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ABSTRACT - The study of artificial life involves 
simulating biological or sociological processes with a 
computer. Combining artificial life with techniques from 
evolutionary computation frequently involves modeling 
the behavior or decision processes of artificial organisms 
within a society in such a way that genetic algorithms 
can be applied to modify these models and enhance 
behavior over time. Typically, endogenous fitness is used 
with co-evolution. In this paper, we explore the use of an 
exogenous fitness function with genetic programming 
and co-evolution to develop individuals and species 
capable of competing in a hostile environment. To 
facilitate the study, we use a commercially available 
environment-AI Wars-to host the organisms and run 
the experiments. Results from our experiments, though 
preliminary, indicate the ability of co-evolution, genetic 
programming, and exogenous fitness to evolve fit 
individuals. The results also suggest the ability to assess 
the nature of the fitness landscape and the impact of 
various fitness factors on evolutionary performance. 

1 INTRODUCTION 
The concepts of biological evolution assume that creatures 
develop capabilities to adapt to their environment. For a 
species to persist in an environment, it must be able to 
compete successfully for resources against other species. 
For this experiment, we have two nascent species that are 
adapted to their environment and the resources available in 
their environment. The goal is to see if they will learn to 
compete successfully against each other as might occur in 
nature. 

This experiment is set in the environment of the computer 
game “AI Wars.” In a typical AI Wars game, a player hand- 
codes a program that will direct the actions of a virtual 
“bug” that competes in a fight to the death against other 
player-coded bugs. The game has little to do with AI, since 
the programs are static, human-written, and use no AI 
algorithms. The environment, however, is well structured 
for an investigation of genetic programming, co-evolution 
and Artificial Life. 
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1.1 Motivation for Competitive CO-Evolution 
Adaptation to an environment is the first (and most general) 
requirement for a species to establish itself. The ability to 
secure an adequate food source in the specific environment 
determines whether a species stays, moves on in search of 
other environments, or becomes extinct. This requirement is 
sufficiently general that every environment on earth is 
replete with a variety of different species in the same area. 

Competition arises in nature in predator-prey relationships 
or when several species compete for the same limited food 
source. For a species to persist in an environment, it must be 
able to compete successfully for resources. The success of 
this process in biology has lead to the natural diversity that 
is evident in every environment. For this experiment neither 
species is assigned the role of predator or prey: it is part of 
the experiment to see if such behavior arises “naturally.” 

It would be possible to evolve a single species for this 
experiment using the traditional techniques of genetic 
programming by assuming a static environment. An 
alternative idea is to pit a single species that is starting from 
a random state against a hand-written bug that is already 
able to compete in its environment. Although the 
developing species might, in time, learn to deal with the 
predator, it seems intuitive that the species would only learn 
to deal with the one particular static predator against which 
it must compete. To attempt to mimic the results of nature, 
and to promote the development of bugs with more general 
capabilities, it is preferable to mimic a more natural 
environment-one in which there is competition and where 
all participants in the competition evolve. For these reasons 
we decided to work with two species-both of whose 
programs start as randomly generated code-and compete 
them against each other. 

1.2 Related Work 
Previous research in evolving solutions to complex tasks 
indicates that competition between sets of simultaneously 
learning agents can produce superior solutions [AP93, 
AP92, FP941. The work of Ficici, Angeline and Pollack 
supports the idea that if a set of learning agents simply 
compete against a static opponent they are likely to learn the 
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behaviors of the opponent and come to a potentially sub- 
optimal solution. If two or more simultaneously learning 
populations are involved, an “arms race” may arise that will 
drive the populations towards better and better solutions. 

CO-evolving populations that can avoid interaction may 
converge to what Ficici and Pollack called a “mediocre 
stable state” [FP94]. They cite, for example, situations in 
World War I in which opposing soldiers in the trenches 
developed ritualistic shows of force that would satisfy their 
respective commanders but expose themselves to little risk 
of injury or success. To deal with this, Ficici and Pollack 
had three subjects in their experiment; two attempting to 
cooperate and one that was considered the opponent. They 
found that this tension drove towards better solutions. 

This project differs from research in predator-prey evolution 
[NI971 and pursuit-evasion games [CM96, She97, LS961 in 
two substantial ways. First, both species have equal 
capabilities. Second, both species have the same goal. 
Neither species is assigned the role of pursuerlevader or 
predatorlprey. It is left to the process of evolution to 
determine if these roles arise. 

1.3 AI Wars and A-Life 
The game AI Wars [Red98II does not use artificial 
intelligence; it can serve as a readymade Artificial Life 
laboratory. Much A-Life work is involved in the 
fundamental task of developing software representations 
that behave in a manner similar to biological organisms. 
Some of this work involves co-evolution, competition, 
parasitic behavior, and symbiotic behavior [Ray91 3. In AI 
Wars we are not experimenting with the biology or 
morphology of our creatures. We are given two species with 
identical capabilities, and we are attempting to determine 
whether they can develop the high-order reasoning 
capabilities that will allow them to use their physical 
capabilities to survive in a competitive environment. 

Much of the work in Genetic Programming (GP) involves 
attempts to grow computational functions from low-level 
constructs (individual programming-language words and 
variables). Examples include the development of adders, 
sorters, and pattern-matching routines [AP92, Koz92, 
Koz91, Koz92, Spe961. This project starts with relatively 
high-level constructs assembled in random order, with 
random parameter values. The AI Wars programming 
language already includes complex constructs such as “if 
damage is > 90% then ...” so it is not necessary to evolve 
them. The manipulation is in the placement of the 
statements within the program and in the manipulation of 
the consequent (the things that come after the “then.. .”). 
The intent is to grow complex general-purpose independent 
agent behavior. 

In all other respects it follows the concepts of GP. Programs 
are copied and modified. Subroutines are developed and 
shared. The difference is that complete, valid lines of code- 
not words within the line-are the basic unit being 
manipulated. The GP mutation operators employed are 
similar to those described in [Koz96]. 

2 HYPOTHESIS 
The goal of the experiment is to evolve bug programs using 
co-evolution that perform better than randomly generated 
code. A more ambitious goal is for one or both of the 
species to evolve bug programs that are capable of 
competition against each other and that are general enough 
to compete against hand-coded bugs. We hypothesize that 
the endogenous fitness assessment represented by the game 
score will be insufficient to drive a vigorous evolutionary 
process. 

We refer to the fitness function applied by AI Wars as 
endogenous and the fitness function we develop and apply 
in an attempt to drive evolutionary towards particular 
behaviors as exogenous. 

Assessing progress (and testing the above hypotheses) in a 
co-evolutionary environment is problematic unless the 
specific behaviors evolved are examined. Thus tracking the 
progression of individual or species fitness by itself is 
somewhat uninformative, especially when using 
endogenous fitness. For this reason, we examine evolved 
behaviors as well as track the progression of exogenous 
species fitness. 

3 APPROACH 

3.1 Program Representation 
Initially, several bug programs are generated at random. 
The bug programs consist of blocks of code where a block 
consists of a named subroutine with one or more lines of 
code. Blocks can branch to other blocks but always return to 
the calling block. Each bug program consists of a mainline 
program and zero or more subroutines. The mainline and 
subroutines are all code blocks. 

3.2 Initial State 
The initial population consists of randomly generated legal 
programs. Invalid programs are not generated, thus 
enforcing the interaction of viable individuals and 
eliminating the possibility of either species containing inert 
individuals. The bugs are initially generated as a set of 
integer and string tokens representing valid commands. 
These tokenized programs are then translated into text 
versions. A code fragment of a bug program is given in 
Figure 1. The text version of the bug is then run through a 
proprietary encryption algorithm to produce a file format 
acceptable to the AI Wars program. 
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author waters 
iff code sl 
name bg 12s 1 
generate random 
top: 
if scan found nothing then lay mines on 
if no ammo then scan forward 
if random is 4 then turn right 
if scan found barrier then scan position 6 
math vu = #strat-x / #damset 1 1 
if x coordinate is = 80 then scan right 
lay mines on 
gosub izdpx 
if scan found enemy then move backwards 
goto top 

Figure 1. AI Wars Code Fragment 

For each generation, there are two sets of tournaments- 
intramural and interspecies. A tournament consists of a 
series of battles, with up to 10 bugs per battle. Battles take 
place in a discrete 2-dimensional arena. Objects in the arena 
include flags, mines, and barriers. Flags repair damage and 
replenish fuel and ammunition. If a flag is taken when the 
bug has no damage, the result is an overload that damages 
the bug. Mines are passive enemies: whoever steps on one 
is damaged. Barriers prevent movement and detection but 
can be maneuvered around. 

Bugs all have “identify friend or foe” (iff) codes 
representing their species. In this way, bugs of the same 
species can identify each other during inter-species 
competitions: during intramural competition, iff-detection is 
disabled. 

3.3 Intramural Tournaments 
In intramural tournaments groups of up to 10 bugs from the 
same species compete against each other. Each bug is 
guaranteed to be in at least one battle, but there is no 
guarantee that every bug will be matched against every 
other bug in the species. 

After the intramural tournament, the aggregate battle results 
are computed from the battle reports. Statistics computed 
for each bug include; number of battles, raw score (total of 
all scores from all battles-see Appendix), scaled score, and 
fitness. 

Raw bug scores can range from minus infinity to plus 
infinity; therefore, the scores are scaled to a minimum of 
zero for ease of calculation. To do this the lowest raw score 
is captured for the species and (if it is less than zero) added 
it to each raw score to compute the scaled score. The fitness 
for each bug is calculated as (scaled score) / (sum of species 
scaled scores). Reproduction opportunities are then 
allocated for each bug using fitness proportionate selection. 

3.4 Interspecies Tournaments 
Once the intramural tournaments for each species are 
finished, the two species compete against each other. Five 
bugs from each species are placed into each battle. Once all 
the interspecies battles have been run, scoring and mating 
are handled in the same manner as with intramural 
tournaments. Mates must come from the same species. 

The selection and replacement mechanism implements a 
steady-state genetic algorithm. Specifically, in each new 
generation, four new bugs (two offspring from the 
intramural and two offspring from the interspecies 
tournaments) are generated and replace the four least fit 
individuals of their respective species from the previous 
generation. 

3.5 Genetic Operators 
Both mutation and crossover are used. We used five 
mutation operators: duplication, deletion, restoration, 
substitution and modification. 

Duplication: The selected line is copied and inserted 
immediately following the original line. 

Deletion (Deactivation): The selected line is deactivated by 
being commented out. The “return” and the “goto TOP” 
statements are exempted from mutation since commenting 
out these lines would be destructive to the block structure of 
the programs. 

Restoration: If the selected line is one that had been 
previously commented out (deleted), it is restored to its 
active state. 

Substitution: The selected line is replaced with a new, 
randomly generated, valid line. If the random command 
generator generates a “gosub”, an entirely new subroutine is 
generated. 

Modijkation: A single value of the selected line is changed. 
The value to be modified is randomly selected from all the 
tokens in the line of code. If the random selection indicates 
a change to the first token - which is the primary command 
on that line - modification would be equivalent to 
Substitution. Since this is not the intent of Modification, 
these cases are passed through unmodified., Integer tokens 
are randomly increased or decreased, resulting in either new 
parameter values or new consequent commands. 

Crossover - occurring 100% of the time in reproduction - is 
implemented as two-point, where contiguous subsets of 
code from the mainline routines of the two parents are 
swapped to create two different offspring. If the copied 
code contains a call to a subroutine, the entire referenced 
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subroutine is copied into the offspring. De-activated code 
(code that has been subject to the Deletion operator) is also 
copied and available for Restoration in later generations. 
Mutation probability is relatively high (10%). Each line of 
code in each new bug is subject to the possibility of 
mutation. 

3.6 Fitness Function 
The AI Wars program assigns a score to each bug that 
reflects the amount of damage done to enemy bugs while 
keeping the damage to itself low. This usually means that 
the last bug alive is the winner of a battle, but it is not 
unheard of for the bug with the highest point total to have 
been killed before the battle has ended. This score seems to 
be an appropriate fitness function since it is an integer value 
with an initial setting of zero, it can go negative if a bug is 
particularly inept and is not explicitly bounded. It reflects 
the bugs’ ability to defend itself’, to locate flags (food) and 
to damage competitors. The details of the scoring used by 
AI Wars are provided in the Appendix. 

As it turned out, this endogenous fitness function was 
inadequate to achieving the kinds of results desired. An 
exogenous fitness function that amplified the rewards for 
certain specific acts (subgoals) was added to the third 
experiment. Specifically, the original fitness function was 
simply the score given by the game to the bug at the end of 
the battle. We added to this value a rewardpenalty function 
for specific events that took place during the course of the 
battle. These events are captured in the textual narrative of 
each battle report and include direct hits with missiles and 
energy weapons, indirect (shrapnel) hits, stepping on 
landmines, capturing flags and firing missiles with shields 
up. Beneficial events are given large additive rewards and 
detrimental events are given large subtractive penalties. 

4 IMPLEMENTATION 
The environment used for the experiments is AI Wars 
version 3 . 7 ~ .  Programming was done in Microsoft Visual 
Basic for Applications (VBA), integrated with Microsoft 
Excel under Microsoft Windows. The Microsoft scripting 
product “Scriptit” was used to coordinate the execution of 
tournaments and the integration of the programs. The test 
machines were Pentium I1 with CPU clock speeds > 
200mHz. 

4.1 Initialization 
A VBA program is used to generate the initial population. 
Two populations of individuals are generated - one for each 
species. Subroutines are written to separate files to facilitate 
potential sharing of subroutines between individuals in later 
generations. The text of the subroutines is copied onto the 
end of the individual’s code for compilation and execution. 

The output of this generation process is a set of tokenized 
files, with integers representing commands and parameters. 
These files are then mapped into valid commands in 
separate text files (e.g. “39” + “Return”). These text files 
are then encrypted for execution by the AI Wars game. 

4.2 Execution 
A VBA program is used to run the simulations, process the 
results, and produce generations after the first (Generation 
Zero). Recognizing that manually running the battles, both 
intramural and interspecies, would be extremely tedious, a 
scripting utility from Microsoft called “ScriptIt” is used to 
coordinate the execution of the components. The VBA 
program writes scripts and invokes the script runner, which 
in turn invokes AI Wars. Each generation is stored in a 
separate directory, as is each species and each tournament, 
thus facilitating analysis by providing uncorrupted 
snapshots of the evolutionary process. 

5 RESULTS 
The time required to run each generation of bugs proved to 
be considerable. With that in mind, these results should be 
considered preliminary. Experiments are continuing. 

Three experiments were run to a point where identifiable 
trends emerged. The first was with two 50-member 
populations run to 24 generations. The second was with two 
20-member populations that converged after only 7 
generations. The third was with two 20-member populations 
that are still running. The results in this paper represent the 
output of this third experiment at generation 143. 

The chief difference between the first and subsequent two 
experiments was the range of programming constructs 
available. The first experiment limited the commands being 
used to the simplest commands available. The latter two 
experiments allowed the bugs to use the full range of the AI 
Wars programming language. The third experiment 
involved the use of the exogenous fitness function described 
in section 3.6. In all three experiments two fundamental 
trends emerged-self-destructive behaviors were eliminated 
and overall fitness increased over time. 

5.1 Eliminating Self-Destructive Behaviors 
Three different patterns of self-destructive behavior were 
eliminated in early generations. These behaviors included 
firing missiles with shields up, laying landmines and then 
immediately stepping on them, and repeatedly executing the 
“Discharge Energy” command. 

Firing missiles with shields up results in the full missile 
damage being inflicted on the firing bug. Bugs exhibiting 
this behavior received significantly negative scores and 
were eliminated from the population. Individuals that fired 
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missiles in later generations had learned to lower their 
shields first. 

When mine laying is turned on, a mine is laid for each step 
the bug takes until it runs out of ammunition (or turns mine 
laying off). The most common self-destructive form of this 
behavior was observed to be the following code fragment: 

Lay Mines On 
Move forward 
Move backward 
Move forward 

This code resulted in the individual stepping on two mines 
it had just laid itself. In general, mine laying was not 
eliminated but is far less common in later generations than 
in early generations. Individuals that did lay mines tended 
to proceed in a single direction, either forward or backward, 
instead of turning or reversing course. 

The energy discharge command inflicts one point of 
damage to the bug executing the command while clearing 
mines in the immediate vicinity. It also inflicts three points 
of damage to any bugs that are next to the executor. In 
human-written bugs that compete well, it is common to 
execute “Discharge Energy” three times in succession if an 
enemy is detected in the surrounding spaces, but only after 
ensuring that the procedure will not be self-destructive. Ten 
executions of “Discharge Energy” in a row will destroy the 
bug discharging the energy. ’ 

Individuals in early generations were seen to perform 
energy discharges until they had destroyed themselves. This 
behavior was eliminated. Later generation individuals that 
used the Energy Discharge did so with intervals between 
energy discharges. These intervals could include attempts at 
repairing damage or other benign or beneficial commands. 
The simple self-destructive sequence is no longer present. 

5.2 Evolutionary Trends 
These changes are supportive of the hypothesis that the bug 
programs would improve over time. The bugs in later 
generations were generally more fit than those in generation 
0. This is true for all three experiments. Trends in the first 
and third experiment hrther support the hypothesis that the 
individuals were improving. The highest scores of the bugs 
in both species trended higher with time, as shown in Figure 
2 with results from the third experiment, for interspecies 
competitions. Figure 2 also shows Species 1 as dominant 
over Species 2. 

Figure 3 uses a 10-point moving average of the top scores 
for both species in intramural as well as interspecies 
competition. It is noteworthy that species 2 was actually 
making rapid gains early in the experiment before losing all 

Interspecies Fitness Trends 
- --1 __ 

1 5 9 3 7 1 5 9 3 1 1  

Generation 
- Species 1 Top Score - Species 2 Top Score 

Figure 2. Interspecies Score Trends 
the ground it had gained. This relapse is most likely 
attributable to the fact that not all individuals were 
guaranteed to compete against all others. It is also possible 
that the selection mechanism - allowing an equal number of 
new individuals for intramural and interspecies - magnified 
any deficiencies in the gene pool for species 2. 

IO-Point Moving Average of Top Scores 

1 

Spec 1 Interspecies 

Generation 

Figure 3. Moving Average of Top Scores 

What is also of interest in Figure 3 is the mirrored peaks 
and valleys of intramural versus interspecies fitness that 
species 1 demonstrates. This suggests that bugs that 
evolved as competent in the intramural competition were 
less competent in the corresponding generation’s 
interspecies tournament. This supports the motivation of 
running both kinds of tournaments in the hopes of evolving 
a generalized competitor that will compete well in both 
arenas (as seems to occur around generations 85 and 135). 

By contrast, the intramural and interspecies tracks for 
species 2 are almost identical. This suggests a fairly poor 
homogenous population that has lost the valuable genetic 
material it had developed before generation 25. Lacking 
any vigorous individuals who might produce high-quality 
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offspring, mutation is insufficient to bring species 2 up to 
the levels achieved by species 1. 

As was hypothesized, the most successful individuals in the 
experiment came from later generations. Specifically, bug 
108 in species 1 (created in generation 23) won 17 out of 
the 120 interspecies tournaments (14%) that occurred after 
its creation. Somewhat better was bug 444 (created in 
generation 1 IO), which won 5 out of the 34 interspecies 
tournaments that occurred after its creation (15% success). 
Bug 412 (created in generation 102) which won 7 
interspecies tournaments of the 42 in which it could 
compete (1 7% success) achieved the best success ratio 
demonstrated so far. The success ratio of the remaining 
individuals of each species ranged from 3% to 0% (no 
wins). The behavior of these successful bugs was 
characterized by limited movement (single steps forward or 
backward, single turns) and aggressive firing of weapons. 

5.3 Impact of Exogenous Fitness Function 
In the second experiment, there was a complete tendency 
towards passivity. Both populations converged toward bugs 
that were coded differently but whose overall behavior was 
characterized by inactivity. The reason for this seem to be 
that although the endogenous fitness function offers 
substantial rewards for damaging an opponent, the 
likelihood of doing so when the driving program is 
behaving randomly is quite low. As a result, bugs 
conserved fuel and ammunition by staying in one place and 
not firing their weapons. This behavior corresponds to the 
“mediocre stable state” described in [FP94]. The simple 
fitness function failed to reward subgoals explicitly (e.g., 
directly or indirectly damaging enemies and collecting 
flags), thus encouraging passivity. The endogenous fitness 
function provides a view of the fitness landscape in which 
passivity is sufficiently rewarded and the active, aggressive 
behaviors in which we were interested would be extremely 
narrow - albeit tall - peaks. 

The more elaborate exogenous fitness function explicitly 
rewarded the subgoals, thus succeeding in preventing a 
mediocre stable state and in encouraging the behavior in 
which we were interested. It “warped” the fitness landscape 
in such a way as to create a basin of attraction representing 
the active and aggressive behaviors we were interested in 
evolving. 

6 SUMMARY 

between sensor input and action, nor have they grasped the 
substantial value of capturing flags after sustaining damage. 

The use of an exogenous fitness function to drive the 
evolutionary process in a direction other than that indicated 
by the endogenous fitness function in this environment was 
demonstrated. The mechanisms underlying this effect are 
still under evaluation. 

7 NEXT STEPS 
The work that has been reported in this paper is preliminary. 
The experiments focused on evaluating complex 
environment for suitability in conducting A-Life 
experiments. In addition, the focus was on evaluating co- 
evolution with an exogenous fitness function, i.e., a fitness 
function applied as an outside influence. Most co- 
evolutionary research focuses on endogenous fitness since 
this is a more natural application of the environment and 
more closely fits natural evolution. The disadvantage to 
using endogenous fitness in A-Life studies is that it is 
difficult to assess the impact of the fitness landscape on 
evolutionary progress. Using an exogenous fitness function 
allows one to perform a more analytical assessment of the 
function’s impact on evolution. 

Experiments are currently under way to perform formal 
assessment of the impact of fitness on co-evolution. The 
two fitness functions evaluated for this paper provide initial 
indications of the sensitivity of different types of terms used 
in fitness on the ability to evolve valuable and interesting 
behaviors. We plan to focus on characterizing the nature of 
this sensitivity with the hope of developing guidelines for 
designing useful fitness functions. We also hope that the 
lessons learned from examining the exogenous functions 
will provide insight into the mechanisms inherent in 
endogenous fitness, thus helping to predict the types of 
factors that might be involved in natural evolution. 
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The data supports the basic hypothesis that the individual 
programs improve over time. The third experiment indicates 
that one species is becoming dominant over the other. We 
believe that a larger number of generations will reinforce 
this pattern. No bugs evolved that were capable of 
competing against human-coded programs. In particular, 
individuals have not yet demonstrated a robust connection 
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Appendix: AI Wars Scoring 

The point-value assignments that make up the game-assigned score are given in the following table. 

* Self Destruct * 10 1001100 
System Overload 

The percentage values in the table reflect the fact that 
missiles and mines actually cause this type of damage. An 
undamaged bug with 10 “life” points that steps on a mine 
will suffer 5 points of damage and increase its fuel bum 
rate by 5. The system overload line refers to the fact that 
a bug that takes a flag while at full strength (no damage) 
suffers system overload. Bugs do not receive points for 
doing damage to themselves. At the end of the battle, 

consideration the final fuel bum rate for the bug. The 
bum rate increases when a bug is damaged through 
enemy action and possibly (5% probability) whenever 
using the attempt repairs command. Therefore the fuel 
bum rate is a persistent indication of damage sustained 
during a battle. A bug’s final score equals the sum of all 
its other scoring measures minus its current fuel bum rate. 

0 1 0  I 50150% I 515 010 

each surviving bug gets an additional 50 points for every 
life point remaining. Each “dead” bug loses an additional 
50 points for every damage point it sustained over the 
amount needed to kill it. The score takes into 

The exogenous fitness function applied these additional 
values: 

Reward I 
Penalty Event 
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