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Abstract—Particle swarm optimization (PSO) has become a
popular algorithm for performing global numerical optimization;
however, it is known that the topology of PSO has a large
influence on its performance. Topologies with high connectivity
can have fast convergence, but they are also susceptible to
convergence to local minima. Topologies with low connectivity
may avoid converging to local minima and achieve high quality
solutions, but they tend to have slow convergence. In this paper,
we propose a novel PSO topology based on a single-elimination
tournament. In the proposed tournament topology, particles move
up a tree structure through a fitness-based tournament. PSO
updates then propagate information about the global best position
from the top of the tree to the bottom. Experimental results on
eleven benchmark functions show that the proposed topology can
achieve both the high quality solutions of low-connectivity topolo-
gies and the fast convergence of high-connectivity topologies.

I. INTRODUCTION

Particle swarm optimization (PSO) is a population-based
meta-heuristic for optimizing continuous nonlinear functions
[1]. The population (swarm) consists of individuals (particles),
each of which represents a candidate solution through its
position in the search space of the objective function [2].
The particles communicate with some subset (neighborhood)
of particles by sharing information about the best positions
that they have found. Particles are attracted to move towards
both their personal best solutions and the best known solution
among the particles in a defined neighborhood [3].

More specifically, suppose there is a swarm of m particles
in an n-dimensional search space. The overall goal is for
the swarm to find the global optimum of some objective
function f . Let xi, vi, and pi be the n-dimensional vectors
respectively representing the current position of particle i, the
current velocity of particle i, and the personal best position
ever achieved by particle i. Let Ni ⊆ P denote the neighbors
of xi drawn from population P according to some defined
topology. Let particle bi be the particle with the best known
solution in Ni, and let pbi denote the personal best position
ever achieved by particle bi. Finally, let r1, r2 ∼ U(0, 1), and
ω, c1, and c2 be hyperparameters for inertia, personal best
update, and neighborhood best update respectively. Then the
velocity of each particle is updated as

vi = ωvi + c1r1(pi − xi) + c2r2(pbi − xi) (1)

and the position is updated as

xi = xi + vi. (2)

An important issue of the PSO algorithm is the balance be-
tween exploration and exploitation [4]. Exploration finds good
regions of the search space, and exploitation finds the best
point in a good region [5]. However, high exploitation is sus-
ceptible quick convergence to non-optimal solutions, and high
exploration may require a large number of iterations to find the
global optimum [6]. Some approaches to address this problem
include a linear decreasing inertia weight [7], a constriction
coefficient [8], and heterogeneous search behaviors [9]. Some
PSO variants use other methods to choose particles from which
to learn. In the fully-informed PSO, a particle learns from all
of its neighbors [10]. In chaotic heterogeneous comprehensive
learning PSO, particles use tournament selection to select for
each dimension a particle from which to learn [11].

Several studies have looked at less-connected neighborhood
topologies. The original “star” topology uses the entire swarm
as the subset, but it tends to favor exploitation [12]. Struc-
tured topologies can help reduce stagnation and premature
convergence by slowing down the spread of good solutions
[13]. In the “ring” topology, which favors exploration, each
particle communicates with its two adjacent particles in index
order [14]. In the “von Neumann” topology, each particle
communicates with its four neighbors on a two-dimensional
lattice. Ultimately, finding both quality and efficiency depends
on the chosen topology [15].

Other PSO variants, such as the dynamic neighbor PSO
[16] and the fitness distance ratio PSO [17], used dynamic
topologies based on the most similar particles in each iteration.
Similarly, Suganthan proposed a model where each particle
communicates with a fixed number of its nearest neighbors
in each iteration, where the number of neighbors increased as
iterations increased [18].

The hierarchical version of PSO (H-PSO) proposed by
Janson and Middendorf uses a tree structure and a hierarchy
to define a topology [19]. The shape of the tree is defined
by the branching factor d, the maximum out-degree of the
interior nodes. The tree contains a node for each particle in the
swarm, and each particle is influenced by itself and the particle
that is directly above it in the hierarchy. In each iteration, the
hierarchy is updated with O(m) time complexity in a top-
down manner: if the best solution of a particle in an inner978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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Fig. 1. Example tournament topology, where i < j indicates particle i’s best
position has better fitness than particle j’s. (a) Particles placed in leaf nodes.
(b) Particle with the better fitness placed in parent node. (c) Fully populated
tournament. (d) Neighborhood best for particle at bi.

node is worse than the best solution found by the best particle
in the child nodes, the two particles swap places.

Motivated by the need to balance exploration and exploita-
tion, we propose a tournament topology for particle swarm
optimization. Similar to H-PSO, the tournament topology
defines a topology based on a tree structure; however, our
proposed topology is dynamic in that it enters the particles
in a single-elimination tournament and defines each particle’s
neighborhood as the subset of particles that it competed against
in the tournament.

To present this new topology, rest of the paper is organized
as follows. Section II introduces the proposed tournament
topology for PSO. The experimental setup is discussed in
Section III with the results presented in Section IV. Finally,
we present our conclusions and future work (Section VI).

II. A TOURNAMENT NEIGHBORHOOD TOPOLOGY

In our proposed tournament topology, we represent a tour-
nament bracket as a tree structure such that all leaf nodes
are in the same level. All particles are placed in leaf nodes
at the lowest level of the tree (Fig. 1a). In each iteration, a
tournament is conducted to place particles into the internal
nodes in a bottom-up manner. Particles in sibling nodes
“compete,” and the particle with the best known position is
then placed in the corresponding parent node (Fig. 1b, 1c).
The resulting neighborhood bests are then shown in Fig. 1d.

Updates are calculated using Equations (1) and (2). In the
context of the tournament, a particle’s neighborhood consists
of the particles that it competed against. Then, with the
exception of the particle at the root node, each particle is
attracted to the particle in its parent node (Fig. 1d). The particle
at the root node always has the global best position and is
attracted to itself. We also note that the tournament topology
with only two levels is equivalent to the star topology.

Using the tournament topology, information about the global
best is propagated slowly through the levels of the tree from

the top down. Unlike H-PSO, where each particle appears
exactly once in the tree, each interior node of the tournament
tree has the same particle in one of its child nodes. In this way,
better particles influence more of the swarm. For example, if
the tree has branching factor d and the swarm has m particles,
at most (d− 1) logd m+1 particles are attracted to the global
best in each iteration. In H-PSO, d particles are attracted to
the global best in each iteration.

A major factor that may affect the performance of the
tournament topology is the shape of the tree, i.e., the number
of levels in the tree and the number of nodes at each level.
Intuitively, information about the global best is propagated
more quickly in trees with fewer levels. As in H-PSO, the
shape of the tree is controlled by the branching factor d ≥ 2,
equal to the maximum out-degree of the interior nodes. Since
the tree is constructed bottom-up, each interior node contains
d child nodes, except at most one interior node per level may
have fewer than d child nodes due to non-even divisibility.

Another factor that may affect the behavior of the tourna-
ment is the order of the particles in the last level of the tree.
Initially, the particles may be placed randomly. However, since
each particle always has its first match against the same group
of other particles, this may result in a lack of diversity. To
attempt to mitigate this, we also include a parameter q ∈ [0, 1]
such that, at each iteration, the algorithm may reshuffle the
order of the particles in the leaf nodes with probability q.
Intuitively, a higher value of q would increase the chance that
particles previously not in a path to the global best can appear
in such a path, thus enabling them to receive information about
the global best more quickly.

For a swarm with m particles, a tournament tree with
branching factor d has O(m) nodes. Each interior node
requires finding its best child node, so each child node is
checked once. Thus, the complete tournament has O(m)
time complexity. It may be computationally expensive and
unnecessary to hold a tournament in every iteration. In some
iterations, holding a tournament might make no changes to the
best neighbor of each particle.

To investigate this observation, we include a parameter
k ∈ [0, 1] corresponding to the probability of holding a
tournament in a given iteration. If a tournament is not held,
each particle’s best neighbor corresponds to its best neighbor
from the previous generation. A value of k = 1 results in
holding a tournament after every generation, whereas a value
of k = 0 corresponds to holding a tournament in only the
first generation. Reducing the tournament frequency reduces
the time complexity, at the risk of degraded performance.
However, it may be possible to find a minimal value of k
that does not lead to significantly poorer performance.

III. EXPERIMENTAL APPROACH

We conducted three experiments to test the performance of
the tournament topology, measuring performance in terms of
both solution quality and number of generations to get within
a specified error threshold relative to the global optimum. In
the first experiment, we studied the effects of the branching



factor d and probability of reshuffling the leaf nodes q on
the performance of the tournament topology. In the second
experiment, we compared the performance of PSO with the
tournament topology to the performance of PSO with four
other topologies: star, ring, von Neumann, and H-PSO. In
the third experiment, we studied the effect of the tournament
frequency k on performance using the tournament topology.

A. Configurations
As a measure of solution quality, we measured the best

function value returned by the algorithm after a fixed number
of iterations. For the two experiments limited to our topology,
we reported the best function value after 1,000 iterations,
taking the mean across all trials. For the experiment comparing
topologies, we also reported the best function value after
10,000 iterations, again taking the mean across all trials.

Since a good function value might also correspond to a
local optimum, we also measured the number of iterations
required to reach a specified error threshold relative to the
global optimum. The thresholds are considered to indicate that
the swarm’s best particle is in the region of the global optimum
[12], so the number of generations would give an indication
of convergence time. We used the same thresholds as those
used in the studies of Trelea [6] and Zhan et al. [20].

As in the work of Eberhart and Shi [21], the maximum
number of iterations was set to 10,000. If the threshold was not
met within the maximum number of iterations, the number of
iterations was considered to be infinite and reported as 10,001.
Thus, the mean across all trials is not appropriate for this
measure, so we reported the median across all trials, the mean
across all trials that met the threshold, and the percentage of
trials that met the threshold. If no trials met the threshold, the
mean reduced to 10,001.

B. Benchmark Functions
This paper used ten benchmark test functions: Ackley,

Griewank, Rastrigin, Rosenbrock, Schaffer’s f6, Schwefel’s
1.2, Schwefel’s 2.22, Schwefel’s 2.26, Sphere, and Step
[22], [23]. Schaffer’s f6 was optimized in a 2-dimensional
space, and the other nine functions were optimized in a 30-
dimensional space. The Griewank function was also optimized
in a 10-dimensional space (Griewank (10-D)), which is con-
sidered to be more difficult than the 30-dimensional variant
(Griewank (30-D)) [12].

Boundary constraints [l, u] were also included for eight of
the ten benchmark functions such that, for each particle x =
(x1, ..., xn) in an n-dimensional search space, the constraints
required that l ≤ xj ≤ u for all 1 ≤ j ≤ n. To handle
particles that would exceed the bounds, we employed the
periodic boundary handling method [24]. That is, the bounded
search space was treated as periodic, so that exceeding one of
the bounds “wraps around” to the other bound. In that case,
the new value for xj would be calculated as

xj =


u− ((l − xj) mod (u− l)) if xj < l

l + ((xj − u) mod (u− l)) if xj > u

xj otherwise

All problems were treated as minimization problems with a
global minimum function value of f(x∗) = 0. The dimensions,
bounds, and error threshold for each function are given in
Table I.

C. PSO Parameters

All experiments were carried out with a swarm of 50
particles. For all five topologies compared, we tested combi-
nations of the hyperparameters parameters in the ranges of
c1 ∈ [0.1, 2.5], c2 ∈ [0.1, 2.5], and ω ∈ [0.05, 0.95]. The
combinations used in both experiments were chosen based on
both solution quality and time to reach the global optimum
and are given in Table II.

IV. RESULTS

A. Branching Factor and Reshuffling

In our first experiment, we studied the effect of the branch-
ing factor d and reshuffling probability q on the performance
of the tournament topology. Values of d were chosen in the
set of {2, ..., 9}, and values of q were chosen in the range of
[0, 1]. In total, 50 trials were performed for each combination
of (d, q). For this experiment, we fixed k = 1.

We hypothesized that smaller values of d and q would yield
better fitness values, take more generations to reach the global
optimum, and have a higher success rate of reaching the error
threshold. This was motivated by the fact that smaller values
of d and q would result in a topology with lower connectivity.

Representative results of this experiment are shown as
heatmaps for the best fitness after 1,000 iterations (Fig. 2), the
median number of iterations to reach the threshold (Fig. 3),
the mean number of iterations to reach the threshold (Fig. 4),
and the success rate of reaching the threshold (Fig. 5). With
respect to the reshuffling probability q, larger values tended to
give both better fitness and fewer generations for the Ackley,
Griewank (30-D), Schaffer’s f6, Schwefel’s 2.22, Sphere, and
Step functions. Smaller values led to both better fitness and
fewer generations for the Griewank (10-D), Rastrigin, and
Schwefel’s 1.2 functions. For the Rosenbrock function, larger
values led to better fitness, but smaller values led to fewer
generations. For Schwefel’s 2.26 function, smaller values led
to better fitness, but no values reached the threshold. Larger
values also gave higher success rates for the Ackley and Step
functions, whereas smaller values gave higher success rates
for the Griewank (10-D) function.

Larger values of the branching factor tended to give both
better fitness and fewer generations for the Griewank (10-
D), Griewank (30-D), Rastrigin, Rosenbrock, Schwefel’s 1.2,
Schwefel’s 2.22, and Sphere functions. Smaller values led to
both better fitness and fewer generations for the Schaffer’s
f6 and Step functions. For the Rosenbrock function, smaller
values led to better fitness, fewer median generations, and
higher success rates; but larger values led to fewer mean
generations. For Schwefel’s 2.26 function, larger values led
to better fitness. Larger values also gave higher success rates
for the Griewank (10-D) function, whereas smaller values gave
higher success rates for the Step function.



TABLE I
BENCHMARK FUNCTIONS WITH DIMENSIONS, BOUNDS, AND ERROR THRESHOLDS.

Function Dimensions Search Error FunctionName Space Threshold

Ackley 30 [−32, 32] 0.01 f1 = −20 exp(−0.2
√

1/D
∑D

i=1 x
2
i )− exp(1/D

∑D
i=1 cos(2πxi)) + 20 + e

Griewank 10 [−600, 600] 0.1 f2 = 1/4000
∑D

i=1 x
2
i −

∏D
i=1 cos(xi/

√
i) + 1

Griewank 30 [−600, 600] 0.1 f3 = 1/4000
∑D

i=1 x
2
i −

∏D
i=1 cos(xi/

√
i) + 1

Rastrigin 30 [−5.12, 5.12] 100 f4 =
∑D

i=1[x
2
i − 10 cos(2πxi) + 10]

Rosenbrock 30 (−∞,∞) 100 f5 =
∑D−1

i=1 [100(xi+1 − x2i )2 + (xi − 1)2]

Schaffer’s f6 2 [−100, 100] 1× 10−5 f6 = 0.5 +
sin2(

√
x2
1+x2

2)−0.5

[1+0.001(x2
1+x2

2)]
2

Schwefel’s 1.2 30 [−100, 100] 100 f7 =
∑D

i=1(
∑i

j=1 xj)
2

Schwefel’s 2.22 30 [−10, 10] 0.01 f8 =
∑D

i=1 |xi|+
∏D

i=1 |xi|
Schwefel’s 2.26 30 [−500, 500] 2570 f9 = 418.9829D −

∑D
i=1 xi sin(

√
|xi|)

Sphere 30 (−∞,∞) 0.01 f10 =
∑D

i=1 x
2
i

Step-2 30 [−100, 100] 0.1 f11 =
∑D

i=1(bxi + 0.5c)2

TABLE II
TUNED VALUES OF c1 , c2 , AND ω FOR EACH TOPOLOGY.

Topology Parameters
c1 c2 ω

Tournament 1.5 1 0.7
Star 1.5 1.5 0.7
Ring 1.25 1.25 0.7
von Neumann 1 1 0.7
H-PSO 1.75 1.5 0.5
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Fig. 2. Best fitness after 1,000 generations. Lighter regions represent better
fitness.
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Fig. 3. Median number of iterations to reach error threshold. Lighter regions
represent fewer generations.

For statistical analysis, we performed a Friedman test on
each of the dependent variables. We found that over all com-
binations, there was a significant difference in: the best fitness
after 1,000 generations [F (87, 880) = 835.45, p < 0.001];
the median number of generations to reach the threshold
[F (87, 880) = 1083.90, p < 0.001]; the mean number of
generations to reach the threshold [F (87, 880) = 1103.73,
p < 0.001]; and the success rate [F (87, 440) = 890.37,
p < 0.001].
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Fig. 4. Mean number of generations to reach error threshold. Lighter regions
represent fewer generations.
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Fig. 5. Success rate of reaching error threshold. Darker regions represent
higher success rates.

B. Topology Performance

In our second experiment, we compared the performance
of our tournament topology to four other topologies: star,
ring, von Neumann, and H-PSO. A total of 50 trials was
performed for each topology. For this experiment, k was
fixed at k = 1. For the tournament topology, values of the
reshuffling probability and the branching factor were set for
each function using the best results of the previous experiment.
Values of the branching factor were tuned for H-PSO in a
similar way. The chosen values are given in Table III.

We hypothesized that the tournament topology would reach
a better fitness value than each of the other four topologies;
that the tournament topology would reach the threshold more
quickly than the ring, von Neumann, and H-PSO topologies,
but more slowly than the star topology; and that the tournament
topology would have a higher success rate of reaching the
error threshold than the star topology; but the same success
rate as the ring, von Neumann, and H-PSO topologies. These



TABLE III
TUNED VALUES OF d AND q.

f
Tournament Topology H-PSO

Branching Reshuffling Branching
Factor (d) Probability (q) Factor (d)

f1 3 0.8 3
f2 2 0.1 3
f3 6 0.6 4
f4 2 0.1 5
f5 9 0.9 9
f6 7 0.4 6
f7 7 0.1 8
f8 6 0.9 9
f9 9 0.1 7
f10 9 1.0 9
f11 6 0.9 2

hypotheses were motivated by the tournament topology having
a higher connectivity than the ring, von Neumann, and H-PSO
topologies; but a lower connectivity than the star topology, and
the star topology likely converging to local optima.

The mean best fitness value at each iteration is plotted
in Fig. 6. On three of the eleven functions, the tournament
topology attained the best fitness after 1000 generations. On
seven functions, H-PSO attained the best fitness after 1,000
generations, with the tournament topology in second. On
Schwefel’s 2.26 function, the tournament topology attained
the worst fitness after both 1,000 and 10,000 generations.
However, on seven functions, the tournament topology attained
the best fitness after 10,000 generations. On three functions,
H-PSO attained the best fitness after 1,000 generations, with
the tournament topology in second. Across these experiments,
the tournament topology and H-PSO generally performed
similarly. Generally, the tournament topology seemed to have
similar convergence times to the star, von Neumann, and
H-PSO topologies, and a faster convergence than the ring
topology.

The median generations to reach the error threshold, the
mean iterations to reach the threshold in successful runs, and
the percentage of runs that successfully reached the threshold
(% Success) are listed in Table IV. The tournament topology
reached the threshold in the fewest generations in terms of the
median on seven functions, and in terms of the mean on seven
functions. In terms of the median, the tournament topology
ranked second on one function and fourth on two functions; the
von Neumann topology ranked first on these three functions. In
terms of the mean, the tournament topology ranked second on
one function (the von Neumann topology ranked first), third on
one function (H-PSO ranked first), and fourth on one function
(the von Neumann topology ranked first).

For statistical analysis, we performed pairwise Wilcoxon
signed-rank tests relative to the tournament topology for each
of the star, ring, von Neumann, and H-PSO topologies. We
found that the tournament topology reached a significantly
better fitness value than the star topology after 1,000 gen-
erations [W (11) = 11, p < 0.05], and 10,000 generations
[W (11) = 11, p < 0.05]; than the ring topology after
1,000 generations [W (11) = 10, p < 0.025], and 10,000

TABLE IV
GENERATIONS TO REACH THE ERROR THRESHOLD. THE BEST RESULTS

FOR EACH FUNCTION ARE IN BOLD.

Topology f
Generations % SuccessMedian Mean

Tournament f1 230.5 217.9 ± 14 64
f2 179.5 196.0 ± 99 100
f3 156 157.8 ± 15 100
f4 202.5 227.8± 90 100
f5 21 21.8± 6 100
f6 110.5 193.4 ± 252 100
f7 472 484.8 ± 97 100
f8 206 209.8 ± 21 100
f9 10001 10001 ± 0 0
f10 58 58.2 ± 4 100
f11 136 325.0± 600 98

Star f1 10001 346.5± 6.4 4
f2 167.5 225.5± 230 82
f3 256 258.7± 29 94
f4 142 143.2± 30 100
f5 35 36.4± 12 100
f6 260.5 382.0± 600 82
f7 634 654.9± 109 100
f8 440 557.7± 282 100
f9 10001 10001 ± 0 0
f10 93 95.6± 12 100
f11 10001 2656.0± 3174 46

Ring f1 10001 525.9± 28 20
f2 212.5 584.8± 1589 84
f3 559.5 744.7± 611 94
f4 216.5 237.0± 104 100
f5 43 46.9± 12 100
f6 10001 2200.0± 2374 40
f7 1630 2010.0± 1074 100
f8 507 758.4± 715 98
f9 10001 10001 ± 0 0
f10 78 181.7± 77 100
f11 10001 317.7± 27 12

von Neumann f1 10001 274.8± 28 28
f2 103 283.5± 834 100
f3 211 210.6± 14 100
f4 100 105.8 ± 33 100
f5 18 18.6 ± 4.0 100
f6 344.5 751.6± 1125 94
f7 618.5 614.1± 110 100
f8 263 258.3± 21 100
f9 10001 10001 ± 0 0
f10 78 77.3± 5 100
f11 10001 10001± 0 0

H-PSO f1 266 269.8± 18 98
f2 150.5 213.1± 278 100
f3 196 197.0± 12 100
f4 160 164.1± 52 100
f5 36 38.4± 11 100
f6 156.5 482.1± 1280 98
f7 526 528.8± 77 100
f8 207 210.8± 14 100
f9 10001 10001 ± 0 0
f10 73.5 74.5± 6 100
f11 207.5 213.4 ± 32 98

generations, [W (11) = 11, p < 0.05]; and than the von
Neumann topology after 1,000 generations [W (11) = 11,
p < 0.05], and 10,000 generations [W (11) = 11, p < 0.05].
Compared to H-PSO, there was no significant difference in
fitness value after either 1,000 generations [W (11) = 15,
p > 0.1], or 10,000 generations [W (9) = 17, p > 0.2].

Overall, the tournament topology reached the threshold
in significantly fewer generations than the star topology in
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Fig. 6. Mean best fitness with the five topologies. Lower fitness values represent better results. Subfigures (g), (h), (j), and (k) are plotted on a log scale.

terms of both median [W (10) = 5, p = 0.0125] and mean
[W (10) = 4, p < 0.0125]; and than the ring topology in
terms of both median [W (10) = 0, p < 0.001] and mean
[W (10) = 1, p = 0.001]. Compared to the von Neumann
topology, there was no significant difference in terms of
median [W (10) = 12, p > 0.1], but the tournament topology
reached the threshold in significantly fewer iterations in terms
of mean [W (10) = 8, p = 0.025]. However, compared to
H-PSO, there was no significant difference in generations to
reach the threshold in terms of either median [W (10) = 11,
p > 0.1] or mean [W (10) = 17, p > 0.2].

None of the five topologies ever successfully reached the
threshold on Schwefel’s 2.26 function. On all functions, the
tournament topology had the same or better success rate as
the star, ring, and von Neumann topologies. The tournament
topology and H-PSO had the same success rate on nine
functions, having a better success rate on one function each.

We then performed two-sample t-tests on individual func-

tions to compare the tournament topology and H-PSO (Table
V). Compared to H-PSO, the tournament topology found sig-
nificantly better solutions after 1,000 generations on one func-
tion, and after 10,000 generations on two functions. It found
significantly worse solutions after 1,000 generations on three
functions, and after 10,000 generations on two functions. The
tournament topology required significantly fewer generations
to reach the threshold on five functions, and significantly more
on one function. These results suggest that the tournament
topology may have faster convergence, whereas H-PSO may
be more robust.

C. Tournament Frequency Effects

In our third experiment, we studied the effect of the
tournament frequency k, on the performance of the tour-
nament topology. Values of k were chosen in the set of
{0.0, 0.1, 0.25, 0.5, 0.75, 0.85, 0.9, 0.95, 1.0}. A total of 50
trials was performed for each value of k. As in the previ-
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Fig. 7. Mean best fitness after 1,000 generations. Lower values represent
better results.
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ous experiment, values of the reshuffling probability and the
branching factor were set to those in Table III.

We hypothesized that smaller values of k would yield worse
fitness, take more generations to reach the error threshold,
and have a lower success rate. This was motivated due to
smaller values of k corresponding to more generations being
required for a new global best particle to become the root of
the tree. Thus, it may take more generations for other particles
to receive knowledge about the global best.

Representative results of this experiment are shown in the
graphs for the best fitness after 1,000 generations (Fig. 7),
the best fitness after 10,000 generations (Fig. 8), the median
generations to reach the error threshold (Fig. 9), the mean
generations to reach the error threshold (Fig. 10), and the
success rate of reaching the threshold (Fig. 11).

In general, smaller values of the tournament frequency
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Fig. 11. Success rate of reaching error threshold.

TABLE V
TOURNAMENT (T) VS. H-PSO (H). BOLD INDICATES STATISTICAL

SIGNIFICANCE AT LEVELS INDICATED IN THE TEXT.

f 1000 10000 Median Mean Success
f1 H H T T H
f2 H T H T
f3 H H T T
f4 H H H H
f5 T T T T
f6 T T T T T
f7 H T T T
f8 H T T
f9 H H
f10 T T T
f11 H T H

resulted in worse fitness, more generations, and lower success
rates than higher values. For most of the functions, as k
decreased from 1, performance appeared to be similar to k = 1
before decreasing, such as Fig. 8 (Rosenbrock) and Fig. 10.

Next, we performed a Friedman test on each of the depen-
dent variables. We found that over all values of k, there was a
significant difference in the best fitness after 1,000 generations
[F (9, 100) = 47.00, p < 0.001] and after 10,000 generations
[F (9, 100) = 41.15, p < 0.001]; in the median number
of generations to reach the threshold [F (9, 100) = 55.16,
p < 0.001]; in the mean number of generations to reach the
threshold [F (9, 1000) = 51.93, p < 0.001]; and in the success
rate [F (9, 100) = 31.31, p < 0.001].

We then performed pairwise Wilcoxon signed-rank tests
relative to a tournament frequency of k = 1 for each of the
nine other values. Tournament frequencies up to 0.5, with the
exception of 0.25, led to significantly worse solutions after
1,000 generations; and only a frequency of 0.0 led to signif-
icantly worse solutions after 10,000 generations. Tournament
frequencies up to 0.95 took significantly more generations to
reach the threshold in terms of the median, and tournament
frequencies up to 0.25 took significantly more generations in
terms of the mean. Tournament frequencies up to 0.1 had
significantly lower success rates. These results suggest that
the tournament frequency could be reduced to certain values
without leading to significantly worse performance.

V. DISCUSSION

The tournament topology appeared to generally perform
better than H-PSO on functions with certain properties (Table
V): non-separable functions (f1, f2, f3, f5, f6, f7), unimodal
functions (f7, f8, f10), and multimodal functions with few



local minima (f5, f11). In particular, the tournament topology
performed equally or better than H-PSO on all five measures
on f5 and f6. On the other hand, H-PSO performed equally or
better than the tournament topology on all five measures on f4
and f9, the functions that are both multimodal and separable.

In comparison, the star topology has generally been pre-
ferred for unimodal and separable functions, and the ring
topology has been preferred for multimodal and non-separable
functions [5]. Since unimodal functions and separable func-
tions are considered to be simpler optimization problems, the
tournament topology shows promise for optimization of non-
separable functions, including the more difficult optimization
of multimodal, non-separable functions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a tournament topology for par-
ticle swarm optimization. The proposed topology was tested
under different parameter settings for the branching factor
and the probability of reshuffling the leaf nodes. The results
showed that optimal parameter values could significantly im-
prove performance in terms of both solution quality and time
to reach the global optimum. The proposed topology was also
tested under different parameter settings for the tournament
frequency. The results showed that reducing the tournament
frequency could reduce time complexity without significantly
reducing performance in terms of either solution quality and
time to reach the global optimum.

The proposed topology was also tested on eleven bench-
mark functions against the star, ring, von Neumann, and H-
PSO topologies. Compared to H-PSO, it was able to find
solutions of similar fitness and reached the global optimum
in similar, if not less, time. Compared to the star, ring, and
von Neumann topology, it was able to find solutions of better
fitness and reached the global optimum in less time. Based
on these results, we found that the tournament topology was
able to achieve the fast convergence of high-connectivity
topologies while also achieving the high quality solutions
of low-connectivity topologies, maintaining balance between
exploration and exploitation.

The topology presented in this paper used a rudimentary
method for constructing the tournament tree. In particular,
further research should be done to investigate the impact of
more balanced tree designs into the topology.

In addition, similar to the adaptive variant of H-PSO, further
research will investigate an adaptive version of the tournament
topology, such as changing the value of the branching factor
over the course of the run. In the adaptive variant of H-PSO,
adapting an existing tree to the new branching factor would be
expensive. Since the tree in the tournament topology is filled in
a bottom-up manner for each tournament, however, changing
the branching factor would require no additional time.
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