
Pareto Improving Selection of the Global Best in
Particle Swarm Optimization
Stephyn G. W. Butcher∗, John W. Sheppard†, Shane Strasser†

∗The Johns Hopkins University, Dept. of Computer Science, Baltimore, MD 21218
steve.butcher@jhu.edu

†Montana State University, Gianforte School of Computing, Bozeman, MT 59717
{john.sheppard, shane.strasser}@montana.edu

Abstract—Particle Swarm Optimization is an effective stochas-
tic optimization technique that simulates a swarm of particles
that fly through a problem space. In the process of searching
the problem space for a solution, the individual variables of a
candidate solution will often take on inferior values characterized
as “Two Steps Forward, One Step Back.” Several approaches to
solving this problem have introduced varying notions of coopera-
tion and competition. Instead we characterize the success of these
multi-swarm techniques as reconciling conflicting information
through a mechanism that makes successive candidates Pareto
improvements. We use this analysis to construct a variation of
PSO that applies this mechanism to gbest selection. Experiments
show that this algorithm performs better than the standard gbest
PSO algorithm.

I. INTRODUCTION

The Genetic Algorithm (GA) and Particle Swarm Optimiza-
tion (PSO) are just two of the many optimization algorithms
that have been inspired by nature and society. And when
these algorithms have run afoul of such problems as the
Curse of Dimensionality and “hitchhiking,” researchers have
looked for deeper inspiration with some finding it on the
spectrum of cooperation and competition. For example, Potter
and de Jong [16] sought to improve the performance of the
GA in the face of hitchhiking by introducing cooperation.
The Cooperative Coevolutionary Genetic Algorithm (CCGA)
uses “subspecies” that focus on separate parts of the problem.
However, the CCGA does not work as well with problems with
high epistasis–variables whose values are highly correlated.

Van den Bergh and Engelbrecht [18] first applied a CCGA-
like version of PSO to training neural networks. In that
research, much like Potter and de Jong, they discovered that
the partitioning of the variables mattered because they were
often highly correlated. They labeled this phenomenon pseudo-
optima. They later generalized their algorithm creating the
Cooperative PSO (CPSO) [19] as a solution to the “Two
Steps Forward, One Step Back” problem, as they characterize
hitchhiking in PSO. However, like its CCGA counterpart, the
CPSO was prone to being mislead by pseudo-optima. They
introduced the Hybrid CPSO, which alternated between a
CPSO step and a full solution PSO step, to address this issue.

Strasser et al. [17] developed a more general meta-
algorithm, Factored Evolutionary Algorithm (FEA), that con-
tinued the cooperative aspects of CCGA but permitted
factors—variable partitions—to overlap. This enabled the FEA

to solve both the hitchhiking and pseudo-minima problems
while also being generally applicable to a wide range of
evolutionary algorithms including the GA, PSO and others.
Strasser also demonstrated that the CPSO was a special case
of the FEA-PSO combination and that the FEA-PSO generally
performed better than the CPSO or Hybrid CPSO.

In this paper we suggest that the success of these multi-
population algorithms is not because of their locations on
a spectrum of cooperation and competition but because of
the way that the algorithms handle conflicting information
in the construction of successor candidates. By implicitly
using Pareto efficiency as a guide, these algorithms eliminate
hitchhiking by resolving information conflicts with the shared
solution on a variable by variable basis.

We begin analyzing successful algorithms like CPSO and
FEA by using information sharing and Pareto efficiency more
explicitly rather than deferring to cooperation. We then present
a new PSO variant, Pareto Improving PSO (PI-PSO), that uses
these mechanisms directly in the selection of the gbest and
thus does not need multiple populations.

In Section II we describe the PSO algorithm and give a
concrete example of hitchhiking. We follow with a discussion
of FEA combined with PSO (Section III). This discussion
investigates the mechanism whereby FEA-PSO is able to avoid
hitchhiking. We demonstrate that this mechanism involves
using Pareto efficiency to resolve conflicting information in
a multi-population algorithm and not necessarily cooperation.
In Section IV we apply this same mechanism to the gbest
selection in a variant of PSO we call PI-PSO. We present
experiments in Section V that show this new algorithm per-
forms better than PSO and sometimes better than FEA-PSO.
We conclude in Section VI with a discussion of potential future
work opened up by this approach.

II. PARTICLE SWARM OPTIMIZATION

We begin by describing the gbest variant of PSO [11] and
a particular challenge it faces in the search for a candidate
solution. This challenge has been called “Two Steps Forward,
One Step Back” [19] but bears a striking resemblance to
“hitchhiking” in the GA [12]. We will use the shorter term,
hitchhiking hereafter.

The PSO algorithm operates on a population (swarm) of
candidate solutions (particles). Each particle has a position, x;

TABLE I
HITCHHIKING IN PSO

pbestj x f(x)
1 [1.53, 1.84, 5.29, 0.59] 34.06
2 (gbestnew) [0.42, 2.01, 4.76, 1.84] 30.26
3 [3.23, 0.72, 4.68, 0.47] 33.07
4 [2.83, 3.83, 2.71, 1.27] 31.64
gbestold [2.39, 1.24, 5.71, 0.34] 39.97

velocity, v; fitness, f(x); and the best position it has attained
so far, pbest. The algorithm begins with particles initialized
to random positions. Each iteration updates every particle’s
velocity and position and, if warranted, its pbest. After all
particles are updated, the global best, gbest, is updated from
the swarm’s current set of personal bests.

Because all particles are updated before the gbest is evalu-
ated as opposed to after each particle is updated, this version
simulates a parallel algorithm [15] instead of an sequential
one [11]. Our analysis does not depend on the parallel version
but it is more similar to the multi-population algorithms we
will discuss later.

The velocity update equation is:

v′ = ωv + φ1(gbest− x) + φ2(pbest− x)

where v, v′ are velocity, x is the current particle position, ω is a
user defined inertia parameter and both φ1 and φ2 are vectors
of random uniform variates from (0, φi), where each φi is
another user defined parameter. The position update equation
is:

x′ = x+ v′

As each new particle position is calculated, we compare
f(pbest) and f(x′) to determine if a new personal best has
been achieved. After all particles’ pbests are updated, we pick
the best as the new global best, gbestnew. The update process
is repeated a fixed number of iterations or until some other
stopping criterion is met. gbest is returned as the solution.
However, because of hitchhiking, the gbest solution may not
be as good as it could have been.

Hitchhiking is more easily explained with a concrete exam-
ple. Suppose we are trying to minimize the four-dimensional
Sphere function (

∑4
i=1 x

2
i) on the interval [0, 10]4 and we

find ourselves at some arbitrary iteration, ready to update the
global best. Although hitchhiking can occur in all functions,
we use the Sphere function for this example because it is sep-
arable. This permits the unambiguous attribution of changes
in individual variables to overall fitness. If xi increases, f(x)
increases and if xi decreases, f(x) decreases.

Table I shows the current positions and fitnesses of four
particles’ pbests. Because particle 2’s personal best has the
lowest fitness, it will be the new global best. In order to show
what hitchhiking is, we compare it with the gbestold it just
replaced.

The old global best is shown at the bottom of Table I. As
expected it has a worse fitness than its successor. However, if
we compare each xi pairwise, we can see that while Particle

2 was a global improvement, it was not a local improvement
for all variables. While x1 and x3 (italics/blue) are better in
gbestnew than in gbestold because they have smaller values, x2
and x4 (bold/red) are actually larger than their corresponding
values in gbestold. The individually inferior values for x2 and
x4 are hitchhikers.

III. FACTORED EVOLUTIONARY ALGORITHMS

One approach researchers have taken to solving the problem
of hitchhiking in both GA and PSO is by introducing coop-
eration via multi-population versions of the algorithms. The
technique started in GAs with CCGA [16] and was introduced
into PSO as CPSO [19]. Another strand of research culminated
in a multi-population technique called FEA [17]. Both CPSO
and FEA-PSO were shown to be improvements over gbest
PSO. In this discussion, we focus on FEA-PSO because it has
been demonstrated that CPSO is a special case of FEA-PSO
[17].

In the following discussion we develop the argument that
FEA-PSO and similar algorithms do not prevent hitchhiking
through cooperation but through their conflict resolution mech-
anism. We start with a formal description of the FEA-PSO
algorithm. In order to keep us from veering off into edge
cases that are not relevant to the discussion, we make a few
simplifying assumptions in our presentation.

Suppose we wish to minimize an explicit function f(x) of d
variables, X . We define a factor of X to be some proper subset
of X , denoted Xi. The set of factors is F . For the moment,
the only constraint we put on F is that each variable, xj ,
must appear in at least one factor. This particular conception
of factors is similar but not identical to the one underlying
factor graphs.

If we try to evaluate f(Xi), we have a problem in that it
does not contain values for every variable in X . This difficulty
is surmounted by the use of a context, C, that can be used to
provide the missing values of X . We call the set of these
remaining values Ri, where Ri = C −Xi.

For a concrete example, let us once again consider the
Sphere function in four dimensions. In this case, X =
{x1, x2, x3, x4} and d = 4. We can define factors X1 =
{x1}, X2 = {x2}, X3 = {x3}, and X4 = {x4} with
F = {X1, X2, X3, X4}. This particular factor architecture is
called “non-overlapping” because no factor shares a variable.
In the more general case, there could be sets of optimizers of
xi, Oi, equal to the set of factors that contain xi.

The context C contains values for each variable in X ,
{c1, c2, c3, c4}. Thus f(X1, R1) is f(x1, c2, c3, c4). When
factor X1 is assigned to swarm s1, only x1 is optimized.
The other values from C remain constant. Similarly, every
xi is being optimized by a swarm (and under the present
assumptions, only one swarm).

A. FEA-PSO Initialization

At the beginning of the FEA-PSO algorithm, C is initialized
at random, just like the position of any other particle. Each
factor is assigned to its own swarm, which optimizes the

Algorithm 1 FEA-PSO Compete
Input: Function f(x) to optimize, swarms S, optimizers O,
full global context C
Output: New global context C

1: for i = 1 to d do
2: fitness← f(C)
3: value← C.ci
4: for j in Oi do
5: candidate← S[j].pgbest
6: C.ci ← candidate.xi
7: if f(C) is better than fitness then
8: value← candidate.xi
9: fitness← f(C)

10: end if
11: end for
12: C.ci ← value
13: end for
14: return C

variables in Xi and treats the variables in Ri as constants. The
Optimize Step executes the PSO algorithm for every swarm
for some predetermined number of iterations, usually around
5-10. When the Optimize Step is done, each swarm has its own
gbest, which may contain new values for Xi if a new gbest
was discovered. Because s1’s c2 is s2’s x2 these new values
must be exchanged between the swarms. This is accomplished
in the FEA Compete Step.

B. FEA Compete Step

During the Optimize Step, each swarm, si, relies on the
context, C, to provide values, Ri, of which it is not an
optimizer. In this step, information flows from C to the
swarms. When the Optimize Step is complete, each swarm,
si, is ready to communicate new values for their respective
factors, Xi, back to C. This step involves information flowing
from the swarms back to C. Because information flows in
both directions, we can think of C as a kind of “blackboard”
architecture much like that described by Clearwater et al. [3]
or, more generally, by Engelmore [7]. The pseudocode for the
FEA Compete Step is shown in Algorithm 1.

We start our discussion of the algorithm by continuing our
example above with factors, F = {{x1}, {x2}, {x3}, {x4}}.
We specifically want to contrast the generation of the new
context, Cnew, in FEA-PSO with the selection of the gbestnew
in PSO.

In Table II we find ourselves at the end of some arbitrary
Optimize Step. We show the current context, C, in the first
row. The next four rows show the new factor values for xi
that come from each swarm si’s global best. The fitness value
of each of the global bests is determined by both the variable,
xi, and missing values in Ri supplied by the current context,
C. According to Algorithm 1, the new context is created by
trying each value of xi in the context to see whether or not
it is an improvement. Thus if f(x1, c2, c3, c4) is better than

TABLE II
FEA-PSO DETERMINATION OF C′

gbest x f(x)
C [2.39, 1.24, 5.71, 0.34] 39.97
s1 [1.53, ----, ----, ----] 36.59
s2 [----, 2.01, ----, ----] 42.47
s3 [----, ----, 4.68, ----] 29.27
s4 [----, ----, ----, 1.27] 41.47
Cnew [1.53, 1.24, 4.68, 0.34] 25.90

f(c1, c2, c3, c4) then we will replace c1 with x1. If it is not,
we will keep c1. This process repeats for all variables.

In the example, we can see that we kept the values c2 = 1.24
and c4 = 0.34 from C but took the new values x1 = 1.53 and
x3 = 4.68 to form Cnew. We note that the fitness of Cnew is
25.9 which is better than the fitness of any of the individual
swarms’ global bests. Additionally, Cnew is an unambiguous
improvement—on a variable by variable basis—over C. There
is no hitchhiking. So while previous research has attributed the
lack of hitchhiking to cooperation, we believe hitchhiking is
eliminated by this conflict resolution.

Even though each individual swarm is optimizing a different
variable, there is still a conflict between each swarm’s value
of xi and the context’s value ci. This conflict is resolved by
iterating over the variables and picking whichever value leads
to the better fitness. In this way, no inferior value of variable
i is chosen. This floor-like constraint on fitness with respect
to the individual values of the variables is reminiscent of a
concept in economics, Pareto efficiency.

C. Pareto Efficiency

Pareto efficiency, named for Italian economist Vilfredo
Pareto, is usually applied to the allocation of resources for
an individual or group of individuals subject to a preference
function.1 Consider the case where we want to redistribute
apples and oranges between Jane and Sam who have started
out with some allocation of each. If we can give Jane some of
Sam’s apples and Sam some of Jane’s oranges and make both
better off, then we can make a Pareto improvement. If we find
ourselves at an allocation where no Pareto improvement can
be made, then the allocation is Pareto efficient.

Applications of Pareto efficiency to PSO have generally
focused on multi-objective optimization rather than single
objective optimization. Pareto efficiency is a natural approach
to resolving conflicts in problems with shared inputs and
incommensurable outputs. There are many different possible
combinations of minimizations of those outputs and one needs
a way to evaluate them. In this sense, the outputs are like
the apples and oranges of the example above. Applications to
multi-objective optimization in PSO have included magneto-
statics [2], job shop scheduling [13] [21], power dispatch [1]
[20], and portfolio optimization [4] to name a few.

There has been research on transforming single-objective
optimization problems into multi-objective optimization prob-

1Pareto efficiency is also known as Pareto optimality. We eschew the term
optimality in this paper to avoid confusion.

lems via helper objectives and then applying Pareto efficiency
[9], [14]. As we will demonstrate shortly, our approach is
distinct from this research because we focus on what we view
as the critical aspects of the multi-swarm PSO approaches
(information sharing via a blackboard and conflict resolution)
and apply them to a single-swarm PSO. We do not apply helper
objectives and in no way transform our problems to be multi-
objective. As far as we can determine, no one has applied
this approach to identifying successor global bests in a single
swarm PSO before.

We start by applying the concept of Pareto efficiency to
gbest PSO. If we select a new global best, it always has a better
fitness than the current global best. In this sense, it is a Pareto
improvement. But given all the information in the swarm, this
is a limited approach to finding a solution. To continue our
economics example, it is like trying to improve Jane’s situation
by trading entire baskets of groceries. Jane might be better off
but she could have improved even more if she had been able to
fine tune the number of apples and oranges. Analogously, the
successor global best will be better than the previous global
best in an overall sense but it might have been better still
if we could have examined the contributions of individual
variables. This is why hitchhiking occurs; by focusing on
candidate solutions as a whole, we cannot prevent suboptimal
components being carried forward in gbest.

In contrast, FEA-PSO and similar algorithms focus on infor-
mation sharing between individual swarms via a blackboard.
These swarms contribute and receive information from the
blackboard, C, on a variable by variable basis. Any contri-
bution to the blackboard is viewed as potentially conflicting
and is evaluated in the context of the current state of the
blackboard. A new value for a variable is only accepted if
it improves the fitness of the blackboard. This is equivalent to
using Pareto efficiency to resolve information conflicts. As a
result, there is no hitchhiking in FEA-PSO.

If we can summarize the differences succinctly, PSO treats
candidate solutions as an entire unit and selects successors
that improve fitness over their predecessors. FEA-PSO treats
candidate solutions as collections of information that must be
integrated into a global context—the blackboard—and resolves
conflicts using Pareto efficiency.

Although the FEA-PSO and similar algorithms are implic-
itly using Pareto efficiency, they are not necessarily Pareto
efficient. The algorithms simply guarantee that if some xi in C
is replaced, it will be a Pareto improvement under the function
being optimized. Pareto efficiency requires that we be unable
to make a Pareto improvement. A Pareto improvement in the
FEA-PSO case involves allocating the information contained
in all the swarms to get a better successor context, Cnew. We
obtain this result by considering C and a particular ordering
of the variables, i. While any particular ordering does not
matter, we cannot know if the ordering we picked is the one
that will lead to a Pareto efficient outcome. Additionally, we
only change a single variable at a time. In fact, determining
a Pareto efficient outcome would be exponential in both the
factor overlap and the dimension of the problem, O(|Oi|d),

TABLE III
FEA-PSO DETERMINATION OF Cnew WITH OVERLAPPING FACTORS

gbest x f(x)
C [2.39, 1.24, 5.71, 0.34] 39.97
s1 [1.53, 1.84, ----, ----] 38.45
s2 [----, 2.01, 4.76, ----] 32.53
s3 [----, ----, 4.68, 0.47] 29.37
s4 [----, ----, ----, 1.27] 41.47
Cnew [1.53, 1.24, 4.68, 0.34] 25.90

since all combinations would need to be tried to find the best
successor(s).

D. Pseudo Optima

There is a certain recursiveness involved when one speaks
of PSO and FEA-PSO. Because FEA-PSO uses PSO as its
optimizer, individual swarms are subject to the same problems
as PSO. When we apply FEA-PSO to factors of a single
variable, those individual PSO instantiations avoid hitchhiking
because hitchhiking is impossible in a function of one variable.
However, when we have factors of two or more variables,
hitchhiking is unavoidable. And so while there is nothing that
prevents us from having factors with more than one variable,
the possibility of hitchhiking would seem to weigh strongly
against doing so.

However, it turns out we are forced to consider not only
larger factors but factors that overlap because of the possibility
of pseudo-optima. As Strasser et al. found [17], optimizing
individual factors as we have defined them can theoretically
lead the individual swarms in FEA-PSO to get stuck in pseudo-
optima. While a full treatment of pseudo-optima lies outside
the scope of this paper, we can perhaps give an intuition for
the phenomenon.

We start by noting that the global minimum we are search-
ing for lies in f(x)’s problem space. However, each individual
swarm is searching f(Xi;Ri)—it is unable to change any
of the values in Ri. Because of this, the swarm may find
minima of its parameterized function that are not minima
of the overall function. The antidote involves increasing
the sizes of factors—sometimes just to two variables but
in other cases to more—and having those factors overlap.
Thus F = {{x1}, {x2}, {x3}, {x4}} might become F =
{{x1, x2}, {x2, x3}, {x3, x4}, {x4}}.

Although selecting optimal factor architectures is an open
research question, Strasser et al. found that, for many of the
common benchmark functions used in optimization research,
a “Simple Centered” factor architecture, {xi, xi+1}, like the
one above, works well [17]. There appears to be a trade-off
within FEA-PSO between hitchhiking and pseudo-optima in
the individual swarms, depending on the factor architecture
and function being optimized. Even so, the FEA-PSO Compete
Step is still Pareto improving as we show in Table III.

Looking at both Algorithm 1 and Table III we see that
in order to produce a new context Cnew, every value of
xi is considered in addition to ci. We have also increased
competition. Although there are more values to consider, the

0 2 4 6 8 10
0

2

4

6

8

10

A

B

C

D E

F

G

H

Fig. 1. Selecting gbest in PSO (Sphere) and Hitchhiking

result is still a Pareto improvement. As before, however, we
are still not guaranteed to find a Pareto efficient solution based
on all the information available.

E. FEA Share Step

After the new context is determined, it must be commu-
nicated back to the swarms. This happens in the FEA Share
Step.

The FEA Share Step mostly involves bookkeeping asso-
ciated with the construction of Cnew. Depending on the
implementation, all of the particles in all of the swarms
were evaluated with C and must be re-evaluated using the
next context, Cnew. Additionally, at least with the current
version of FEA, the Share Step includes a form of elitism.
The worst particle by fitness in each swarm is replaced by
a particle based on the values in Cnew This is where the
communication loop between swarms is closed as each swarm
sent its latest information about Xi and then receives the latest
information about Ri in return. The algorithm completes when
the indicated number of FEA steps have run and C is returned
as the solution.

IV. PI-PSO

As noted previously, hitchhiking does not arise in a problem
of one dimension. Either f(x′1) is better than f(x1) or is it
is not. If we consider a problem of two dimensions, when
comparing any given particle’s pbest with the current gbest,
we have two possibilities for each variable and four for the
pairs of variables. We know that x1 is either better or worse
and that x2 is either better or worse than their previous values.
This leads to three zones for potential successor gbest values
(the current set of pbests). These zones and the implications
for Pareto improvements in the selection of a new gbest are
illustrated in Figure 1.

In this figure the arcs represent the contours of the Sphere
function for two variables, x1 and x2. The current gbest =
(4.2, 3.9) also defines a contour (dotted) that is the dividing
line between pbests that have a better fitness (a lower contour)
or a worse fitness (a higher contour). Additionally, the gray
areas denote the set of points where the pbest lies on a lower
contour than the gbest and thus has a better fitness but one
or the other of the variables is larger than its value in gbest.
All points in the gray zones include hitchhiking. We can thus
see that pbests C, D, E, F are all inferior to the current gbest.
Points A, B and G involve hitchhikers. Only Point H has both
a better fitness and no hitchhiking.

We have demonstrated both how hitchhiking arises in PSO
and how the FEA-PSO mitigates it. However, we have also
seen that algorithms like FEA-PSO involve trade-offs at the
swarm level between preventing hitchhiking and becoming
trapped in pseudo-minima. In order to overcome both prob-
lems, we propose a version of PSO that determines gbest in
a different way, more along the lines of FEA-PSO.

In the preceding discussion we developed the argument
that FEA-PSO and similar algorithms mitigate hitchhiking not
because of cooperation but because of how conflicting infor-
mation is resolved in the multi-swarm setting. This conflicting
information is reconciled in such a way that Cnew is always a
Pareto improvement. As a result we propose changing the role
of the gbest in PSO from being the best actual particle seen so
far to being a blackboard communication mechanism between
particles instead of swarms. We hypothesize that if the global
best were constructed in a similar way, the performance would
be on a par or better than FEA-PSO and certainly better than
PSO. The reason for the first claim is that by not factoring the
variables, we would avoid pseudo-optima. The reason for the
second claim is that by using the global best as a blackboard
and resolving information conflicts between particles in a
Pareto improving way, we avoid hitchhiking. We call this
algorithm Pareto Improving Particle Swarm Optimization (PI-
PSO).

The difference between PSO and PI-PSO is fairly minimal,
but we claim that the effect is significant. The basic PSO
remains exactly the same except in how the global best
is constructed. The pseudocode is shown in Algorithm 2.
Basically, the algorithm takes the current global best, all the
current personal bests and begins by taking x1 out of each
particle’s personal best and trying it in the global best. At the
end of the loop, x1 is either the value we started with or it is
the best one out of all the particles. This process repeats for
all the variables, x2...xd. Unlike FEA-PSO, however, we do
not practice elitism, thus the gbest is never an actual particle
in the swarm. The global best thus determined by the entire
swarm need not be a single particle out of the swarm.

Unfortunately, as we have previously mentioned, we cannot
be guaranteed of a Pareto efficient gbest. If we have a swarm
of 320 particles with 32 dimensions, we would need to test
32032 combinations to find the best use of the information
contained on each variable in the swarm. So while we admit
the theoretical existence of a Pareto Efficient Particle Swarm

Algorithm 2 PI-PSO Select Global Best
Input: Function f to optimize, current global best pgbest,
current personal bests, ppbest.
Output: New pgbest.

1: for i = 1 to d do
2: fitness← f(pgbest)
3: value← pgbest.xi
4: for j = 1 to n do
5: candidate← pjpbest.xi
6: pgbest.xi ← candidate
7: candidate fitness← f(pgbest)
8: if candidate fitnessis better thanfitness then
9: fitness← candidate fitness

10: value← candidate
11: end if
12: pgbest.xi ← value
13: end for
14: end for
15: return pgbest

TABLE IV
BENCHMARK OPTIMIZATION FUNCTIONS BY CATEGORY

Category Benchmark Function
Bowl Exponential, Sargan, Sphere
Many Local Optima Ackley-1, Eggholder, Griewank, Rastrigin,

Salomon, Stretched-V
Plate Brown, Schwefel-2.23, Whitley, Zakharov
Ridge Michalewicz, Schaffer-F6, Schwefel-2.22
Valley Dixon-Price, Rosenbrock, Schefel-1.2

Optimization (PE-PSO) algorithm, we hope to work towards
better approximations of it. We will return to a discussion of
this PE-PSO in Section VI.

V. EXPERIMENTS

In order to test our hypothesis that the PI-PSO algorithm
would be at least as good as the FEA-PSO and better than
the basic PSO, we ran a large number of experiments on
standard benchmark functions. The following sections describe
the design, results and discussion of those experiments.

A. Design

We selected Benchmark optimization problems from [8]
and [19] that were scalable to multiple dimensions. The
problems selected are shown in Table IV, arranged by cate-
gories inspired by [10]. All of the problems are minimization
problems, and almost all have a minimizing solution and
value of f([0]d) = 0. The notable exceptions are Exponential,
which has a minimum at [−1]d, and Eggholder, which has
a dimension-dependent minimum and minimizing vector. Ad-
ditionally, Sphere is separable, which means each dimension
could be optimized individually. All of the other functions are
non-separable in their current forms.

Each algorithm was run against each problem 50 times and
the average minimum value discovered was recorded. Each
problem was instantiated with 32 dimensions, d = 32. The

results were then bootstrapped 500 times to estimate 95%
confidence intervals/credible intervals [5]. Following [6] each
algorithm used the same number of candidate solutions. In this
case we chose 10 particles per dimension or d× 10 = 320.

The PSO, PI-PSO, and PSO portion of the FEA-PSO all
used the same parameters: ω = 0.729 and φ1 = φ2 = 1.49618.
Both the PSO and PI-PSO were run for 100 iterations. The
FEA-PSO was run for 20 FEA iterations separated by 5 PSO
iterations for a total of 100 PSO iterations. The FEA-PSO
used a “Simple Centered” factor of i, i+ 1 which followed the
functional form of most of the benchmark functions—they are
functions of adjacent x values—and shown by Strasser et al. to
perform well [17]. With d− 1 such factors, and d = 32, there
were b(320/31)c = 10 particles per swarm for the FEA-PSO.

B. Results

The results of the experiments are reported in Tables V-IX
for the mean minimum found by each algorithm during each
experiment. The 95% confidence/credible intervals are show
in parentheses. The algorithms with the best performance are
shown in bold, if there is a clear winner, or italics for multiple
winners. We now examine the results by Benchmark category.

It is no surprise that all the algorithms did well on the Bowl
benchmarks (Exponential, Sargan and Sphere). All of these
functions have a single global optimum without any trapping
local optima. All three algorithms tied on the Sphere function,
learning it perfectly without variance. The same cannot be said
for Sargan where FEA-PSO did better than the others, or for
Exponential where FEA-PSO and PI-PSO were tied for best
performance. In all cases, PI-PSO did better than PSO.

In stark contrast to the Bowl benchmarks, the six benchmark
functions in the Local Optima category are highly irregular
(Ackley-1, Eggholder, Griewank, Rastrigin, Salomon, and
Stretched-V). Consistent with previous research [17], FEA-
PSO usually did better than PSO (four out of six). However,
PI-PSO beat the other algorithms on five of six benchmarks.

The Plate benchmarks (Brown, Schwefel-2.23, Whitley,
and Zakharov) have large, flat plateaus over their domains
with spiky minima. FEA-PSO and PI-PSO each split these
benchmarks with FEA-PSO performing better on Brown and
PI-PSO performing better on Whitley. PI-PSO tied on each
of the other functions. On Schwefel-2.23, PI-PSO tied with
FEA-PSO. On Zakharov, PI-PSO tied with PSO. PI-PSO did
better than PSO on all benchmarks except Zakharov.

Michalwicz, Schaffer-F6 and Schwefel-2.22 are all Ridge
benchmarks characterized by sharp drop offs at various points
in their domain. The PI-PSO did better on all of these
benchmarks than the other algorithms.

Finally, we have the Valley benchmark functions that look
like a tilted tube sawed in half (Dixon-Price, Rosenbrock,
Schwefel-1.2). The PI-PSO again did better than all the other
algorithms on these problems.

Overall, PI-PSO was the strongest performing algorithm. It
was the best performing algorithm in 12 out of 19 benchmarks
with three ties (Exponential, Sphere, Zakharov) and four losses
(Sargan, Salomon, Brown, Schwefel-2.23). Comparing solely

TABLE V
“BOWL” BENCHMARK OPTIMIZATION PROBLEMS

Benchmark PSO FEA-PSO PI-PSO
exponential -9.99e-01 (-1.00e+00, -9.99e-01) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
sargan 9.76e+00 (8.55e+00, 1.11e+01) 2.04e-12 (1.37e-12, 2.91e-12) 1.55e-06 (1.16e-06, 2.00e-06)
sphere 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)

TABLE VI
“LOCAL OPTIMA” BENCHMARK OPTIMIZATION PROBLEMS

Benchmark PSO FEA-PSO PI-PSO
ackley-1 1.84e+00 (1.77e+00, 1.90e+00) 2.81e-03 (5.23e-06, 7.00e-03) 4.44e-16 (4.44e-16, 4.44e-16)
eggholder -1.68e+04 (-1.71e+04, -1.64e+04) -1.77e+04 (-1.79e+04, -1.74e+04) -2.38e+04 (-2.40e+04, -2.35e+04)
griewank 4.96e-01 (4.47e-01, 5.45e-01) 9.49e-01 (8.99e-01, 9.91e-01) 1.08e-01 (8.07e-02, 1.40e-01)
rastrigin 1.03e+02 (9.59e+01, 1.11e+02) 2.60e-02 (1.97e-05, 6.59e-02) 0.00e+00 (0.00e+00, 0.00e+00)
salomon 1.41e+00 (1.33e+00, 1.48e+00) 2.29e+00 (2.12e+00, 2.49e+00) 1.69e+00 (1.57e+00, 1.79e+00)
stretched-v 1.20e+01 (1.14e+01, 1.28e+01) 4.37e+00 (3.78e+00, 5.02e+00) 2.84e+00 (2.59e+00, 3.04e+00)

TABLE VII
“PLATE” BENCHMARK OPTIMIZATION PROBLEMS

Benchmark PSO FEA-PSO PI-PSO
brown 7.56e+00 (6.69e+00, 8.55e+00) 1.22e-25 (3.72e-26, 2.42e-25) 1.23e-09 (1.01e-09, 1.45e-09)
schwefel-2.23 2.44e-01 (1.18e-01, 4.15e-01) 8.65e-102 (7.25e-116, 2.31e-101) 5.35e-41 (0.00e+00, 1.63e-40)
whitley 9.82e+02 (9.67e+02, 9.99e+02) 3.51e+02 (2.97e+02, 3.91e+02) 7.51e+00 (6.20e+00, 8.76e+00)
zakharov 1.39e+02 (1.28e+02, 1.51e+02) 1.60e+03 (3.09e+02, 3.77e+03) 1.41e+02 (1.28e+02, 1.57e+02)

TABLE VIII
“RIDGE” BENCHMARK OPTIMIZATION PROBLEMS

Benchmark PSO FEA-PSO PI-PSO
michalewicz -8.65e+00 (-9.02e+00, -8.33e+00) -2.59e+01 (-2.63e+01, -2.56e+01) -3.19e+01 (-3.19e+01, -3.19e+01)
schaffer-f6 2.49e+00 (2.31e+00, 2.67e+00) 1.99e+00 (1.78e+00, 2.20e+00) 4.85e-01 (4.20e-01, 5.40e-01)
schwefel-2.22 3.01e+02 (2.91e+02, 3.13e+02) 1.22e-12 (7.73e-13, 1.75e-12) 0.00e+00 (0.00e+00, 0.00e+00)

TABLE IX
“VALLEY” BENCHMARK OPTIMIZATION PROBLEMS

Benchmark PSO FEA-PSO PI-PSO
dixon-price 4.23e+01 (2.54e+01, 6.34e+01) 1.18e+02 (1.07e+02, 1.28e+02) 8.65e-05 (7.44e-05, 9.85e-05)
rosenbrock 1.95e+02 (1.56e+02, 2.51e+02) 2.20e+02 (1.69e+02, 2.88e+02) 9.64e-01 (6.73e-01, 1.26e+00)
schwefel-1.2 7.96e+03 (7.19e+03, 8.84e+03) 6.59e+04 (5.72e+04, 7.60e+04) 3.28e+02 (2.86e+02, 3.68e+02)

to PSO, however, PI-PSO was the best performer for 16 of
19 benchmarks with two ties (Sphere, Zakharov) and one loss
(Salomon). PI-PSO performed better than FEA-PSO on 15 of
19 benchmarks, losing twice (Brown, Sargan) and tying twice
(Sphere and Schwefel-2.23).

On the other hand, FEA-PSO was better than PSO on 12 of
19 benchmarks, tying twice (Sphere, Rosenbrock) and losing
five times (Dixon-Price, Griewank, Salomon, Schwefel-1.2,
Zakharov). PSO performed best only on Salomon, tied on three
(Sphere, Zakharov, Rosenbrock), and lost the rest.

C. Discussion

As we hypothesized, the PI-PSO was much better than the
PSO, beating the basic algorithm on 16 of 19 benchmarks.

We attribute this both to the elimination of hitchhiking and
the lack of pseudo-minima in the PI-PSO algorithm.

PI-PSO also did well when compared to FEA-PSO, beating
it on 15 of 19 benchmarks. Given that FEA-PSO did so well
against PSO (12 out of 19 benchmarks), it is difficult to
attribute all of this success to pseudo-minima in FEA-PSO that
were avoided in PI-PSO, though this may have played a part.
What we hypothesize instead is that although both algorithms
use the same basic algorithm to construct their context, C
for FEA-PSO and pgbest for PI-PSO, PI-PSO has significantly
more information to evaluate because instead of working with
relatively few factors representing only partial solutions, PI-
PSO works with many particles representing entire solutions.

Although all the algorithms start with the same number of
candidate solutions, PI-PSO definitely requires more fitness

evaluations. If p is the number of particles, d the number of
dimensions, s the number of swarms (factors), m the number
of FEA iterations, and i the average width of a factor, then
our estimates of fitness evaluations per PSO iteration are:

PSO = p

FEA-PSO = ps+
di+ ps+ 1

m
PI-PSO = dp+ p+ 1

Given the difficulty of comparing algorithms with differ-
ent structures, information and information processing, it is
difficult to say that fitness evaluations are a fair means of
comparison which is why we looked at candidate solutions.
Different algorithms use the information differently. However,
ultimately all factors should be presented so that users of these
algorithms can make informed choices.

VI. CONCLUSION

In this paper we discussed PSO and how hitchhiking arises
through the search for an ever better candidate solution in
the gbest. The discussion followed with an analysis of a
class of algorithms that have addressed the hitchhiking prob-
lem through cooperation. These algorithms include CPSO—
descended from CCGA—and FEA-PSO, of which CPSO is
a special case. Although experimental results have shown
FEA-PSO to be generally better than PSO, our analysis does
not support the conclusion that the elimination of hitchhiking
actually comes from cooperation as opposed to competition.
Instead we proposed that it is through Blackboard-based
information sharing and the Pareto improving nature of conflict
resolution that eliminates hitchhiking. In order to test this
hypothesis, We extended these concepts to PSO itself, creating
the PI-PSO, which in a sense actually maximizes competition
not cooperation.

PI-PSO treats the pgbest as a blackboard for inter-particle
communication rather than simply a record of the best of the
best particles. We hypothesized that if the gbest was calculated
in the same way that C is calculated in FEA-PSO, the PI-
PSO would out-perform the conventional gbest PSO. We ran
multiple experiments on PSO, FEA-PSO and PI-PSO. PI-PSO
outperformed PSO in 16 out of 19 functions.

We see a significant amount of future research to be done on
both PI-PSO and the Pareto Efficiency approach to analyzing
similar algorithms. We would like to see how PI-PSO per-
forms with different numbers of particles and on problems of
different dimensions. We also would like to investigate the per-
formance of PI-PSO on discrete problems. Although PI-PSO
outperformed FEA-PSO, we need to consider to some degree
the number of fitness evaluations required. We hypothesize that
there may be a way to harness the multi-swarm approach, both
to decrease the computational requirements and potentially
to bridge the gap between PI-PSO and the theoretical PE-
PSO. Finally, we wish to apply Pareto efficiency analysis
to Distributed Factored Evolutionary Algorithms (DFEA) to
unravel puzzles in the theoretical and empirical behavior of
the algorithm as compared to FEA.

REFERENCES

[1] M. Abido. Multiobjective particle swarm optimization for environ-
mental/economic dispatch problem. Electric Power Systems Research,
79(7):1105–1113, 2009.

[2] U. Baumgartner, C. Magele, and W. Renhart. Pareto optimality and par-
ticle swarm optimization. IEEE Transactions on Magnetics, 40(2):1172–
1175, 2004.

[3] S. H. Clearwater, B. A. Huberman, and T. Hogg. Cooperative problem
solving. In B. Huberman, editor, Computation: The Micro and the Macro
View, pages 33–70. World Scientific, Singapore, 1992.

[4] T. Cura. Particle swarm optimization approach to portfolio optimization.
Nonlinear analysis: Real world applications, 10(4):2396–2406, 2009.

[5] B. Efron. Bootstrap methods: Another look at the jackknife. Ann.
Statist., 7(1):1–26, 01 1979.

[6] A. Engelbrecht. Fitness function evaluations: A fair stopping condition?
In Proceedings of the IEEE Swarm Intelligence Symposium (SIS), pages
1–8, 2014.

[7] R. Engelmore. Blackboard Systems. Addison Wesley, Reading, MA,
1988.

[8] M. Jamil and X.-S. Yang. A literature survey of benchmark functions
for global optimisation problems. International Journal of Mathematical
Modelling and Numerical Optimisation, 4(2):150–194, 2013.

[9] M. T. Jensen. Guiding Single-Objective Optimization Using Multi-
objective Methods. In Applications of Evolutionary Comput-
ing. Evoworkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART,
EvoROB, and EvoSTIM, pages 199–210, Essex, UK, April 2003.
Springer. Lecture Notes in Computer Science Vol. 2611.

[10] S. Jurjanovic and D. Bingham. Optimization test problems. url-
https://www.sfu.ca/ ssurjano/optimization.html, 2013.

[11] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceed-
ings of the IEEE International Conference on Neural Networks, pages
1942–1948, 1995.

[12] M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic
algorithms: Fitness landscapes and GA performance. In Proceedings
of the first European conference on artificial life, pages 245–254.
Cambridge: The MIT Press, 1992.

[13] G. Moslehi and M. Mahnam. A Pareto approach to multi-objective
flexible job-shop scheduling problem using particle swarm optimization
and local search. International Journal of Production Economics,
129(1):14–22, 2011.

[14] F. Neumann and I. Wegener. Can Single-Objective Optimization Profit
from Multiobjective Optimization? In Multi-Objective Problem Solving
from Nature: From Concepts to Applications, pages 115–130. Springer,
Berlin, 2008. ISBN 978-3-540-72963-1.

[15] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization and
Intelligence: Advances and Applications. Information Science Reference
- Imprint of: IGI Publishing, Hershey, PA, 2010.

[16] M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach
to function optimization. In Parallel Problem Solving from Nature—
PPSN III, pages 249–257. Springer, 1994.

[17] S. Strasser, N. Fortier, J. Sheppard, and R. Goodman. Factored evolu-
tionary algorithms. IEEE Transactions on Evolutionary Computation,
21(3):281–293, 2017.

[18] F. Van Den Bergh and A. P. Engelbrecht. Training product unit
networks using cooperative particle swarm optimisers. In Proceedings
of International Joint Conference on Neural Networks, volume 1, pages
126–131, 2001.

[19] F. Van den Bergh and A. P. Engelbrecht. A cooperative approach
to particle swarm optimization. IEEE Transactions on Evolutionary
Computation, 8(3):225–239, 2004.

[20] L. Wang and C. Singh. Environmental/economic power dispatch using a
fuzzified multi-objective particle swarm optimization algorithm. Electric
Power Systems Research, 77(12):1654–1664, 2007.

[21] G. Zhang, X. Shao, P. Li, and L. Gao. An effective hybrid particle swarm
optimization algorithm for multi-objective flexible job-shop scheduling
problem. Computers & Industrial Engineering, 56(4):1309–1318, 2009.

