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Abstract—Variable Rate Application (VRA) is a popular tech-
nique in Precision Agriculture used to decrease the amount of
fertilizer applied to a specific field while increasing profitability,
effectively also reducing environmental impact. VRA tries to
determine the rate of fertilizer to apply to different parts of
a field based on a variety of factors, such as precipitation,
elevation, and previous years’ yield. To determine the appropriate
variable nitrogen application rate for a field, experiments have
to be conducted that provide data on how certain parts of the
field react to specific nitrogen rates. In this research, a VRA of
nitrogen is applied to fields of winter wheat in Montana where
these experiments require the creation of a prescription map,
which creates a grid of the field. The goal of the experiments
is to vary nitrogen rate application, to determine how these
nitrogen rates affect yield and protein production. However, when
creating these prescription maps large jumps between consecutive
cells’ nitrogen rates often occur, putting strain on the farming
equipment. To reduce the number of jumps while maintaining
even distribution of nitrogen rates across different yield and
protein bins, a Genetic Algorithm (GA) is used for optimization.
The GA uses a multi-objective fitness function aiming to minimize
jumps and maintain stratification. The results show that the GA
is effective in meeting these goals for the fields studied.

I. INTRODUCTION

The application of fertilizer is an essential part of farming
with a large influence on yield and net return. Site-specific
fertilizer studies have shown that one can increase net return
by analyzing field specific data to vary the application rate
across a field. This is known as variable rate application (VRA)
[8]. VRA is an important component of Precision Agriculture
(PA), which aims to increase yield and net return by applying
new technologies to the farming process. PA found its roots
in the 1980s with the idea of improving fertilizer application
by changing the treatment based on the area of the field,
but the right equipment was not available to carry out the
required experiments [16]. With the continuous improvement
of farming equipment, this became less of an obstacle, and
VRA experiments have become common practice. With this
improvement, VRA has been used successfully in several
different studies to improve efficiency of fertilizer application,
thus reducing costs, confirming the initial theory [5], [17].

Even with these proven gains, a lot of farmers still use uni-
form rate application, meaning they apply a single rate across

an entire field. This can be explained partially by the lack of
precise knowledge on what influences the choice for a specific
fertilizer rate and that there are several site specific factors
often not being taken into account when creating variable rate
prescription maps. To encourage farmers to implement VRA,
more feasibility studies and a more in-depth analysis of the
process would be beneficial. It is important to convince the
agricultural community to adapt to this strategy, as it will
decrease nitrogen application, benefit environmental safety,
increase food production, and reduce overall production cost
[2], [21].

Our overall research goals are focused on developing strate-
gies for improved crop production at fine scales. One compo-
nent of this research involves examining variable nitrogen rate
application for winter wheat in Montana to optimize profits
through experimental treatments based on field specific data.
Yield and protein information from previous years are taken
into account to generate a variable rate nitrogen prescription
map. The available yield and protein values are discretized into
bins, and each nitrogen rate is distributed evenly across each
bin through random, stratified assignment. This results in a
randomly stratified nitrogen prescription map (see Figure 1 for
an example), which can then be used to design an experiment
allowing for proper analysis on how different nitrogen rates
affect parts of the field with different protein and yield values.

An experimental process is repeated each year to gather
temporal data on the fields to improve predictive ability of
yield, protein and net return (although, without necessarily
applying random application over the entire field). Aside from
this data, environmental factors and plant specific information
such as precipitation, normalized difference vegetation index
(NDVI), slope, elevation, and topographic position index (TPI)
are taken into account for the yield and protein prediction and
subsequent economic analysis.

In our studies, the yield and protein prediction process has
been optimized through the use of spatial data in combination
with neural networks and other machine learning techniques
[15]. The economic analysis uses a probability distribution of
crop prices, yield values, and nitrogen cost to calculate the net
return for a specific cell in a given year to perform field profit
maximization. Predictive models are updated annually using a
Bayesian updating process. This spatio-temporal probabilistic



Fig. 1: Unoptimized prescription map of field davidsonmid-
west. Fertilizer levels in terms of pounds of nitrogen per acre
are shown in the legend.

Bayesian framework approach was shown to increase net
return by $23–$25/ha [6]. An overview of this process can
be seen in Figure 2, where the bolded stage indicates where
the nitrogen rate prescription map generation is located.

Ultimately, two types of prescription maps need to be
generated. So far, we have been describing the need for
prescriptions to perform the necessary experiments to derive
models for optimizing crop production. In fact, generating
these prescriptions are the focus of this paper; thus, this work
falls generally in the area known as “design of experiments”
[4]. The other type of prescription results from performing
the optimization based on these models. The resulting pre-
scriptions then have the goal of yielding the optimal crop
production, rather than generating data for modeling building.

When creating the experimental design prescription maps,
as a result of the randomization process, there may be a large
difference in the amount of nitrogen to be applied from one
cell to the next, putting strain on the farmer’s equipment.
To lessen the wear on the machines, these differences or
jumps need to be minimized, resulting in a more gradual
prescription map. This problem and an example of a more
desirable prescription is illustrated in Figure 3.

In this paper, we investigate the application of a genetic
algorithm to generate random, stratified nitrogen applications
while simultaneously attempting to minimize the magnitudes
of the jumps between the cells in the field. This means that we
have

∑b
i=2

(
c−((i−2)c/b)

c/b

)
combinations to consider, where c is

the total number of cells and b is the number of nitrogen bins.
As the number of cells in a field vary between 120 and 300
cells, we generally have at least 4 nitrogen rates, but there can
be as many as 6. Then in the “easiest” case where c = 120 and
b = 4, we have

(
120
30

)
+
(
90
30

)
+
(
60
30

)
≈ 1.7×1028 combinations.

As we can see, an exhaustive search is impractical. For

our GA, we use completed prescription maps as individual
chromosomes in our population. A multi-objective fitness
function is then applied, taking jumps as well as stratification
into account. The specific implementation is explained in more
detail in Section III.

II. RELATED WORK

Genetic algorithms (GAs) have seen limited use in Pre-
cision Agriculture and do not appear to have been applied
to the specific problem at hand. However, there have been
some successful applications of GAs to other aspects of PA.
For example, several PA studies have implemented GAs to
optimize model parameter settings [11], navigation rules [13],
and a matrix representation of a water budget [19] to be used in
other processes. In order to explain variability and uncertainty
in crop yield based on soil sampling density and weather
data better, Pachepsky and Acock [14] use a GA to perform
stochastic imaging of available soil water capacity. The results
are then used to estimate variability and uncertainty in crop
yield for a soybean crop model.

Also interesting in the field of PA is the use of wireless sen-
sor networks to monitor plant health, climate, and other field
specific features. Such networks provide useful information to
the farmer, but they require a lot of energy. Several studies
have used a GA to find the optimal sequence of sensors to
improve energy consumption [1], [7], [9].

A subfield of PA is weed detection and crop management,
which tries to eliminate weeds from crops. Neto et al. [12]
consider methods using GAs for plant classification based on
foliage. Successfully identifying whether a plant on a field is
a weed through aerial images can make it easier to remove
unwanted weeds from a field. Their method performs leaf
extraction by clustering leaf fragments obtained from pictures
and creating a chromosome out of a leaf fragment and its
neighbors. A GA is applied to reconstruct the fragments of
non-occluded, individual leaves. These reconstructed leaves
can then be used for plant identification and mapping to
improve weed control and crop management. In the same vein,
Tang et al. [18] perform weed sensing based on color image
segmentation, where the GA is used to identify specific regions
in a Hue-Saturation-Intensity color space to segment plants
from background.

Crop management also deals with identifying sick plants;
in a recent study hyperspectral images were used to identify
charcoal rot in soybean stems. A GA was used to select
specific wavelengths from the hyperspectral image to improve
classification [10]. Similar work is also being done in selecting
wavelengths and generating associated filter parameters for
multi-spectral imaging in produce classification [20].

III. METHODOLOGY

As mentioned, the problem addressed in this paper is the
design of a random, stratified experiment for collecting data
in Precision Agriculture. Our goal is to specify experimental
prescriptions maps that maintain stratification over a space
of prior yield and protein production in winter wheat while



Fig. 2: Flowchart of the optimization process for field profit maximization. The “Experiments” stage is highlighted as this is
the main focus of this research paper. It is the stage where the prescription maps are generated to set up the VRA experiment.
Resulting data is then stored and analyzed in the economic analysis for profit maximization.

(a) Example of consecutive cells with large jumps.

(b) Example of consecutive cells with small jumps.

Fig. 3: Example of four consecutive cells in a field with large
and small jumps. Red, orange, yellow and green correspond
to 0, 40, 80 and 120 pounds of nitrogen/ha respectively.

simultaneously minimizing the magnitudes of jumps in nitro-
gen application over the map. To facilitate measuring jump
magnitudes, a previous “as applied” map is used to determine
the intended route the the spreader/sprayer is to follow. We
hypothesize that we can apply a genetic algorithm to generate
experiment prescriptions that effectively maintain stratification
and minimize jumps in nitrogen rate application. In this study,
we test this hypothesis by considering a variety of genetic
operators and by examining the effects of these operators on
overall fitness as well as individual impact on stratification and
smoothness.

Specifically, we apply a GA to optimize a fertilizer experi-
ment prescription map, which dictates the nitrogen application
rate for each cell on a field. In actual use, the farmers decides
which k nitrogen rates they wish to apply and how the
field is to be subdivided (Figure 1). The ultimate goal is to
minimize jumps (Figure 3) while maintaining stratification.
For our GA, we use completed prescription maps as individual
chromosomes in our population with each cell in the map as a
gene and its corresponding nitrogen rate as the gene’s allele.
Each nitrogen rate maps to an index that is used to calculate the
jump score. A multi-objective fitness function is then applied,
taking both jumps and stratification into account. [3].

The stratification strategy tries to ensure that each nitrogen

rate is represented evenly in each of the bins. Let bin denote
a specific yield-protein combination, where yield has been
divided into q bins and protein has been divided into p bins.
Thus, we have a total of k = q × p bins. Then #cellsbin
corresponds to the number of cells in the field that map to a
specific bin. We then compute target stratification as

tstratbin =
1

k
#cellsbin

since our goal is to distribute the nitrogen evenly over exactly k
bins. The initial prescription maps are generated by computing
bins based on the field’s previous year yield and protein data.

We consider two different methods for discretization into
bins: 1) by looking at the actual yield (yd) and protein (pro)
values (called equal width binning), or 2) by splitting on the
data points themselves (called equal sample binning). The first
method looks at the minimum and maximum yield and protein
values and creates an even split of these values based on the
desired number of bins. Without loss of generality, consider
yield. Then based on the number of bins q, we calculate an
offset as

offsetq =
1

q
(maxyd −minyd).

Thus, we get bin boundaries at

minyd, . . . ,minyd + j · offsetq, . . . ,maxyd.

Equal sample binning, where we split on m data points, does
not take the yield or protein values into account but aims to
distribute an even number of points into each bin (i.e., m/q
points for yield bins and m/p points for protein bins). The
differences in binning strategies are illustrated in Figure 4.

The initial population consists of n prescription maps, where
each map is a chromosome such that its c cells are genes
in the chromosome. Each cell belongs to a bin combination
i ∈ {1 . . . k} and is assigned a nitrogen rate with index
N ∈ {0 . . . r − 1}. Once the population has been generated



(a) Equal Width Binning

(b) Equal Sample Binning

Fig. 4: Example of different bin discretization types using a
histogram representation of the yield values. The vertical red
lines indicate bin boundaries using each discretization type.

and evaluated, tournament selection is performed, choosing a
predefined number of pairs by selecting the best map (lowest
fitness score) from a chosen number of individuals from
the current population. For each of these pairs, two-point
crossover is performed by randomly selecting two indices and
swapping the cells between these indices to create two new
child prescription maps.

Finally, mutation is applied to the offspring to maintain
diversity in the population. Two mutation approaches were
implemented. Swap mutation chooses two random indices and
switches the values of these two cells, and scramble mutation
is performed by selecting all cells between two randomly
chosen cells and performing a random permutation. These new
maps then replace the maps in the original population with the
worst fitness score.

There are several parameters that can influence the perfor-
mance of the GA: the population size, the number of offspring
to create, the number of candidates in tournament selection,
and the crossover and mutation rates. The mutation (0.05, 0.10,
and 0.15) and crossover (0.90, 0.92, 0.95, 0.98) rates were
tuned simultaneously, where each combination of the two was
tested. Population size (200, 400, and 800), tournament size
(2, 3, 5, 10, and 20), and offspring (20, 40, 80, 100) were
tuned individually; the best result was used while tuning the
other parameters. After tuning, all experiments were run using

TABLE I: Chosen values for all hyper parameters. The param-
eters are population (Pop), offspring created (OS), crossover
rate (CR), mutation rate (MR), and tournament size (TS).

Parameter Pop OS CR MR TS
Value 400 40 0.9 0.1 3 or 20

tournament sizes of 3 and 20 to compare the behavior of the
GA in more detail. The final values for each of the hyper
parameters are shown in Table I.

Fitness is determined by creating a multi-objective mini-
mization function based on jump and stratification scores. The
jump score sums over the absolute difference in nitrogen levels
between adjacent indices along the as-applied map of nitrogen
rates.

∆jumpsi = |N(mapi)−N(mapi+1)|

where N(mapi) corresponds to the nitrogen index of cell i.
A jump difference less than or equal to 1 for the ith cell is
not added into the jump score, as this is the most desirable
rate change between cells. Each individual jump score is then
normalized to be within a [0,1] range:

Fjumps =

∑c−1
i=1 ∆jumpsi
maxjumps

,

where maxjumps = (r − 1) × (n − 1) is the normalization
factor. The maximum value is based on the worst case scenario
where each consecutive cell goes from the minimum to the
maximum nitrogen rate or vice versa (Figure 3a).

The stratification score looks for an even distribution of
nitrogen rates across cells belonging to the same bins:

Fstrat =

∑k
l=1 |tstratl − astratl| −minstrat

maxstrat −minstrat
,

where tstratl is the target stratification and astratl is the
actual stratification of the same bin. The maximum stratifi-
cation is determined by the worst case scenario. This occurs
when each cell has the same nitrogen rate, indicating that each
bin only has one nitrogen rate in which it puts all its cells;
therefore, every other nitrogen cell count for that bin will be
set to 0.

To calculate the maximum stratification, a matrix is created
of dimensionality r × k, where rows represent nitrogen rates
and columns represent bins. For example, assume there are
three nitrogen rates and three yield and protein bin combina-
tions for a field with 45 cells. If equal sample distribution is
applied the resulting target stratification is tstrat = 5 for each
bin, as 45/9 = 5. Therefore, when every cell in the map is set
to the first nitrogen rate, this is the resulting matrix:15 15 15

0 0 0
0 0 0


This means that for the first row r = 1, each bin’s stratification
difference can be defined as:

∆strat1k = r − 1× tstrat,



and for r 6= 0 each bin’s stratification difference is:

∆stratrk = tstrat,

which occurs r − 1 times (i.e., for every nitrogen rate that is
not the default nitrogen rate, in this case r = 1). Both these
differences occur k times, once for each bin. Summing these
two stratification differences, therefore, results in:

maxstrat = 2× tstrat× k × (r − 1).

Minimum stratification can be obtained by determining the
number of cells remaining after the nitrogen rates have been
distributed evenly. Consider the following example: instead of
45 cells as in the previous example, suppose there are 47 cells,
16 in the first two bins and 15 in the third bin. This means
that even if all nitrogen rates are distributed evenly, there will
be two cells assigned an “extra” nitrogen rate, either the same
nitrogen rate or two different nitrogen rates, making perfect
stratification impossible. To complete the stratification, the
number of remaining cells is divided by the number of nitrogen
rates r for each yield and protein bin combination. To find
the total minimum stratification, this intermediate minimum
stratification has to be calculated and summed for each bin to
determine the minimum possible stratification:

min
strat

=

q∑
i=1

p∑
j=1

(
#cellsij mod r

r
).

Target stratification is calculated by counting the number
of cells belonging to each bin l ∈ {0 . . . k}. This is done to
determine how many cells each nitrogen rate should have for
that specific bin.

tstratl =
#cellsl

r

The actual stratification for a yield and protein bin is calculated
by counting the number each nitrogen rate occurs in each of
the bins. For example, if we have 45 cells with three nitrogen
rates and three total bins, we know the target stratification
is 5 if each of the bins contains 15 cells. Suppose that the
first bin of 15 cells has three low N rates, three medium N
rates, and nine high N rates. The expected stratification is then
subtracted from each of these counts (i.e. |3− 5|, |3− 5|, and
|9 − 5|). The resulting values are summed to calculate the
actual stratification for that bin.

The final fitness function is a weighted combination of the
normalized jump and stratification scores, where w ∈ [0, 1]:

Fmap = (w × Fjumps) + ((1− w)× Fstrat).

The GA stops running when the set maximum number of
generations has been reached. In practice, the algorithm is also
set to stop if the farmer deems the jumps to be low enough.

IV. RESULTS AND DISCUSSION

In Figure 5 the jump and stratification scores give equal
weight to the final fitness score. The plots show that the
GA moves towards convergence, which is the desired result.
However, as farmers generally do not have the luxury to wait

for hours for a GA to run to find an improved prescription
map, i.e. with much lower jumps, increasing the emphasis on
the jump score could lead to a more practical use of the GA.
Furthermore, using scramble seems to explore more of the
search space as there is a slightly larger change in the jump
and stratification scores for the population. More importantly,
there are much larger changes in variance of the population
across the generations. When comparing the behaviour of the
GA with a different number of individuals for tournament
selection, using a smaller number of individuals seems to
reach more rapid convergence than using a larger number.
As increasing the number of individuals increases selective
pressure, this result seems counter-intuitive.

Figure 6 shows the results for 500 generations of the GA
using swap and scramble mutation respectively and using the
two different discretization methods, each using a weight of
w = 0.75. The results again indicate convergence for both
the scramble and swap mutation methods. It is interesting
to note that the swap mutation seems to find lower jump
scores than scramble. This might indicate that scrambling
changes the maps too much, producing offspring that do
not reduce the jump or stratification score. This would also
explain why convergence is slower, as it would take longer to
find better prescriptions. Swap mutation, on the other hand,
makes smaller adjustments, thereby possibly providing maps
that better maintain the overall stratification while exploring a
minimization in jumps.

In all cases, there is a substantial drop in variance of the
fitness scores early on in the process. The initial variance is
small to begin with but becomes almost negligible after a few
generations. However, a clear change in variance is evident
when applying scramble mutation. This indicates that the
population fitness becomes very similar early on. Considering
the initial prescriptions are being created with the goal of
laying out a randomly stratified prescription map for nitrogen
rates based on yield and protein bins, it makes sense that there
would not be much variance in the overall fitness. Once the
jumps start to drop, the fitness scores would become even more
similar. The plots show that the largest drop in jump score
also occurs early in the process, making the drop in variance
a logical consequence. The resulting fitness scores are rather
small because of the way the jump and stratification scores
are calculated. The maximum jump and stratification values
are much higher than what most prescription maps result in,
as these are worst case scenarios. The large difference between
the maximum (worst case) and actual scores thus results in a
small fitness score, potentially explaining the low change in
variance, as well as the small difference between the average
and minimum fitness score.

The average total fitness score results for 10 runs of the
GA are shown in Table II. A paired t-test is performed to
confirm that the scores for scramble and swap mutation are
statistically different from each other for all fields and both
binning methods at the α = 0.05 level. The results using 3
and 20 individuals for tournament selection are significantly
different at the α = 0.05 level. Furthermore, the results



(a) Swap mutation using tournament size 3. (b) Scramble mutation using tournament size 3.

(c) Swap mutation using tournament size 20. (d) Scramble mutation using tournament size 20.

Fig. 5: Sre 1314 results for 500 generations of the GA using the two different mutation types and equal sample binning, where
w = 0.5. The left y-axis shows the fitness score values (including jumps, stratification and the best score in the population),
while the right y-axis details the variance value.

show that the fitness scores for swap mutation are consistently
lower, and that the GA achieves a lower fitness score for both
discretization methods. Based on these results, scores from a
single run of the GA for the original prescription maps and the
“best” maps, obtained through swap mutation, are shown in
Table III. An illustration of an optimized prescription with
minimized jumps can be found in Figure 7 under the as-
sumption the spreader travels along the north-south axis. This
illustrates a map where the jump score decreased substantially,
and the stratification score only went up slightly for the final
prescription map, which was the desired result.

V. CONCLUSION AND FUTURE WORK

Variable rate application is an important aspect of Precision
Agriculture, trying to reduce the amount of fertilizer needed
across a field while simultaneously increasing yield, protein
production, and net return. To be able to determine the amount
of nitrogen to be applied adequately, field-specific experiments
have to be performed. These experiments involve the creation
of a nitrogen prescription map that overlays a grid on the
field at hand and looks at previous year yield and protein

values within each cell to determine what bin the cell belongs
to. Nitrogen rates are then assigned randomly to cells with
the goal of having an even distribution of nitrogen values
across each bin, thus providing a good experimental basis to
examine the influence of nitrogen rates on different parts of
the field. However, these prescription maps often contain large
jumps between consecutive cells, putting strain on the farming
equipment.

In our experiments, a GA was applied successfully to mini-
mize the jumps between cells, while maintaining stratification,
thus supporting our hypothesis. The results show that by
setting the weight of the jumps score to have a larger influence
than the stratification score, a better solution in terms of
jumps can be found. The results also indicate that using swap
mutation improves results. Overall, the GA performs well for
this particular application and achieves the set goal.

As future work, we would like to compare different GA
operators in more detail, as well as explore how changing
the weight of the multi-objective fitness function further influ-
ences results. We will also continue to explore the impact of
additional constraints in generating prescription maps, such as



(a) Swap mutation using tournament size 3. (b) Scramble mutation using tournament size 3.

(c) Swap mutation using tournament size 20. (d) Scramble mutation using tournament size 20.

Fig. 6: Sre 1314 results for 500 generations of the GA using the two different mutation types and the two different discretization
methods, where w = 0.75. The left y-axis shows the fitness score values (including jumps, stratification, and the best score in
the population), while the right y-axis details the variance value.

TABLE II: Average fitness score of the best maps after 10 runs of the GA for scramble and swap mutation, using equal width
and equal sample binning, on three different fields. The jump weight is set to w = 0.5.

sec35mid davidsonmidwest sre1314
3 20 3 20 3 20

Equal Width Swap 0.0282 0.0207 0.0493 0.0195 0.0582 0.0578
Scramble 0.0520 0.0401 0.0385 0.0601 0.0627 0.0756

Equal Sample Swap 0.0342 0.0309 0.0425 0.0213 0.0679 0.0525
Scramble 0.0364 0.0468 0.0489 0.0578 0.0613 0.0744

TABLE III: Fitness, jump, and stratification scores for the initial map and the final map after one run of the GA using equal
sample binning. Results are shown for three different fields, two different tournament sizes (3 and 20), and the jump weight
is set to w = 0.5. All results are for the swap mutation method as this gave the lowest fitness.

sec35mid davidsonmidwest sre1314
3 20 3 20 3 20

First Best First Best First Best First Best First Best First Best
Fitness 0.2457 0.0341 0.2381 0.0308 0.1598 0.425 0.1889 0.0213 0.2492 0.0679 0.1523 0.0538
Jumps 0.4667 0.0435 0.4637 0.0493 0.3139 0.0793 0.3703 0.0370 0.4932 0.1284 0.3018 0.1047
Strat 0.0248 0.0248 0.0124 0.0124 0.0055 0.0055 0.0055 0.0055 0.0052 0.0075 0.0029 0.0028



Fig. 7: Optimized prescription map of the field davidsonmid-
west with equal sample discretization and w = 0.75. The
legend indicates pounds of nitrogen per acre.

navigational constraints for the spreader/sprayer. We will also
consider application of herbicides. The next step is to deploy
this process for actual farmer use. This then becomes part
of the workflow (Figure 2) and makes it possible to gather
more data, while further decreasing cost to the farmers by
lessening strain on their equipment. A key goal in this work
is a multi-objective one whereby we maximize profit while
also minimizing environmental impact. Therefore, based on
this workflow, we will also continue to develop strategies for
predicting crop production and net return.
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