
Genetic Programming and CO-Evolution with Exogenous Fitness in an
Artificial Life Environment

Michael Waters
TTC Incorporated

204 10 Observation Drive
Germantown, MD 20876-4023

watersm@ttc.com
(301) 353-1550

ABSTRACT - The study of artificial life involves
simulating biological or sociological processes with a
computer. Combining artificial life with techniques from
evolutionary computation frequently involves modeling
the behavior or decision processes of artificial organisms
within a society in such a way that genetic algorithms
can be applied to modify these models and enhance
behavior over time. Typically, endogenous fitness is used
with co-evolution. In this paper, we explore the use of an
exogenous fitness function with genetic programming
and co-evolution to develop individuals and species
capable of competing in a hostile environment. To
facilitate the study, we use a commercially available
environment-AI Wars-to host the organisms and run
the experiments. Results from our experiments, though
preliminary, indicate the ability of co-evolution, genetic
programming, and exogenous fitness to evolve fit
individuals. The results also suggest the ability to assess
the nature of the fitness landscape and the impact of
various fitness factors on evolutionary performance.

1 INTRODUCTION
The concepts of biological evolution assume that creatures
develop capabilities to adapt to their environment. For a
species to persist in an environment, it must be able to
compete successfully for resources against other species.
For this experiment, we have two nascent species that are
adapted to their environment and the resources available in
their environment. The goal is to see if they will learn to
compete successfully against each other as might occur in
nature.

This experiment is set in the environment of the computer
game “AI Wars.” In a typical AI Wars game, a player hand-
codes a program that will direct the actions of a virtual
“bug” that competes in a fight to the death against other
player-coded bugs. The game has little to do with AI, since
the programs are static, human-written, and use no AI
algorithms. The environment, however, is well structured
for an investigation of genetic programming, co-evolution
and Artificial Life.

John Sheppard
ARINC

255 1 Riva Road
Annapolis, MD 21401

jsheppar@arinc.com
(4 10) 266-2099

1.1 Motivation for Competitive CO-Evolution
Adaptation to an environment is the first (and most general)
requirement for a species to establish itself. The ability to
secure an adequate food source in the specific environment
determines whether a species stays, moves on in search of
other environments, or becomes extinct. This requirement is
sufficiently general that every environment on earth is
replete with a variety of different species in the same area.

Competition arises in nature in predator-prey relationships
or when several species compete for the same limited food
source. For a species to persist in an environment, it must be
able to compete successfully for resources. The success of
this process in biology has lead to the natural diversity that
is evident in every environment. For this experiment neither
species is assigned the role of predator or prey: it is part of
the experiment to see if such behavior arises “naturally.”

It would be possible to evolve a single species for this
experiment using the traditional techniques of genetic
programming by assuming a static environment. An
alternative idea is to pit a single species that is starting from
a random state against a hand-written bug that is already
able to compete in its environment. Although the
developing species might, in time, learn to deal with the
predator, it seems intuitive that the species would only learn
to deal with the one particular static predator against which
it must compete. To attempt to mimic the results of nature,
and to promote the development of bugs with more general
capabilities, it is preferable to mimic a more natural
environment-one in which there is competition and where
all participants in the competition evolve. For these reasons
we decided to work with two species-both of whose
programs start as randomly generated code-and compete
them against each other.

1.2 Related Work
Previous research in evolving solutions to complex tasks
indicates that competition between sets of simultaneously
learning agents can produce superior solutions [AP93,
AP92, FP941. The work of Ficici, Angeline and Pollack
supports the idea that if a set of learning agents simply
compete against a static opponent they are likely to learn the

0-7803-5536-91996 10.00 0 1999 IEEE 1641

mailto:watersm@ttc.com
mailto:jsheppar@arinc.com

behaviors of the opponent and come to a potentially sub-
optimal solution. If two or more simultaneously learning
populations are involved, an “arms race” may arise that will
drive the populations towards better and better solutions.

CO-evolving populations that can avoid interaction may
converge to what Ficici and Pollack called a “mediocre
stable state” [FP94]. They cite, for example, situations in
World War I in which opposing soldiers in the trenches
developed ritualistic shows of force that would satisfy their
respective commanders but expose themselves to little risk
of injury or success. To deal with this, Ficici and Pollack
had three subjects in their experiment; two attempting to
cooperate and one that was considered the opponent. They
found that this tension drove towards better solutions.

This project differs from research in predator-prey evolution
[NI971 and pursuit-evasion games [CM96, She97, LS961 in
two substantial ways. First, both species have equal
capabilities. Second, both species have the same goal.
Neither species is assigned the role of pursuerlevader or
predatorlprey. It is left to the process of evolution to
determine if these roles arise.

1.3 AI Wars and A-Life
The game AI Wars [Red98II does not use artificial
intelligence; it can serve as a readymade Artificial Life
laboratory. Much A-Life work is involved in the
fundamental task of developing software representations
that behave in a manner similar to biological organisms.
Some of this work involves co-evolution, competition,
parasitic behavior, and symbiotic behavior [Ray91 3. In AI
Wars we are not experimenting with the biology or
morphology of our creatures. We are given two species with
identical capabilities, and we are attempting to determine
whether they can develop the high-order reasoning
capabilities that will allow them to use their physical
capabilities to survive in a competitive environment.

Much of the work in Genetic Programming (GP) involves
attempts to grow computational functions from low-level
constructs (individual programming-language words and
variables). Examples include the development of adders,
sorters, and pattern-matching routines [AP92, Koz92,
Koz91, Koz92, Spe961. This project starts with relatively
high-level constructs assembled in random order, with
random parameter values. The AI Wars programming
language already includes complex constructs such as “if
damage is > 90% then ...” so it is not necessary to evolve
them. The manipulation is in the placement of the
statements within the program and in the manipulation of
the consequent (the things that come after the “then.. .”).
The intent is to grow complex general-purpose independent
agent behavior.

In all other respects it follows the concepts of GP. Programs
are copied and modified. Subroutines are developed and
shared. The difference is that complete, valid lines of code-
not words within the line-are the basic unit being
manipulated. The GP mutation operators employed are
similar to those described in [Koz96].

2 HYPOTHESIS
The goal of the experiment is to evolve bug programs using
co-evolution that perform better than randomly generated
code. A more ambitious goal is for one or both of the
species to evolve bug programs that are capable of
competition against each other and that are general enough
to compete against hand-coded bugs. We hypothesize that
the endogenous fitness assessment represented by the game
score will be insufficient to drive a vigorous evolutionary
process.

We refer to the fitness function applied by AI Wars as
endogenous and the fitness function we develop and apply
in an attempt to drive evolutionary towards particular
behaviors as exogenous.

Assessing progress (and testing the above hypotheses) in a
co-evolutionary environment is problematic unless the
specific behaviors evolved are examined. Thus tracking the
progression of individual or species fitness by itself is
somewhat uninformative, especially when using
endogenous fitness. For this reason, we examine evolved
behaviors as well as track the progression of exogenous
species fitness.

3 APPROACH

3.1 Program Representation
Initially, several bug programs are generated at random.
The bug programs consist of blocks of code where a block
consists of a named subroutine with one or more lines of
code. Blocks can branch to other blocks but always return to
the calling block. Each bug program consists of a mainline
program and zero or more subroutines. The mainline and
subroutines are all code blocks.

3.2 Initial State
The initial population consists of randomly generated legal
programs. Invalid programs are not generated, thus
enforcing the interaction of viable individuals and
eliminating the possibility of either species containing inert
individuals. The bugs are initially generated as a set of
integer and string tokens representing valid commands.
These tokenized programs are then translated into text
versions. A code fragment of a bug program is given in
Figure 1. The text version of the bug is then run through a
proprietary encryption algorithm to produce a file format
acceptable to the AI Wars program.

1642

author waters
iff code sl
name bg 12s 1
generate random
top:
if scan found nothing then lay mines on
if no ammo then scan forward
if random is 4 then turn right
if scan found barrier then scan position 6
math vu = #strat-x / #damset 1 1
if x coordinate is = 80 then scan right
lay mines on
gosub izdpx
if scan found enemy then move backwards
goto top

Figure 1. AI Wars Code Fragment

For each generation, there are two sets of tournaments-
intramural and interspecies. A tournament consists of a
series of battles, with up to 10 bugs per battle. Battles take
place in a discrete 2-dimensional arena. Objects in the arena
include flags, mines, and barriers. Flags repair damage and
replenish fuel and ammunition. If a flag is taken when the
bug has no damage, the result is an overload that damages
the bug. Mines are passive enemies: whoever steps on one
is damaged. Barriers prevent movement and detection but
can be maneuvered around.

Bugs all have “identify friend or foe” (iff) codes
representing their species. In this way, bugs of the same
species can identify each other during inter-species
competitions: during intramural competition, iff-detection is
disabled.

3.3 Intramural Tournaments
In intramural tournaments groups of up to 10 bugs from the
same species compete against each other. Each bug is
guaranteed to be in at least one battle, but there is no
guarantee that every bug will be matched against every
other bug in the species.

After the intramural tournament, the aggregate battle results
are computed from the battle reports. Statistics computed
for each bug include; number of battles, raw score (total of
all scores from all battles-see Appendix), scaled score, and
fitness.

Raw bug scores can range from minus infinity to plus
infinity; therefore, the scores are scaled to a minimum of
zero for ease of calculation. To do this the lowest raw score
is captured for the species and (if it is less than zero) added
it to each raw score to compute the scaled score. The fitness
for each bug is calculated as (scaled score) / (sum of species
scaled scores). Reproduction opportunities are then
allocated for each bug using fitness proportionate selection.

3.4 Interspecies Tournaments
Once the intramural tournaments for each species are
finished, the two species compete against each other. Five
bugs from each species are placed into each battle. Once all
the interspecies battles have been run, scoring and mating
are handled in the same manner as with intramural
tournaments. Mates must come from the same species.

The selection and replacement mechanism implements a
steady-state genetic algorithm. Specifically, in each new
generation, four new bugs (two offspring from the
intramural and two offspring from the interspecies
tournaments) are generated and replace the four least fit
individuals of their respective species from the previous
generation.

3.5 Genetic Operators
Both mutation and crossover are used. We used five
mutation operators: duplication, deletion, restoration,
substitution and modification.

Duplication: The selected line is copied and inserted
immediately following the original line.

Deletion (Deactivation): The selected line is deactivated by
being commented out. The “return” and the “goto TOP”
statements are exempted from mutation since commenting
out these lines would be destructive to the block structure of
the programs.

Restoration: If the selected line is one that had been
previously commented out (deleted), it is restored to its
active state.

Substitution: The selected line is replaced with a new,
randomly generated, valid line. If the random command
generator generates a “gosub”, an entirely new subroutine is
generated.

Modijkation: A single value of the selected line is changed.
The value to be modified is randomly selected from all the
tokens in the line of code. If the random selection indicates
a change to the first token - which is the primary command
on that line - modification would be equivalent to
Substitution. Since this is not the intent of Modification,
these cases are passed through unmodified., Integer tokens
are randomly increased or decreased, resulting in either new
parameter values or new consequent commands.

Crossover - occurring 100% of the time in reproduction - is
implemented as two-point, where contiguous subsets of
code from the mainline routines of the two parents are
swapped to create two different offspring. If the copied
code contains a call to a subroutine, the entire referenced

1643

subroutine is copied into the offspring. De-activated code
(code that has been subject to the Deletion operator) is also
copied and available for Restoration in later generations.
Mutation probability is relatively high (10%). Each line of
code in each new bug is subject to the possibility of
mutation.

3.6 Fitness Function
The AI Wars program assigns a score to each bug that
reflects the amount of damage done to enemy bugs while
keeping the damage to itself low. This usually means that
the last bug alive is the winner of a battle, but it is not
unheard of for the bug with the highest point total to have
been killed before the battle has ended. This score seems to
be an appropriate fitness function since it is an integer value
with an initial setting of zero, it can go negative if a bug is
particularly inept and is not explicitly bounded. It reflects
the bugs’ ability to defend itself’, to locate flags (food) and
to damage competitors. The details of the scoring used by
AI Wars are provided in the Appendix.

As it turned out, this endogenous fitness function was
inadequate to achieving the kinds of results desired. An
exogenous fitness function that amplified the rewards for
certain specific acts (subgoals) was added to the third
experiment. Specifically, the original fitness function was
simply the score given by the game to the bug at the end of
the battle. We added to this value a rewardpenalty function
for specific events that took place during the course of the
battle. These events are captured in the textual narrative of
each battle report and include direct hits with missiles and
energy weapons, indirect (shrapnel) hits, stepping on
landmines, capturing flags and firing missiles with shields
up. Beneficial events are given large additive rewards and
detrimental events are given large subtractive penalties.

4 IMPLEMENTATION
The environment used for the experiments is AI Wars
version 3 . 7 ~ . Programming was done in Microsoft Visual
Basic for Applications (VBA), integrated with Microsoft
Excel under Microsoft Windows. The Microsoft scripting
product “Scriptit” was used to coordinate the execution of
tournaments and the integration of the programs. The test
machines were Pentium I1 with CPU clock speeds >
200mHz.

4.1 Initialization
A VBA program is used to generate the initial population.
Two populations of individuals are generated - one for each
species. Subroutines are written to separate files to facilitate
potential sharing of subroutines between individuals in later
generations. The text of the subroutines is copied onto the
end of the individual’s code for compilation and execution.

The output of this generation process is a set of tokenized
files, with integers representing commands and parameters.
These files are then mapped into valid commands in
separate text files (e.g. “39” + “Return”). These text files
are then encrypted for execution by the AI Wars game.

4.2 Execution
A VBA program is used to run the simulations, process the
results, and produce generations after the first (Generation
Zero). Recognizing that manually running the battles, both
intramural and interspecies, would be extremely tedious, a
scripting utility from Microsoft called “ScriptIt” is used to
coordinate the execution of the components. The VBA
program writes scripts and invokes the script runner, which
in turn invokes AI Wars. Each generation is stored in a
separate directory, as is each species and each tournament,
thus facilitating analysis by providing uncorrupted
snapshots of the evolutionary process.

5 RESULTS
The time required to run each generation of bugs proved to
be considerable. With that in mind, these results should be
considered preliminary. Experiments are continuing.

Three experiments were run to a point where identifiable
trends emerged. The first was with two 50-member
populations run to 24 generations. The second was with two
20-member populations that converged after only 7
generations. The third was with two 20-member populations
that are still running. The results in this paper represent the
output of this third experiment at generation 143.

The chief difference between the first and subsequent two
experiments was the range of programming constructs
available. The first experiment limited the commands being
used to the simplest commands available. The latter two
experiments allowed the bugs to use the full range of the AI
Wars programming language. The third experiment
involved the use of the exogenous fitness function described
in section 3.6. In all three experiments two fundamental
trends emerged-self-destructive behaviors were eliminated
and overall fitness increased over time.

5.1 Eliminating Self-Destructive Behaviors
Three different patterns of self-destructive behavior were
eliminated in early generations. These behaviors included
firing missiles with shields up, laying landmines and then
immediately stepping on them, and repeatedly executing the
“Discharge Energy” command.

Firing missiles with shields up results in the full missile
damage being inflicted on the firing bug. Bugs exhibiting
this behavior received significantly negative scores and
were eliminated from the population. Individuals that fired

1644

missiles in later generations had learned to lower their
shields first.

When mine laying is turned on, a mine is laid for each step
the bug takes until it runs out of ammunition (or turns mine
laying off). The most common self-destructive form of this
behavior was observed to be the following code fragment:

Lay Mines On
Move forward
Move backward
Move forward

This code resulted in the individual stepping on two mines
it had just laid itself. In general, mine laying was not
eliminated but is far less common in later generations than
in early generations. Individuals that did lay mines tended
to proceed in a single direction, either forward or backward,
instead of turning or reversing course.

The energy discharge command inflicts one point of
damage to the bug executing the command while clearing
mines in the immediate vicinity. It also inflicts three points
of damage to any bugs that are next to the executor. In
human-written bugs that compete well, it is common to
execute “Discharge Energy” three times in succession if an
enemy is detected in the surrounding spaces, but only after
ensuring that the procedure will not be self-destructive. Ten
executions of “Discharge Energy” in a row will destroy the
bug discharging the energy. ’

Individuals in early generations were seen to perform
energy discharges until they had destroyed themselves. This
behavior was eliminated. Later generation individuals that
used the Energy Discharge did so with intervals between
energy discharges. These intervals could include attempts at
repairing damage or other benign or beneficial commands.
The simple self-destructive sequence is no longer present.

5.2 Evolutionary Trends
These changes are supportive of the hypothesis that the bug
programs would improve over time. The bugs in later
generations were generally more fit than those in generation
0. This is true for all three experiments. Trends in the first
and third experiment hrther support the hypothesis that the
individuals were improving. The highest scores of the bugs
in both species trended higher with time, as shown in Figure
2 with results from the third experiment, for interspecies
competitions. Figure 2 also shows Species 1 as dominant
over Species 2.

Figure 3 uses a 10-point moving average of the top scores
for both species in intramural as well as interspecies
competition. It is noteworthy that species 2 was actually
making rapid gains early in the experiment before losing all

Interspecies Fitness Trends
- --1 __

1 5 9 3 7 1 5 9 3 1 1

Generation
- Species 1 Top Score - Species 2 Top Score

Figure 2. Interspecies Score Trends
the ground it had gained. This relapse is most likely
attributable to the fact that not all individuals were
guaranteed to compete against all others. It is also possible
that the selection mechanism - allowing an equal number of
new individuals for intramural and interspecies - magnified
any deficiencies in the gene pool for species 2.

IO-Point Moving Average of Top Scores

1

Spec 1 Interspecies

Generation

Figure 3. Moving Average of Top Scores

What is also of interest in Figure 3 is the mirrored peaks
and valleys of intramural versus interspecies fitness that
species 1 demonstrates. This suggests that bugs that
evolved as competent in the intramural competition were
less competent in the corresponding generation’s
interspecies tournament. This supports the motivation of
running both kinds of tournaments in the hopes of evolving
a generalized competitor that will compete well in both
arenas (as seems to occur around generations 85 and 135).

By contrast, the intramural and interspecies tracks for
species 2 are almost identical. This suggests a fairly poor
homogenous population that has lost the valuable genetic
material it had developed before generation 25. Lacking
any vigorous individuals who might produce high-quality

1645

offspring, mutation is insufficient to bring species 2 up to
the levels achieved by species 1.

As was hypothesized, the most successful individuals in the
experiment came from later generations. Specifically, bug
108 in species 1 (created in generation 23) won 17 out of
the 120 interspecies tournaments (14%) that occurred after
its creation. Somewhat better was bug 444 (created in
generation 1 IO), which won 5 out of the 34 interspecies
tournaments that occurred after its creation (15% success).
Bug 412 (created in generation 102) which won 7
interspecies tournaments of the 42 in which it could
compete (1 7% success) achieved the best success ratio
demonstrated so far. The success ratio of the remaining
individuals of each species ranged from 3% to 0% (no
wins). The behavior of these successful bugs was
characterized by limited movement (single steps forward or
backward, single turns) and aggressive firing of weapons.

5.3 Impact of Exogenous Fitness Function
In the second experiment, there was a complete tendency
towards passivity. Both populations converged toward bugs
that were coded differently but whose overall behavior was
characterized by inactivity. The reason for this seem to be
that although the endogenous fitness function offers
substantial rewards for damaging an opponent, the
likelihood of doing so when the driving program is
behaving randomly is quite low. As a result, bugs
conserved fuel and ammunition by staying in one place and
not firing their weapons. This behavior corresponds to the
“mediocre stable state” described in [FP94]. The simple
fitness function failed to reward subgoals explicitly (e.g.,
directly or indirectly damaging enemies and collecting
flags), thus encouraging passivity. The endogenous fitness
function provides a view of the fitness landscape in which
passivity is sufficiently rewarded and the active, aggressive
behaviors in which we were interested would be extremely
narrow - albeit tall - peaks.

The more elaborate exogenous fitness function explicitly
rewarded the subgoals, thus succeeding in preventing a
mediocre stable state and in encouraging the behavior in
which we were interested. It “warped” the fitness landscape
in such a way as to create a basin of attraction representing
the active and aggressive behaviors we were interested in
evolving.

6 SUMMARY

between sensor input and action, nor have they grasped the
substantial value of capturing flags after sustaining damage.

The use of an exogenous fitness function to drive the
evolutionary process in a direction other than that indicated
by the endogenous fitness function in this environment was
demonstrated. The mechanisms underlying this effect are
still under evaluation.

7 NEXT STEPS
The work that has been reported in this paper is preliminary.
The experiments focused on evaluating complex
environment for suitability in conducting A-Life
experiments. In addition, the focus was on evaluating co-
evolution with an exogenous fitness function, i.e., a fitness
function applied as an outside influence. Most co-
evolutionary research focuses on endogenous fitness since
this is a more natural application of the environment and
more closely fits natural evolution. The disadvantage to
using endogenous fitness in A-Life studies is that it is
difficult to assess the impact of the fitness landscape on
evolutionary progress. Using an exogenous fitness function
allows one to perform a more analytical assessment of the
function’s impact on evolution.

Experiments are currently under way to perform formal
assessment of the impact of fitness on co-evolution. The
two fitness functions evaluated for this paper provide initial
indications of the sensitivity of different types of terms used
in fitness on the ability to evolve valuable and interesting
behaviors. We plan to focus on characterizing the nature of
this sensitivity with the hope of developing guidelines for
designing useful fitness functions. We also hope that the
lessons learned from examining the exogenous functions
will provide insight into the mechanisms inherent in
endogenous fitness, thus helping to predict the types of
factors that might be involved in natural evolution.

ACKNOWLEDGMENTS
We were aided by John Reder, the developer of AI Wars
and Tony Dwyer, developer of the AI Wars Assistant. Both
provided source code and programs to support this effort
with no request for rewards other than a mention in the final
paper.

The data supports the basic hypothesis that the individual
programs improve over time. The third experiment indicates
that one species is becoming dominant over the other. We
believe that a larger number of generations will reinforce
this pattern. No bugs evolved that were capable of
competing against human-coded programs. In particular,
individuals have not yet demonstrated a robust connection

1646

Appendix: AI Wars Scoring

The point-value assignments that make up the game-assigned score are given in the following table.

* Self Destruct * 10 1001100
System Overload

The percentage values in the table reflect the fact that
missiles and mines actually cause this type of damage. An
undamaged bug with 10 “life” points that steps on a mine
will suffer 5 points of damage and increase its fuel bum
rate by 5. The system overload line refers to the fact that
a bug that takes a flag while at full strength (no damage)
suffers system overload. Bugs do not receive points for
doing damage to themselves. At the end of the battle,

consideration the final fuel bum rate for the bug. The
bum rate increases when a bug is damaged through
enemy action and possibly (5% probability) whenever
using the attempt repairs command. Therefore the fuel
bum rate is a persistent indication of damage sustained
during a battle. A bug’s final score equals the sum of all
its other scoring measures minus its current fuel bum rate.

0 1 0 I 50150% I 515 010

each surviving bug gets an additional 50 points for every
life point remaining. Each “dead” bug loses an additional
50 points for every damage point it sustained over the
amount needed to kill it. The score takes into

The exogenous fitness function applied these additional
values:

Reward I
Penalty Event

1647

REFERENCES

CAP931

[AP92]

[CM961

Pwy991
[FP94]

[Koz92]

[Koz9 11

[Koz92]

[LS96]

[NI971

[Ray9 11

[Red9 81
~ 3 9 6 1

~ 3 9 6 1

[She971

[Spe961

Angeline, P. and Pollack, J., 1993. “Competitive Environments Evolve Better Solutions
for Complex Tasks.” Proceedings of the Fifth International Conference on Genetic
Algorithms.
Angeline, P. and Pollack, J., 1992. “The Evolutionary Induction of Subroutines.” The
Fourteenth Annual Conference of the Cognitive Science Society.
Cliff, D., and Miller, G., 1996. CO-Evolution of Pursuit and Evasion 11: Simulation
Methods and Results’. To appear in From Animals to Animats 4: Proceedings of the
Fourth International Conference on Simulation of Adaptive Behavior
Dwyer, T., WWW page at http://members.tripod.com/-clan~99/index.html
Ficici, S., Pollack J., 1994. Challenges in Coevolutionary Learning: Arms Race
Dynamics, Open-Endedness, and Mediocre Stable States
Koza, J., 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press
Koza, J., 199 1. Genetic Evolution and CO-Evolution of Computer Programs. Artzjkial
Life II.
Koza, J., 1992. Genetic Evolution and CO-Evolution of Game Strategies. International
Conference on Game Theory and Its Applications.
Luke, S. and L. Spector. 1996. Evolving Teamwork and Coordination with Genetic
Programming. Genetic Programming 1996: Proceedings of the First Annual Conference.
Nishimura, S., Ikegami, T., 1997. Emergence of Collective Strategies in Prey-Predator
Game Model. Artzjkial Life 3.
Ray, T., 199 1. Is it alive or is it GA. Proceedings of the Fourth International
Conference on Genetic Algorithms
Reder, J., AI Wars at http://ounvorld.compuserve.com/homepages/John-Reder/ai.htm
Rosin, C., Belew, R., 1996. New Methods for Competitive CO-evolution. Evolutionary
Computation 5: 1
Rosin, C., Belew, R., 1996. A Competitive Approach to Game Learning. Proceedings of
the Ninth Annual ACM Conference on Computational Learning Theoy.
Sheppard, J., 1997. Multi-Agent Reinforcement Learning in Markov Games. Ph.D.
Thesis, Department of Computer Science, The Johns Hopkins University.
Spector, L., 1996. Simultaneous Evolution of Programs and their Control Structures.
Advances in Genetic Programming 2.

1648

http://ounvorld.compuserve.com/homepages/John-Reder/ai.htm

