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Abstract—We propose a factored evolutionary framework for
multi-objective optimization that can incorporate any multi-
objective population based algorithm. Our framework, which is
based on Factored Evolutionary Algorithms, uses overlapping
subpopulations to increase exploration of the objective space;
however, it also allows for the creation of distinct subpopula-
tions as in co-operative co-evolutionary algorithms (CCEA). We
apply the framework with the Non-Dominated Sorting Genetic
Algorithm-II (NSGA-II), resulting in Factored NSGA-II. We com-
pare NSGA-II, CC-NSGA-II, and F-NSGA-II on two different
versions of the multi-objective knapsack problem. The first is
the classic binary multi-knapsack implementation introduced
by Zitzler and Thiele, where the number of objectives equals
the number of knapsacks. The second uses a single knapsack
where, aside from maximizing profit and minimizing weight, an
additional objective tries to minimize the difference in weight
of the items in the knapsack, creating a balanced knapsack. We
further extend this version to minimize volume and balance the
volume. The proposed 3-to-5 objective balanced single knapsack
problem poses a difficult problem for multi-objective algorithms.
Our results indicate that the non-dominated solutions found by
F-NSGA-II tend to cover more of the Pareto front and have a
larger hypervolume.

Index Terms—multi-objective combinatorial optimization, co-
operative coevolution, non-dominated sorting genetic algorithm,
multi-objective knapsack

I. INTRODUCTION

AS multi-objective optimization (MOO) is becoming more
prevalent in real world applications, the need for an

adaptable approach to solve such problems becomes more
apparent. Numerous approaches to solve MOO problems have
been proposed, ranging from combinatorial optimization to
engineering specific approaches [1], [2], [3]. However, as with
many optimization problems, there is no one “best” solution to
approach MOO [4]. But there is a general tendency in MOO
research to use population-based approaches, generally termed
multi-objective evolutionary algorithms (MOEA’s). Surveys
and comparative studies indicate that different MOEA’s pro-
vide different benefits, but they also find that there is in-
creasing difficulty in exploring the entire objective space as
the number of objectives increases [5]. Reference-based ap-
proaches address this problem by guiding the algorithm in the
search space using either automatically generated and evenly
spread reference points/vectors, or based on user preference
or prior knowledge of the problem [5].

We propose an approach to increase exploration of the
objective space that can be used with any MOEA: the
Multi-Objective Factored Evolutionary Algorithm (MOFEA).
MOFEA is a framework that divides the population into
subpopulations with overlapping variables; it uses the chosen
MOEA to optimize the subpopulations and combines the
resulting sets of non-dominated solutions through competition
and sharing. MOFEA is an extension of the FEA framework
introduced by Strasser et al. [6]. Furthermore, the use of sub-
populations lends itself to parallelization and can thus be used
to reduce computation time, which is desirable when dealing
with large-scale MOO problems.

A popular benchmark problem that relates to many real
world applications is the Multi-Objective 0-1 Knapsack (MO-
KS) problem [7]. This problem was proposed as a bench-
mark for testing multi-objective combinatorial optimization
(MOCO) algorithms. It makes for a good benchmark since it
is easily altered in terms of number of objectives, constraints,
and variables. However, increasing the number of knapsacks
does not necessarily relate to real-world application [8]. To
this end, a different multi-objective knapsack problem exists
that uses a single knapsack but minimizes the difference in
resources (e.g. weight) in the knapsack, creating a balanced
knapsack [9].

In this paper, we utilize the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [10] as the underlying optimizer in
the proposed MOFEA framework. NSGA-II is a popular
method that has been shown to work well on problems with up
to 3 objectives but starts declining in performance when the
objectives increase further. The same authors then proposed
NSGA-III, which uses the aforementioned reference directions
to increase performance [11]. Carvalho and Britto found that
the chosen reference points can positively or negatively impact
the results found by NSGA-III, indicating that an automatically
initialized set of reference directions may not be a desirable
approach [12]. Furthermore, since we are initializing our
problem instances randomly, we have no knowledge on where
to place reference points on the hyperplane. Because of this,
and in order to more clearly show the benefit of the MOFEA
framework, we decided to use NSGA-II instead of NSGA-III
in our experiments. Another popular technique that can be ap-
plied using many different population-based algorithms is the
class of co-operative co-evolutionary algorithms (CCEA) [13].



CCEA creates disjoint subpopulations instead of overlapping
ones and is the inspiration for the original FEA framework.
Since CCEA’s are also popular for solving MOO problems
[13], we include a version of CCEA using NSGA-II in our
experiments as well.

In the next section we give background information on
multi-objective optimization, NSGA-II, and CCEA. Then, we
cover relevant related work before providing details on the
proposed MOFEA framework. In our experimental approach
we include hypotheses, implementation details, chosen hyper-
parameter settings, and chosen evaluation metrics. Section VI
presents and discusses the results of the experiments. Finally,
we present our conclusions and directions for future work.

II. MULTI-OBJECTIVE OPTIMIZATION

Multi-Objective Optimization (MOO) is the process of opti-
mizing more than one objective simultaneously [14]. Formally,
without loss of generality, assume we wish to minimize k
objectives. Then MOO consists of solving

x∗ = argmin
x∈X

f(x)

where
f(x) = {f1(x), f2(x), . . . , fk(x)}

with k ≥ 2 conflicting objective functions fi : Rn → R,
and fi ∈ F k where F k represents the objective space.
Furthermore, x = [x1, x2, . . . , xn]

⊤ denotes an instantiation
of the decision variables, where X ∈ Rn is the solution space,
and x ∈ X .

One common approach to solving MOO problems is to
transform the k objectives into a single objective, enabling the
application of single-objective methods. For example, if one
of the objectives is known to be more important, an algorithm
can simply optimize said objective. However, there are often
competing objectives that hold similar importance. This leads
to the following transformative approaches: aggregating the
objectives using a weighted sum, or converting all objectives
except one into constraints, where each transformed objective
fi is constrained by the worst value ϵi it is allowed to take.
The latter is known as the ϵ-constraint method.

A lot of work in MOO focuses on continuous optimization;
however, in this paper, we focus on a combinatorial opti-
mization problem. This specific type of MOO is known as
Multi-Objective Combinatorial Optimization (MOCO), which
is interesting given many single-objective combinatorial op-
timization problems have been proven to be NP-hard [15].
Many different approaches have been proposed to address
MOCO; some of which propose exact methods to solve two
objective problems. However, such exact methods cannot be
generalized to solve different problems or to handle more
than two objectives. In order to solve problems in a more
general manner, meta-heuristic algorithms have become a
widespread approach with promising results [1]. There are
two general classes of meta-heuristic approaches applied to
MOCO: local search in the objective space and population-
based search [16]. There are also many approaches that have

been adapted to work for specific combinatorial problems but
are not applicable to MOCO in general [17], [18].

A. Pareto Optimality

Pareto-based approaches have become the norm in multi-
objective optimization where a set of optimal solutions is
returned rather than attempting to find a single solution [19],
[20]. Such approaches try to find Pareto non-dominated solu-
tions, where Pareto dominance is defined as follows:

Definition 1: A point x∗ ∈ X is Pareto-optimal (or Pareto-
dominant) if ∀fi ∈ f ,∀x ∈ X ,x ̸= x∗, fi(x

∗) ≤ fi(x), and
∃fj ∈ f , fj(x

∗) < fj(x).
The implication of this definition is that, when improving

an objective component of an “optimal” solution, at least one
other component will be degraded.

This leads to the creation of a Pareto optimal set and Pareto
optimal front:

Definition 2: The Pareto optimal set (PS∗) is the set of
non-dominated solutions with respect to the solution space X .

Definition 3: The Pareto optimal front (PF∗) is the set of
points mapped from the Pareto optimal set onto the objective
space F k to form the boundary of the set of non-dominated
solutions.

MOO-focused algorithms that use Pareto techniques try to
find the Pareto optimal front, where the resulting Pareto front
is called the approximate Pareto front.

B. Non-Dominated Sorting Genetic Algorithm-II

NSGA-II is one of the most popular Pareto-based algorithms
in MOO and has been applied successfully to many com-
mon MOCO problems, e.g., travelling salesperson, knapsack,
vehicle routing, and job shop scheduling [20]. NSGA was
introduced by Srinivas et al. in 1994 [21], and improved
in 2002 by Deb et al. to create NSGA-II [10]. NSGA-II
is an elitist GA that finds Pareto non-dominated solutions
and uses a crowding distance measure to maintain diversity
in the next generation. Figure 1 shows how a population is
sorted to perform selection for the next generation. The parent
population Pt and the offspring population Qt are combined
into one population Rt = Pt ∪ Qt. Rt is sorted based on
the non-domination principle, and individuals are assigned to
different non-domination sets based on how good the solution
is. If an entire set of non-dominated solutions is larger than the
remaining slots for the next population, a second elimination
is performed for that set based on crowding distance. The
crowding distance measure is based on the cardinality of the
solution set and its distance to the solution boundary.

C. Co-operative Co-Evolutionary MOO Algorithms

Cooperative co-evolutionary algorithms divide the popula-
tion into subpopulations; these subpopulations represent a part
of the solution, and are optimized separately from one another
before being joined together again to represent the full solution
[22]. However, subpopulations can also be defined to represent
a single objective, thus optimizing each subpopulation along
the separate objectives. The combination of CCEA’s and



Fig. 1: NSGA-II selection procedure [10].

MOEA’s is called co-operative co-evolutionary multi-objective
optimisation algorithms (CCMOOA) [23]. The first combina-
tion of the Multi-Objective Genetic Algorithm (MOGA) [24]
and CCEA [22] was presented by Keerativuttitumrong et al.
[25]. They found that a co-operative approach can have ben-
eficial results for finding a well spread out Pareto front when
compared to the single population MOGA. This finding was
confirmed in a follow-up study, where CCEA was applied to
four different base algorithms (MOGA, NSGA-II, a controlled
elitist NSGA, and a niched Pareto genetic algorithm), and
compared to their single population alternatives [23].

III. RELATED WORK

Several papers have been published that describe novel
meta-heuristic approaches that aim to solve the Multi-
Objective Knapsack problem. We focus our discussion on
papers published in recent years, paying special attention
to papers using a co-evolutionary approach. Zouache et al.
propose a novel “cooperative” swarm intelligence algorithm
for MOO; however, the term “cooperative” here does not
refer to CCEA, but to the combination of the firefly algorithm
with particle swarm optimization (MOFPA) [26]. They apply
their approach to a knapsack with 250, 500, and 750 items,
optimizing 2,3, and 4 objectives, resulting in 3×3 = 9 different
knapsack problems. Their results indicate that their proposed
hybrid algorithm performs better in terms of coverage on all
instances of the knapsack problem studied when compared
to NSGA-II, MOEA/D, and SPEA-II. However, the inverse
generational distance metric, which compares the found Pareto
front to the known optimal Pareto front, is not significantly
different across any of the algorithms.

Mansour et al. split the population into subpopulations that
are optimized in parallel using different configurations of their
cooperative multi-objective local search algorithm based on
weighted epsilon (Wϵ-CMOLS) [27]. They apply Wϵ-CMOLS
to the 250 and 500 item knapsack with 2,3 and 4 objectives
and compare it to NSGA-II, SPEA-II, Indicator Based Local
Search Algorithm, Indicator Based Evolutionary Algorithm,
and Pareto Local Search-Ant Colony Optimization. They find
that their parallellization technique increases computational
efficiency without strongly affecting the hypervolume results.

In an adjustment of the NSGA-III approach, Sahinkoc
and Bilke use a fixed hyperplane and use subpopulations to
evolve along the different objectives [28]. The fixed hyper-
plane is introduced to address the problem of the evenly
spread reference points guiding the solutions in the wrong
direction. To accomplish this, an optimal solution for each
single objective is calculated and used as the fixed edge points
of the hyperplane. They evaluate their method on the many-
objective knapsack, solving a 500 item knapsack problem with
6, 8, 10, 15, 20, and 30 objectives. They find that including a
fixed hyperplane significantly improves results for all NSGA-
III implementations. The co-operative approach evolving along
the different objectives improves the results further, and their
proposed algorithm has the best performance on instances with
a large number of objectives.

So far, the discussed literature all uses the Knapsack im-
plementation as proposed by Zitzler and Thiele [7]. To the
authors’ knowledge, only one paper has explored the load
balancing knapsack implementation. Specifically, Luo et al.
propose a Pareto evolutionary algorithm based on Incremen-
tal Learning (PEAIL) and use the load balancing knapsack
problem for their test case [8]. Incremental learning is an
online learning technique that extracts historical information
on the search behavior and feeds this information back to
the evolutionary framework. Their algorithm also includes a
competitive aspect between two of the three populations that
are generated at different stages of the algorithm to improve
convergence. The authors compare their algorithm to NSGA-
II and find that PEAIL outperforms NSGA-II in terms of
diversity, convergence, and dominance.

IV. MULTI-OBJECTIVE FACTORED EVOLUTIONARY
ALGORITHMS

Classic CCEA only creates subpopulations that have dis-
joint variables, i.e., there is no variable overlap between
subpopulations. Strasser et al. proposed including overlap in
subpopulations to create the Factored Evolutionary Algorithm
(FEA), which has been shown to perform well on single-
objective combinatorial optimization problems, such as NK-
landscapes [6] and Bayesian network abductive inference [29].
Due to the overlap, FEA actually combines principles from
both cooperative and competitive co-evolution by having sub-
populations compete for representation of a decision variable
and sharing discovered global solutions, where the term global
solution refers to the full solution representing all decision
variables.

We apply the concept of FEA to MOO by changing the
compete and share steps of FEA to allow for tracking of
a Pareto non-dominated population. We believe that using
overlapping subpopulations will improve exploration by main-
taining diversity: if a single decision variable is represented
by two subpopulations, each population is able to explore a
different part of the space that the decision variable is a part
of, where the direction of search is only influenced by the
other decision variables in the subpopulation. Furthermore,
just as the original FEA allows using any population-based



method, our adjustment of FEA allows the use of any MOEA;
we denote this generalized algorithm MOFEA and show the
pseudocode in Algorithm 1.

Since we are trying to build an approximate Pareto front,
MOFEA keeps a set of global solutions as well as an archive
of all non-dominated solutions. Initially, each subpopulation
is assigned the same global solution to evaluate the total
fitness of its individuals; however, as the algorithm proceeds,
a random global solution out of the solution set is chosen for
each subpopulation. Each subpopulation is optimized using
an MOEA of choice, which returns a set of non-dominated
solutions N ′′. During the “Compete” step (lines 5–17), over-
lapping subpopulations use the non-dominated solution in N ′′

with the best solution according to the criteria of the chosen
MOEA, in the case of NSGA-II this is the non-dominated
sorting principle, to represent the current decision variable
(called ”select best”). Each potential solution for every deci-
sion variable is then saved in a temporary solution set N ′. The
original chosen solution is also added to the temporary solution
set. Once each variable and its representative populations have
been examined, N ′ is evaluated to identify non-dominated
solutions, which form the new set of global solutions and are
added to the non-dominated archive. The new global solution
set is then used to assign a global solution X randomly
for each subpopulation, where the worst solution, according
to the selection procedure of the implemented MOEA, in
the subpopulation is replaced by X , completing the “Share”
step (lines 19–22). This is one iteration of MOFEA. The
algorithm repeats until a stopping criterion is met, for example
a set number of iterations or the lack of change in the non-
dominated solution set size or any other indicator.

V. EXPERIMENTAL APPROACH

A. Hypothesis

When comparing F-NSGA-II to the other algorithms studied
on the Multi-Objective Knapsack problems, we hypothesize
the folowing:

1) Using overlapping subpopulations in MOFEA will im-
prove the hypervolume of the approximate Pareto front.

2) Using overlapping subpopulations in MOFEA will im-
prove the spread of the approximate Pareto front.

3) That the non-dominated solution(s) found by MOFEA
will contribute a larger percentage of non-dominated so-
lutions to the combined Pareto front of all 5 algorithms’
solution sets.

B. Multi-Objective Knapsack Problem

The classic Multi Objective Knapsack problem is defined
as follows [30]:

max

D∑
j=1

aijxj , i = 1, 2, . . . ,M

s.t.

D∑
j=1

bkjxj ≤ ck, k = 1, 2, . . . , C

Algorithm 1: Multi-Objective Factored Evolutionary
Algorithm

input : number of variables m, population size n,
MOEA iterations it, number of objectives k,
objective functions F ← {f0, . . . , fk}

initialize: individual X ← {x0, . . . , xm};xi ∈ F ,
global solution set X← {X},
subpopulations ← {sj ⊂ X},
non-dominated archive N ← {}

1 while N has not converged do
2 for each sj ∈ subpopulations do
3 N ′′

sj ← MOEA(s, n, it, X , F )
4 end
5 N ′ ← {}
6 for each variable xi do
7 X ← random(X)
8 for each sj where xi ∈ sj do
9 n′′ ← select bestcriteria(N ′′

sj )
10 N ′ ← N ′ ∪ n′′

11 X(i)← n′′
i

12 N ′ ← N ′ ∪X
13 end
14 end
15 N ′ ← non-dominated(N ′)
16 X← N ′

17 N ← N ∪N ′

18 for each sj ∈ subpopulations do
19 X ← random(X)
20 sj(X)← X
21 select worstcriteria({p0, . . . , pm} ∈ sj)← X
22 end
23 N ← non-dominated(N )
24 end
25 return N

xj ∈ {0, 1}, j = 1, 2, . . . , D

where x is a D-dimensional binary vector, M is the number
of objectives, and C is the number of constraints. Specific
to this problem, bij represents the weight of item j inside
knapsack i, aij is the profit of item j inside knapsack i,
and ci is the capacity of knapsack i. This means that the
multi-objective part of the problem is defined as having M
knapsacks across which D items need to be split according
to capacity constraints and value. The constraint value of the
weights is set by calculating the total weight for that constraint
set and dividing it by 2, as per the original problem proposed
by Zitzler and Thiele [7].

We also implemented another type of multi-objective knap-
sack based on the problem defined by Fortin et al. [9].
This problem tries to maximize value, minimize weight, and
minimize the difference in weight of the items in a single
knapsack, while including constraints placed on the volume
and weight of the knapsack using the same method as the
multi-knapsack constraint problem. An additional objective to



balance the weights is defined as follows:

min

D∑
j,k=1,j ̸=k

|bjxj − bkxk|.

The authors call this type of multi-objective knapsack a
balanced knapsack. To add two more objectives, we extended
this problem to minimize the overall volume vj of the items
in the knapsack and minimize the difference in volume.

In our experiments, we used a 1000 item knapsack to
test the algorithms’ performance at a larger scale. For the
balanced knapsack, we look at the 3 base objectives (value,
weight, and volume) and the extended 5 objective version
(balanced weights and volume). The original MO-KS uses
fully randomized initialization of the values and weights for
all knapsacks and constraints [7]. Therefore, we applied the
same approach and initialized the values, weights, and volume
randomly as follows: ai = [0.1, 100], bi = [0.1, 5], and
vi = [0.1, 10]. For the classic knapsack problem, we initialized
different sets of values and weights based on the number of
objectives and constraints, using the same values as above. For
this problem, we considered 3 and 5 objectives with a single
weight constraint ck.

C. Hyperparameter Tuning

We performed a grid search to tune NSGA-II using the
following parameter values:

• Algorithm runs: 50, 100, 200, 500
• Population size: 250, 500, 750, 1000
• Mutation rate: 0.10, 0.15, 0.20, 0.25
• Crossover rate: 0.85, 0.90, 0.95, 0.98

Based on this grid search, we found that running NSGA-II
100 times with a population of 500 was the best combination.
For the GA operators, we used tournament selection with
k = 5 to select the parents, a mutation rate of 0.2 using
bitflip mutation and a crossover rate of 0.95 with single-point
crossover. The found hyperparameters for NSGA-II were used
in the FEA and CCEA implementations of NSGA-II as well.
Furthermore, the FEA and CCEA implementations were run
for 20 iterations, with two different sizes of subpopulations:
100 and 200, and a 20% overlap for F-NSGA-II, i.e. 20
variables and 40 variables overlap for each subpopulation of
size 100 and 200 respectively. The results for each of these
runs are discussed.

D. Evaluation Metrics

The hypervolume indicator (HV ) is one of the most com-
monly used evaluation metrics in MOO [31]. Its popularity
is partially because the only information needed to calculate
the HV of a Pareto Front approximation is a reference point.
This is in contrast to measures such as Generational Distance,
which requires the true Pareto Front to be known. Since we
do not know the true Pareto Front for our problems, the HV
is a natural choice to gain insight in the size of the covered
objective space [32].

Given k objectives, a set of points X ∈ Rk, and a reference
point r ∈ Rk, the HV of X is the measure of the region
weakly dominated by X and bound by r [33]:

HV (X) = λ({q ∈ Rd|∃x ∈ X : p ≺ q ∧ q ≺ r}),

where λ indicates the Lebesgue measure for k-dimensional set
T for a,b ∈ T .

λ(T ) =

k∑
i=0

(bi − ai).

To assess the diversity of the Pareto Front approximations,
we use the spread indicator S [34]:

S =

k∑
i=1

[
max
x∈X
{fi(x)} −min

x∈X
{fi(x)}

]
.

Thus S corresponds to the sum of the width for each objec-
tive, indicating how wide the solutions are spread across the
objective space, i.e., a measure of distance instead of volume.

Finally, to compare two Pareto fronts generated by different
algorithms directly, we calculate the coverage C of the fronts,
denoted as X′ and X′′ [35]:

C(X′,X′′) =
|{x′ ∈ X′ : ∃x′′ ∈ X′′ : x′′ ⪯ x′}|

|X′|
.

This returns a value between 0 and 1, where 0 indicates that no
solutions in X′ are dominated by or equal to any solutions in
X′′, and 1 indicating that all solutions in X′ are dominated by
X′′ . Since the reverse is not a symmetric measure, the metric
is calculated and presented for both combinations: C(X′,X′′)
and C(X′′,X′). We further adjust this metric to find relative
coverage of the non-dominated sets as compared to the total
non-dominated set. The total non-dominated set, or union
front X∗, is created by combining the results from the set
of algorithms g as

X∗ = nondom

(
g⋃

i=1

X′
i

)
.

X∗ can then be used to calculate what percentage of each base
non-dominated set is included in X∗: C(X′,X∗). To calculate
what percent of X∗ consists of solutions from X′

i, denoted Cp,
we adjust the coverage calculation as follows:

Cp(X
′,X∗) =

|{x′ ∈ X′ : ∃x∗ ∈ X∗ : x∗ ⪯ x′}|
|X∗|

VI. RESULTS

We ran each algorithm ten times on each of the problem sets
and averaged the hypervolume and spread indicator results,
as well as the size of the non-dominated population, of
those ten runs to get the final metrics shown in Tables I,
II and III. Furthermore, we performed an ANOVA test with
α = 5%, followed by a paired t-test with p = 0.05 to assert
statistical significance of the results. CC-NSGA-II results are
not found to be significantly different from each other in
the majority of cases, with the exception of the 3 objective



TABLE I: Hypervolume results. Underlined results indicate
statistically significant results.

single knapsack multi knapsack
pop. 3 obj. 5 obj. 3 obj. 5 obj.

NSGAII 500 12.18 12.01 20.99 34.16

CC-NSGAII 100 12.24 10.87 17.30 28.76
200 9.42 10.40 15.99 28.31

F-NSGAII 100 12.28 11.92 23.09 39.63
200 12.22 11.97 22.72 38.56

TABLE II: Spread indicator results. Underlined results indicate
statistically significant results.

balanced knapsack multi knapsack
pop. 3 obj. 5 obj. 3 obj. 5 obj.

NSGAII 500 38.03 38.24 29.55 32.09

CC-NSGAII 100 13.39 8.15 5.89 7.09
200 5.77 8.58 4.34 6.76

F-NSGAII 100 31.34 24.18 15.34 16.91
200 33.32 30.80 10.39 10.76

TABLE III: Size of the non-dominated solution sets.
balanced knapsack multi knapsack

pop. 3 obj. 5 obj. 3 obj. 5 obj.
NSGA 500 166 519 16 38

CC-NSGA 100 482 521 21 61
200 156 476 28 53

F-NSGA 100 642 1334 8 14
200 698 1383 5 9

TABLE IV: Total front coverage results.

balanced knapsack multi knapsack
pop. 3 obj. 5 obj. 3 obj. 5 obj.

NSGAII 500 0.64% 14.28% 0.00% 0.00%

CC-NSGAII 100 42.69% 16.90% 0.00% 0.00%
200 0.00% 11.70% 0.00% 0.00%

F-NSGAII 100 12.20% 32.85% 100.00% 98.67%
200 44.47% 24.26% 0.00% 1.13%

single knapsack problem. The opposite is true for F-NSGA-
II results, which are significantly different from each other
and the results of the other algorithms in most cases. Lastly,
fewer statistically significant differences are found between
the different hypervolume results, whereas the spread indicator
results are largely statistically significant.

To examine the coverage between different solution sets, we
randomly pick a single representative run of each algorithm
to perform the coverage calculation. To ensure the results
are not biased, we perform this process 5 times and average
the coverage comparisons for the final results. We present
two different coverage results as explained in Section V-D.
The total coverage (Table IV) represents the percentage of
non-dominated solutions each algorithm contributed to the
combined non-dominated solution set. Tables V–VIII show
a direct comparison between the algorithms’ non-dominated
solution sets, where the row algorithm’s solution set covers
x% of the column algorithm’s solution set.

Finally, we visualize the 3-objective versions of the balanced
knapsack and the multi knapsack problems in Figure 2. Each
of these figures shows the final non-dominated population of

TABLE V: Single balanced knapsack 3 objectives coverage
results

NSGAII CC-NSGAII F-NSGAII
pop. 500 100 200 100 200

NSGAII 500 N/A 83.50% 97.21% 28.14% 10.5%

CC-NSGAII 100 100.00% N/A 100.00% 97.85% 98.24%
200 25.56% 24.92% N/A 31.55% 5.03%

F-NSGAII 100 85.50% 81.47% 96.12% N/A 35.86%
200 95.76% 78.27% 99.47% 87.02% N/A

TABLE VI: Single balanced knapsack 5 objectives coverage
results

NSGAII CC-NSGAII F-NSGAII
pop. 500 100 200 100 200

NSGAII 500 N/A 99.25% 99.51% 96.45% 76.19%

CC-NSGAII 100 76.24% N/A 99.02% 95.76% 96.90%
200 64.72% 96.14% N/A 73.48% 90.41%

F-NSGAII 100 65.06% 98.82% 94.69% N/A 64.42%
200 56.22% 100.00% 100.00% 73.29% N/A

TABLE VII: Multi knapsack 3 objectives coverage results
NSGAII CC-NSGAII F-NSGAII

pop. 500 100 200 100 200
NSGAII 500 N/A 100.00% 100.00% 0.00% 0.00%

CC-NSGAII 100 0.00% N/A 59.57% 0.00% 0.00%
200 0.00% 100.00% N/A 0.00% 0.00%

F-NSGAII 100 100.00% 100.00% 100.00% N/A 100.00%
200 100.00% 100.00% 100.00% 0.00% N/A

TABLE VIII: Multi knapsack 5 objectives coverage results
NSGAII CC-NSGAII F-NSGAII

pop. 500 100 200 100 200
NSGAII 500 N/A 100.00% 100.00% 0.00% 1.87%

CC-NSGAII 100 9.40% N/A 80% 0.00% 0.00%
200 0.00% 80.00% N/A 0.00% 0.00%

F-NSGAII 100 100.00% 100.00% 100.00% N/A 100.00%
200 100.00% 100.00% 100.00% 2.50% N/A

a randomly selected run of each of the algorithms, where the
x-axis for the single balanced knapsack and the x, y, and
z-axes for the multi knapsack show negative values due to
the transformation of the knapsack profit maximization to a
minimization problem.

VII. DISCUSSION

Our first hypothesis relating to the hypervolume results
can only be confirmed for three of the four problems: the
3-objective balanced knapsack problem and the 3- and 5-
objective multi-knapsack problems. No statistically significant
differences were found for the 5-objective single knapsack
problem. When looking at the spread indicator results, how-
ever, we do find statistically significant differences for all
four problems. Since single-population NSGA-II has a higher
spread indicator for each of them, we cannot confirm our
second hypothesis. However, when we look at our coverage
results, F-NSGA-II contributes a larger percentage to each
problem’s combined Pareto front, which confirms our third
hypothesis. Based on these results, the spread indicator may
have little influence on the quality of the solution set. It is
important to note that this is only based on an observed lack
of correlation between coverage and spread. These results are
by no means conclusive, but warrant further investigation.

A visual inspection of Figure 2a shows that both instances
of F-NSGA-II and the 100-population instance of CC-NSGA-
II cover more of the space than regular NSGA-II. Taking into



(a) Single balanced knapsack with three objectives.

(b) Classic multi knapsack problem with three objectives.

Fig. 2: Visual representation of the non-dominated population
found by each of the algorithms for the three objective versions
of the two types of knapsack problems.

consideration that for this problem instance CC-NSGA-II-100
and F-NSGA-II-200 have the highest contribution to the total
non-dominated solution set, the visual representation makes
sense. CC-NSGA-II-100 is finding solutions in a different part
of the space than the other algorithms, but its solutions are not
as widely spread across the solutions space, whereas F-NSGA-
II has a significantly larger spread than CC-NSGA (Tables I
and II), potentially accounting for its large contributions to the
total non-dominated solution set. However, NSGA-II has the
largest spread indicator while contributing less than 1% of the
non-dominated solutions to the total front (Table IV).

Figure 2b shows a different story. With the exception of
the two CC-NSGA-II instances, each of the discovered non-
dominated solutions is in a different part of the objective
space. When looking at Tables IV and VII, the non-dominated
solutions discovered by F-NSGA-II with subpopulation size
100 covers all other algorithms’ non-dominated solutions. The
F-NSGA-II-100 solutions are represented by the green star
shaped cluster at the very bottom corner of the image. Since

each objective is to be minimized, it makes sense that these
solutions, which have converged at the lowest values of the
three knapsacks, are dominating the other solutions. This is
especially interesting given that the average number of non-
dominated solutions found by F-NSGA-II for this problem is
smaller than the other algorithms (Table III).

When considering the 5-dimensional problems, F-NSGA-
II with subpopulation size 100 once again contributes the
largest percentage to the total Pareto front for both problems.
Interestingly, NSGA-II’s results improve for the 5-objective
single knapsack, contrary to the general trend found in the
literature, where NSGA-II’s performance is often found to
deteriorate as objectives increase. When looking at the direct
coverage comparison for this problem (Table VI), NSGA-II
covers large percentages of the solutions found by the four
other algorithms; however, it is only contributing 14.28% to
the total front. The larger contribution to the total Pareto front
by F-NSGA-II could be explained by the larger number of
non-dominated solutions found by the algorithm as compared
to NSGA-II (Table III).

The last problem we evaluated was the 5-dimensional multi
knapsack. Similar to its 3-objective counter part, the coverage
results for this problem are very binary. The F-NSGA-II with a
subpopulation size of 100 is the main contributor to the total
Pareto front, and when looking at the pairwise comparison,
both F-NSGA-II solution sets cover the three other algorithms’
solution sets. Another interesting result is that CC-NSGA-
II does poorly on both multi-knapsack problems, in that its
results are not only 100% covered by F-NSGA-II, but by single
population NSGA-II as well.

Overall, both instances of F-NSGA-II do well on all four
benchmark problems, indicating that using overlapping sub-
populations is beneficial for multi-objective optimization. The
use of a smaller subpopulation size in F-NSGA-II seems
especially beneficial for finding non-dominated solutions.

VIII. CONCLUSION

We developed and presented a cooperative co-evolutionary
framework for solving multi-objective combinatorial optimiza-
tion problems that divides the population in subpopulations,
which can be distinct or overlapping, and allows usage of
any population-based multi-objective algorithm as the base
algorithm. We applied our approach to two different imple-
mentations of the multi-objective knapsack problem: the multi-
knapsack problem, where the number of objectives equals the
number of knapsacks [7], and the balanced single knapsack
problem [9]. We compared overlapping and distinct subpopu-
lations of different sizes as applied to NSGA-II, as well the
single population version of NSGA-II.

Our results indicate that using the MOFEA framework
improves NSGA-II’s results: F-NSGA-II has the best coverage
results on all four solution sets. Furthermore, while the hy-
pervolume results are comparable between the five algorithm
implementations, F-NSGA-II does hold a small edge over the
other results. On the other hand, the spread found by NSGA-
II is generally wider than that found by the other algorithms.



Given the hypervolume and coverage results, this raises the
question whether the spread indicator is an appropriate metric
for multi-objective optimization.

IX. FUTURE WORK

Our future plans include the implementation of different
MOEA’s in combination with the FEA framework, such as
the Strength Pareto Evolutionary Algorithm 2 [36], Non-
Dominated Genetic Algorithm III [11], Multi-Objective Evo-
lutionary Algorithm based on Decomposition [37], and the
Hypervolume Estimation Algorithm [38]. We also plan to
investigate the mechanisms by which using overlapping sub-
populations provides benefit in combination with different al-
gorithms, as well as explore how different problems affect the
design of the associated factor architectures. This paper only
considered static, pre-defined factor architectures. However,
the decomposition strategy could influence the results, which is
why performing an in-depth study of different decomposition
techniques could provide better insight into how the factor
architecture used in MOFEA affects MOO problems.
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