Bootstrapping Memory-Based Learning with Genetic Algorithms

John W. Sheppard and Steven L. Salzberg
Department of Computer Science
The Johns Hopkins University
Baltimore, Maryland 21218
Email: lastname®@cs.jhu.edu

Abstract

A number of special-purpose learning techniques have
been developed in recent years to address the problem
of learning with delayed reinforcement. This category
includes numerous important control problems that
arise in robotics, planning, and other areas. However,
very few researchers have attempted to apply memory-
based techniques to these tasks. We explore the per-
formance of a common memory-based technique, near-
est neighbor learning, on a non-trivial delayed rein-
forcement task. The task requires the machine to take
the role of an airplane that must learn to evade pur-
suing missiles. The goal of learning is to find a rela-
tively small number of exemplars that can be used to
perform the task well. Because a prior study showed
that nearest neighbor had great difficulty performing
this task, we decided to use genetic algorithms as a
bootstrapping method to provide the examples. We
then edited the examples further to reduce the size
of memory. Our new experiments demonstrate that
the bootstrapping method resulted in a dramatic im-
provement in the performance of the memory-based
approach, in terms of both overall accuracy and the
size of memory.

Introduction

Recently, the machine learning community has paid
increasing attention to problems of delayed reinforce-
ment learning. These problems generally involve an
agent that has to make a sequence of decisions, or ac-
tions, in an environment that provides feedback about
those decisions. The feedback about those actions
might be considerably delayed, and this delay makes
learning much more difficult. A number of reinforce-
ment learning algorithms have been developed specif-
ically for this family of problems. However, very few
researchers have attempted to use memory-based ap-
proaches such as nearest-neighbor for these problems,
in part because it is not obvious how to apply them
to such problems. While memory-based learning is
not generally considered to be a reinforcement learn-
ing technique, it is an elegantly simple algorithm and
exhibits some marked similarities to the reinforcement
learning method known as @-learning (Sutton 1988).

However, as we show below, nearest-neighbor has in-
herent difficulties with reinforcement learning prob-
lems. Omne purpose of this study is to show how to
overcome those difficulties and put nearest-neighbor on
an equal footing with other methods.

For our study, we considered a reinforcement learn-
ing problem that was posed, in simpler form, by
Grefenstette et al. (Grefenstette, Ramsey, & Schultz
1990). The original work showed that this task, known
as evasive maneuvers, can be solved by a genetic algo-
rithm (GA). In the basic problem, a guided missile is
fired at an airplane, which must develop a strategy
for evading the missile. In our modified problem, two
guided missiles are fired at the airplane. In a prelim-
inary study comparing nearest-neighbor (NN), GAs,
and @-learning, we found that NN was by far the worst
method in its performance on this problem (Sheppard
& Salzberg 1993). As a result, we sought to develop an
approach that would improve the overall performance
of nearest neighbor on this task.

We found that one 1dea was key to our success: the
use of an already-trained GA to generate examples.
For this task, an example is a state-action pair. Be-
cause reinforcement only comes after a long sequence of
actions, it is difficult to determine which actions were
good and which were not. Thus it is equally difficult to
know which actions to store in a memory-based system.
What we needed was some method that would increase
the probability that a stored example was a good one;
1.e., that the action associated with a stored state was
correct. After our preliminary study showed that GAs
could perform quite well on the two-missile problem,
we decided to use an already-trained GA to provide
the exemplars. Second, we applied a nearest-neighbor
editing algorithm to the exemplar set provided by the
GA to further reduce the size of the set. Our ex-
periments demonstrate remarkable improvement in the
performance of nearest neighbor learning, both in over-
all accuracy and in memory requirements, as a result
of using these techniques.

The idea of using memory-based methods for de-
layed reinforcement tasks has only very recently been
considered by a small number of researchers. Atkeson



(Atkeson 1989) employed a memory-based technique
to train a robot arm to follow a prespecified trajec-
tory. More recently, Moore and Atkeson (Moore &
Atkeson 1993) developed an algorithm called “priori-
tized sweeping” in which “interesting” examples in a
@ table are the focus of updating. In another study,
Aha and Salzberg (Aha & Salzberg 1993) used nearest-
neighbor techniques to train a simulated robot to catch
a ball. In their study, they provided an agent that
knew the correct behavior for the robot, and there-
fore provided corrected actions when the robot made a
mistake. This approach is typical in nearest-neighbor
applications that rely on determining “good” actions
before storing examples.

Genetic algorithms have also been applied to per-
form delayed reinforcement problems. In addition
to studying the evasive maneuvers task, Grefenstette
(Grefenstette 1991) applied genetic algorithms to aerial
dogfighting and target tracking. Ram applies genetic
algorithms to learning navigation strategies for a robot
in an obstacle field (Ram et al. 1994). He also applies
case based reasoning in combination with reinforce-
ment learning on the same domain (Ram & Santamaria
1993), both approaches yielding excellent performance.

Some investigators are also exploring the use of
teachers to improve reinforcement learning applica-
tions. For example, Barto’s ACE/ASE (Barto, Sut-
ton, & Anderson 1983) incorporates a teaching mech-
anism with one connectionist network providing rein-
forcement to another. Clouse and Utgoff (Clouse &
Utgoff 1992), who also used ACE/ASE, monitor the
overall progress of the learning agent, “reset” the el-
igibility traces of the two learning elements when the
performance fails to improve, and then provide explicit
actions from an external teacher to alter the direction
of learning.

The Evasive Maneuvers Task

Grefenstette et al. (Grefenstette, Ramsey, & Schultz
1990) introduced the evasive maneuvers task to demon-
strate the ability of genetic algorithms to solve complex
sequential decision making tasks. In their 2-D simula-
tion, a single aircraft attempts to evade a single missile.
The missile travels faster than the aircraft and pos-
sesses sensors that enable it to track the aircraft. The
missile continually adjusts its course to collide with
the aircraft at an anticipated location. The aircraft
possesses six sensors to provide information about the
missile, but the simulation has no information about
any strategies for evasion. We initially implemented
this same task, and then we extended the problem to
make 1t substantially more difficult by adding a second
missile.

In our task, the missiles are launched simultaneously
from randomly chosen locations. The missiles may
come from different locations, but their initial speed is
the same and is much greater than that of the aircraft.
As the missiles maneuver, they lose speed. Traveling

straight ahead enables them to regain speed, but if they
drop below a minimum threshold, they are assumed to
be destroyed. The aircraft successfully evades the mis-
siles by evading for 20 time steps or until both missiles
drop below a minimum speed threshold. To make the
problem even more difficult, we also assume that if the
paths of the missiles and the aircraft ever pass within
some “lethal range,” then the aircraft is destroyed; i.e.,
the missiles need not collide with the aircraft. We use
the term “engagement” to include a complete simu-
lation run, beginning with the launch of the missiles
and ending either after destruction of the aircraft or
successful evasion of the missiles.

When flying against one missile, the capabilities of
the aircraft are identical to the aircraft used by Grefen-
stette. In the two missile task, the aircraft has 13
sensors. When flying against one missile, the aircraft
is able to control only the turn angle. When flying
against two missiles, the aircraft controls speed, turn
angle, and countermeasures.

Using £-NN for Evasive Maneuvering

The nearest neighbor algorithm is a classical approach
to machine learning and pattern recognition, but it is
not commonly used for reactive control problems. K-
NN is a procedure that is typically applied to classifi-
cation tasks in which a series of labeled examples are
used to train the algorithm. The labels usually corre-
spond to classes. When a new example is processed,
the database of stored examples is searched to find the
k examples that are closest according to some distance
metric (usually Euclidean distance). The new example
1s assigned a class according to the majority vote of its
k neighbors.

We formulated the sequential decision problems as
classification problems by letting the states correspond
to examples, and the actions correspond to classes. In
order to be successful, a memory-based approach must
have a database of correctly labeled examples. The
difficulty here, though, is how to determine the correct
action to store with each state. One can argue that
we need to know the result of an engagement before
deciding whether to store an example. Even after a
successful evasion, though, we cannot be sure that the
action at every time step was the correct one.

To illustrate the problems that k-NN has with the
evasive maneuvering task, we briefly describe some
findings of our earlier study (Sheppard & Salzberg
1993). At first, the nearest-neighbor learner gener-
ated actions randomly until the aircraft evaded the
missiles for a complete engagement. The correspond-
ing state-action pairs for that engagement were then
stored. Once some examples were stored, k-NN used
its memory to guide its actions. If the aircraft failed to
evade when using the stored examples, it repeated the
engagement and generated actions randomly until it
succeeded. Not surprisingly, the algorithm sometimes
took a very long time to succeed using this random



100 W T N A e s
80
c
g
60
>
|
§ 40 IR LR A g A
E RO '
R
20 il -
One Missile —
Two Missiles -
0
0 500 1000 1500 2000 2500

Stored Engagements (20 examples each)

Figure 1: Performance of k-NN on evasive maneuvers.

strategy. Whenever the aircraft successfully evaded,
the algorithm stored 20 examples, one for each time
step.

For the initial experiments using k nearest neigh-
bors, we varied k between 1 and 5 and determined that
k = 1 yielded the best performance. Figure 1 shows
the results of these experiments. These graphs indi-
cate performance averaged over 10 trials for an aircraft
evading one missile and two missiles. The accuracy at
each point in the graph was estimated by testing the
learning system on 100 randomly generated engage-
ments.

These experiments indicate that the problem of
evading a single missile is relatively easy to solve. NN
was able to develop a set of examples that was 95% suc-
cessful with only 10,000 examples after approximately
1,500 engagements, and it eventually reached almost
perfect performance. When the aircraft attempted to
learn how to evade two missiles, the results were not
as encouraging. In fact, we quickly found that NN had
difficulty achieving a level of performance above 45%.
This indicated the two missile problem is significantly
more difficult for our approach to learn.

The Genetic Algorithm

For details of our GA implementation, see (Sheppard
& Salzberg 1993). We show the results of the GA ex-
periments in Figure 2. As with NN, the GA performs
very well when evading one missile. In fact, it is able to
achieve near perfect performance after 15,000 engage-
ments and very good performance (above 90%) after
only 5,000 engagements. Note that the number of en-
gagements is somewhat inflated for the GA because it
evaluates 50 plans during each generation. A genera-
tion is defined to be a stage in which the system evalu-
ates each plan and then applies the genetic operators.
In fact, the simulation ran for only 500 generations
(i.e., 25,000 engagements) in these experiments.

The most striking difference in performance between
NN and the genetic algorithm is that the GA learned
excellent strategies for the two-missile problem, while

100

80 / /\1//»//\/“
60

c
o
g
g 40 /
X
0 i One Missile —
Two Missiles -----
0
0 5000 10000 15000 20000 25000
Engagements

Figure 2: Performance of the genetic algorithm on eva-
slve maneuvers.

nearest neighbor did not. Indeed, the GA achieved
above 90% evasion after 16,000 engagements (320 gen-
erations) and continued to improve until it exceeded
95% evasion. This led to our idea that the GA could
provide a good source of examples for NN. Thus, the
GA became a “teacher” for NN.

Bootstrapping Nearest Neighbor

The idea is to use a GA to generate correctly la-
beled examples for the NN algorithm. This “teach-
ing” should allow NN to take good actions at every
time step, which hopefully will improve its success rate
from the abysmal 45% it demonstrated previously on
the two-missile problem. Teaching proceeds as follows.
First, the GA is trained until it reaches a performance
threshold, 8. From that point on, the system monitors
the engagements used to test the GA. Any engage-
ment that ends in success provides 20 examples (one
for each time step) for NN. After 100 test engagements
have been run through the GA in this manner, NN is
tested (to estimate its performance) with an additional
100 random engagements. The examples continue to
accumulate as the genetic algorithm learns the task.
The results of training NN using GA as the teacher
(GANN) are shown in Figure 3. The figure shows the
results of averaging over 10 trials, and it reflects experi-
ments for three separate values of #. The first threshold
was set to 0%, which meant that all generations of the
GA were used to teach NN. The second threshold was
set to 50% to permit GA to achieve a level of success
approximately equal to the best performance of NN on
its own. Thus only generations achieving at least 50%
evasion were used to produce examples for NN. Finally,
the third threshold was set at 90% to limit examples
for NN to extremely good experiences from the GA.
When 6 = 0%, GANN starts performing at a level
approximately equal to the best performance of NN.
From there, behavior is erratic but steadily improves
until ultimately reaching a performance of approxi-
mately 97% evasion. If we cut off the learning curve



Percent Evasion

100 ' :”/;\’/“;"/“/ STNE e ===\~
80 ;‘F f\ /\/\/ \jnv y
60 AVK UA/\A
40
20 theta=0% ==
theta=50% -
0 thetg=90% -
0 40000 80000 120000 160000
Examples

Figure 3: Results of nearest neighbor evasion using
examples from the genetic algorithm with § = 0%,

6 =50%, and 6 = 90%.

after 50,000 examples (which is consistent with the
NN experiments), performance still approaches 90%,
but the overall behavior is still unstable. Nevertheless,
we are already seeing substantial improvement in NN’s
performance on this task.

When § = 50%, GANN starts performing at a very
high level (above 70%) and quickly exceeds 90% eva-
sion. In addition, the learning curve is much smoother,
indicating more stability in the actions provided by
the examples. Again, cutting the learning curve off
at 50,000 examples, GANN is performing above 95%
evasion, and some individual trials are achieving 100%
evasion.

Finally, when 8 = 90%, GANN started with ex-
cellent performance, exceeding 90% evasion with the
first set of examples. GANN converged to near-
perfect performance with only 10,000 examples. In
fact, one trial achieved perfect performance with the
first set of examples and remained at 100% evasion
throughout the experiment. Another striking observa-
tion was that GANN was able to perform better than
the GA throughout its learning. For example, when
6 = 0%, GANN was achieving 50-80% evasion while
the GA was still only achieving 2-10% evasion. Fur-
ther, GANN remained ahead of the GA throughout
training. Even when § = 90%, GANN was able to
achieve 98-100% evasion while the GA was still only
achieving around 95% evasion. This indicated to us
that we may be able to further reduce the number of
examples and still perform extremely well.

Editing Nearest Neighbor

Our bootstrapping method showed that GANN can
perform well with only a few examples from the genetic
algorithm, and further that it can outperform its own
teacher (the GA) during training. We decided to take
our study one step further, and attempt to reduce the
size of the example set without hurting performance. A
large body of literature exists for editing example sets

for nearest neighbor classifiers. Since NN is not usually
applied to control tasks, though, we were not able to
find any editing methods specifically tied to our type
of problem. We therefore modified an existing edit-
ing algorithm for our problem. We call the resulting
system GABED for GA Bootstrapping EDited nearest
neighbor.

FEarly work by Wilson (Wilson 1972) showed that
examples could be removed from a set used for classi-
fication, and that this simple editing could further im-
prove classification accuracy. Wilson’s algorithm was
to use each point in the example set as a point to be
classified and then classify the point with £-NN us-
ing the remaining examples. Those points that are
incorrectly classified are deleted from the example set.
Tomek (Tomek 1975) modified this approach by taking
a sample of the examples and classifying them with the
remaining examples. Editing then proceeds as in Wil-
son editing. Ritter et al. (Ritter et al. 1975) developed
another editing method, which differs from Wilson in
that points that are correctly classified are discarded.
Wilson editing attempts to separate classification re-
gions by removing ambiguous points, whereas the Rit-
ter method attempts to define the boundaries between
classes by eliminating points in the interior of the re-
gions.

The editing approach we took combined the editing
procedure of Ritter et al. and the sampling idea of
Tomek. We began by selecting the example set with
the fewest number of examples yielding 100% evasion.
This set contained 1,700 examples. Next we edited the
examples by classifying each point using the remaining
points in the set. If a point was correctly classified,
we deleted it with probability 0.25. (This probability
was selected arbitrarily and was only used to show the
progression of performance as editing occurred.) Prior
to editing and after each pass through the data, the
example set was tested using NN on 10,000 random
engagements. During editing, classification was done
using k-NN with & = 5.

The result of running GABED on the 1,700 examples
is shown in Figure 4. Note that a logarithmic scale is
used on the z-axis, because by editing examples with a
25% probability, more examples will be removed early
in the process than later. Further, the graph shows
“improvement” as the number of examples increases.
Considered in reverse, it is significant to note that per-
formance remains at a high level (greater than 90%
evasion) with only 50 examples. And even with as few
as 10 examples, GABED is achieving better than 80%
evasion, which is substantially better than the best ever
achieved by NN alone.

Discussion and Conclusions

The experiments reported here show that it is now
possible to build efficient memory-based representa-
tions for delayed reinforcement problems. These ex-
periments also demonstrate clearly the power of hav-



100 ax

80 -

60

40

Percent Evasion

20

1 10 100 1000 10000
Examples
Figure 4: Results of editing examples provided by the
genetic algorithm for k-nn.

ing a teacher or other source of good examples for
memory-based methods when applied to complex con-
trol tasks. Without a reliable source of good examples,
our memory-based method (k-NN) was unable to solve
the problem, but with the good examples, it performed
as well or better than the best of the other methods.
In addition, we found that editing the example set can
lead to a relatively small set of examples that do an ex-
cellent job at this complex task. It might be possible
with careful editing to reduce the size of memory even
further. This question is related to theoretical work
by Salzberg et al. (Salzberg et al. 1991) that studies
the question of how to find a minimal-size training set
through the use of a “helpful teacher”, which explicitly
provides very good examples.

We note that when nearest neighbor began, its per-
formance exceeded that of its teacher (the genetic algo-
rithm). This indicates that perhaps the memory-based
method could have been used at this point to teach
the GA. We envision an architecture in which differ-
ent learning algorithms take turns learning, depending
on which one is learning most effectively at any given
time. Such an architecture could lead to much faster
training times.

This research demonstrates the potential for excel-
lent performance of memory-based learning in reactive
control when coupled with a learning teacher. We ex-
pect the general idea of using one algorithm to boot-
strap or teach another would apply in many domains.

Acknowledgements

We wish to thank David Aha, John Grefenstette, Di-
ana Gordon, and Sreerama Murthy for several helpful
comments and ideas. This material is based upon work
supported by the National Science foundation under

Grant Nos. IRI-9116843 and TRI-9223591.

References

Aha, D., and Salzberg, S. 1993. Learning to catch:
Applying nearest neighbor algorithms to dynamic

control tasks. In Proceedings of the Fourth Interna-
tional Workshop on Al and Statistics.

Atkeson, C. 1989. Using local models to control move-
ment. In Neural Information Systems Conference.

Barto, A.; Sutton, R.; and Anderson, C. 1983.
Neuronlike adaptive elements that can solve difficult
learning control problems. IFEE Transactions on
Systems, Man, and Cybernetics 13:835-846.

Clouse, J., and Utgoft, P. 1992. A teaching method for
reinforcement learning. In Proceedings of the Machine
Learning Conference.

Grefenstette, J.; Ramsey, C.; and Schultz, A. 1990.
Learning sequential decision rules using simulation
models and competition. Machine Learning 5:355-

381.

Grefenstette, J. 1991. Lamarckian learning in multi-
agent environments. In Proceedings of the Fourth In-
ternational Conference of Genetic Algorithms, 303—
310. Morgan Kaufmann.

Moore, A., and Atkeson, C. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less
time. Machine Learning 13:103-130.

Ram, A., and Santamaria, J. C. 1993. Multistrategy
learning in reactive control systems for autonomous
robot navigation. Informatica 17(4):347-369.

Ram, A.; Arkin, R.; Boone, G.; and Pearce, M. 1994.
Using genetic algorithms to learn reactive control pa-
rameters for autonomous robot navigation. Adaptive

Behavior 2(3).

Ritter, G.; Woodruff, H.; Lowry, S.; and Isenhour,
T. 1975. An algorithm for a selective nearest neigh-
bor decision rule. IFEE Transactions on Information
Theory 21(6):665-669.

Salzberg, S.; Delcher, A.; Heath, D.; and Kasif, S.
1991. Learning with a helpful teacher. In Proceedings
of the Twelfth International Joint Conference on Ar-
tificial Intelligence, 705-711. Sydney, Australia: Mor-
gan Kaufmann.

Sheppard, J., and Salzberg, S. 1993. Sequential deci-
sion making: An empirical analysis of three learning
algorithms. Technical Report JHU-93/02, Dept. of
Computer Science, Johns Hopkins University, Balti-
more, Maryland.

Sutton, R. 1988. Learning to predict by methods of
temporal differences. Machine Learning 3:9-44.
Tomek, I. 1975. An experiment with the edited
nearest-neighbor rule. IEFEFE Transactions on Sys-
tems, Man, and Cybernetics 6(6):448-452.

Wilson, D. 1972. Asymptotic properties of nearest

neighbor rules using edited data. IFEE Transactions
on Systems, Man, and Cybernetics 2(3):408-421.



