryor, K. Webster, and J. Sheppard, “Benchmarking
continuous time bayesian networks for prognostic modeling,” in IEEE
AUTOTESTCON Conference Record, 2022.

[27] “IEEE Standard for Software Interface for Maintenance Information
Collection and Analysis (SIMICA): Exchanging Maintenance Action
Information via the Extensible Markup Language (XML),” IEEE Std
1636.1-2018.

[28] S. Strasser and J. Sheppard, “Diagnostic model maturation,” IEEE
Aerospace and Electronic Systems Magazine, vol. 28, no. 1, pp. 34–
43, 2013.


