
Evolving Intertask Mappings for Transfer in
Reinforcement Learning

Minh Hua
Department of Computer Science

The Johns Hopkins University
Baltimore, MD
mhua2@jhu.edu

John W. Sheppard
Gianforte School of Computing

Montana State University
Bozeman, MT

john.sheppard@montana.edu

Abstract—Recently, there has been a focus on using transfer
learning to reduce the sample complexity in reinforcement
learning. One component that enables transfer is an intertask
mapping that relates a pair of tasks. Automatic methods attempt
to learn task relationships either by evaluating all possible
mappings in a brute force manner, or by using techniques such
as neural networks to represent the mapping. However, brute
force methods do not scale well in problems since there is
an exponential number of possible mappings, and automatic
methods that use complex representations generate mappings
that are not always interpretable. In this paper, we describe
a population-based algorithm that generates intertask mappings
in a tractable amount of time. The idea is to use an explicit
representation of an intertask mapping, and to combine an
evolutionary algorithm with an offline evaluation scheme to
search for the optimal mapping. Experiments on two transfer
learning problems show that our approach is capable of finding
highly-fit mappings and searching a space that is infeasible for a
brute force approach. Furthermore, agents that learn using the
mappings found by our approach are able to reach a performance
target faster than agents that learn without transfer.

I. INTRODUCTION

In reinforcement learning (RL), an agent explores an en-
vironment through trial and error to learn a sequence of
actions that maximize a reward function [1]. Spurred by recent
advances in computing capability and deep learning perfor-
mance, contemporary RL approaches learn robust function
approximators using deep neural networks to solve a variety
of challenging tasks such as game playing and robotic control.
Despite these successes, RL agents still face difficulties when
they begin learning tabula rasa. Specifically, agents must
spend a considerable amount of time exploring the environ-
ment in practical problems where the environment dynamics
are unknown. Furthermore, complex environments with partial
observability, complex state and action spaces, or sparse
feedback complicate an agent’s ability to collect a sufficient
number of learning samples. Also, sample complexity must
be minimized in domains where there is risk associated with
sample collection, such as autonomous vehicles.

A promising approach to addressing the aforementioned
problems is transfer learning (TL), which leverages knowledge
from one or more source domains to facilitate learning in a

target domain [2]. The key insight behind TL is that knowledge
learned in one domain may be usable in a similar domain.
This insight is not novel and has been studied extensively
by psychologists for many years. At a minimum, transferring
knowledge can spur learning in the target domain, and in some
extreme cases, TL might even enable learning tasks that were
otherwise unlearnable. TL has historically achieved success in
supervised learning domains, while its applicability to RL is
still being actively explored [3], [4].

For reinforcement learning, TL is usually done in the
context of a Markov Decision Process (MDP), and approaches
are categorized by their goals with transfer, the assump-
tions they make regarding task similarity, and the types of
knowledge they transfer (e.g., expert experiences, transition
samples, value functions, entire policies, etc.). The source
and target tasks might exhibit differences in the action space,
state variables, transition function, or reward structure. Thus,
to transfer effectively, the agent must learn a relation, or
mapping, between the source task and the target task. Taylor
et al. [5] defined the relation between two tasks as a pair
of intertask mappings, denoted χS (state mapping) and χA

(action mapping), a definition that we adopt.
While TL methods have historically performed well with

mappings provided by a human, there are some limitations to
this approach. For example, there might be insufficient domain
knowledge to define such a mapping, the state and action
spaces might contain an exponential (or even infinite) number
of instances, or the agent might be fully autonomous. In this
paper, we focus on the problem of learning the mapping auto-
matically. Several approaches have been proposed to address
this issue, but as we shall discuss later, more work can be done
to address the learning algorithm’s computational complexity
and the interpretability of the learned mappings.

The main contribution of this paper is a novel population-
based approach to generate explicit intertask mappings (which
directly state the relation between two tasks). We also propose
a simpler variant that uses random-mutation hill-climbing.

II. PROBLEM STATEMENT AND HYPOTHESIS

In addressing the intertask mapping problem, we assume
that each source task and target task is a Markov Decision Pro-
cess (MDP). That said, we treat one of the learning problems,979-8-3503-1458-8/23/$31.00 ©2023 IEEE

Robot Soccer Keepaway, as a semi-Markov Decision Process
(SMDP), where agents apply “macro-actions” that last for sev-
eral time steps. We also assume that the agent can learn a near-
optimal policy in the source task and can collect samples from
both tasks. In addition, we assume that the Euclidean distance
is an appropriate measure for the similarity between states, and
state variables can be scaled so that they are weighted equally.
Finally, we assume that the two MDPs exhibit similar reward
structures. With these assumptions established, we can define
the problem (adapted from [6]) as follows: Given two MDPs
M1 = ⟨S1,A1, T1,R1, γ1⟩ and M2 = ⟨S2,A2, T2,R2, γ2⟩,
where Si,Ai, Ti,Ri, γi correspond to the state space, action
space, transition model, reward function, and discount factor
of the i-th MDP, learn two mappings χS : S2 → S1 and
χA : A2 → A1. Thus we learn mappings from the target to the
source. When necessary, we also work with inverse mappings.

We compare three approaches to learning intertask map-
pings: a genetic algorithm, named Genetic Algorithms for
Mapping Evolution (GAME), a random-mutation hill-climbing
variant of GAME (GAME-RMHC), and a brute force algo-
rithm (MASTER) [7].

We test five hypotheses:
• H1: GAME and GAME-RMHC will find intertask map-

pings with offline evaluation scores that are no worse than
the mappings found by the MASTER, and GAME will
find intertask mappings with offline evaluation scores that
are higher than those found by GAME-RMHC.

• H2: GAME-RMHC will have the lowest computational
complexity, followed by GAME and MASTER as de-
termined by measuring the number of comparisons (a
comparison is counted each time a mapping is compared
against another, or a nontrivial operation is performed
such as mutation or crossover) and fitness evaluations
(FEs) performed before convergence (i.e., the point where
the best fitness does not change).

• H3: an agent that uses an intertask mapping will take less
time learning (measured by training episodes) to attain a
performance threshold in the target task, relative to an
agent that does not use this mapping. Note that, for one
domain, we use simulator hours to measure training time.

• H4: an agent that uses the mapping learned by GAME
will take at most as much time learning to attain a
performance threshold in the target task as an agent that
uses a mapping learned by the MASTER. Conversely, an
agent that uses the mapping produced by GAME-RMHC
will take at least as much time to attain a performance
threshold in the target task as an agent that uses either
the mapping learned by MASTER or GAME.

• H5: the mapping with the highest offline score will reduce
learning time in the target task the most, and vice versa.

III. RELATED WORK

A. Intertask Mappings

Most works focused on intertask mappings assume a single
mapping over the entire state-action space. However, there is

also interest in learning to select between multiple intertask
mappings [8]. Taylor et al. [5] assumed that each action and
state variable in the target task has a unique correspondence
in the source task and used intuition to design the mappings
manually, which were then applied to transfer different types
of knowledge between tasks (e.g., the action-value function).
Similarly, Torrey et al. [9] used an expert-designed mapping
to transform a learned model from one task into advice for
a new task. Furthermore, Taylor et al. [10] utilized intertask
mappings to transfer source task instances to assist model-
based RL algorithms like FITTED R-MAX with model approx-
imation. Observing that a state variable in the target task may
be related to more than one state variable in the source task,
Cheng et al. [11] proposed a mapping that utilizes a linear
combination of related state variables in the source task.

B. Autonomous Learning of Intertask Mappings

Directly related to our research, Mapping Learning via
Classification assumes that state variables can be arranged into
task-independent groupings provided by an expert [12]. Then,
classifiers are trained on subsets of the state variables that
define a particular object. Once trained, these classifiers define
the state and action mappings. Although this approach shows
promise, the need for expert knowledge in the form of state
variable groupings precludes it from being fully autonomous.

In contrast, the Modeling Approximate State Transitions
by Exploiting Regression (MASTER) algorithm enumerates all
possible state and action mappings and evaluates them offline
using a model of the state transition dynamics in the target
task [7]. Samples are collected from the source and target
tasks, and neural networks are trained to predict the successor
state given a state and action pair in the target task. Then,
every possible pair of state and action mappings is used to
transform source samples into target samples. These samples
are then evaluated using the learned transition models, and
the mapping that produced samples that most closely match
the approximated target task transition dynamics is picked as
the best mapping. Although the results were promising, the
authors observed that the algorithm’s exhaustive search scales
exponentially and suggested that a heuristic search is needed.
Our work addresses this issue directly.

Subsequent work employs more advanced methods to rep-
resent the intertask mappings, or learns mappings over spaces
different from the state or action space. Da Silva and Costa
[13] used Object-Oriented MDPs to estimate mappings with-
out the use of classifiers. To address scalability, Ammar et
al. [14] used sparse coding, sparse projection learning, and
sparse Gaussian processes to learn an intertask mapping over
the state transition dynamics. Ammar et al. [15] used restricted
Boltzmann machines to encode intertask mappings. However,
this approach has been criticized for being computationally
expensive. More recent work utilizes feedforward networks
to represent intertask mappings implicitly [16]. Gupta et al.
[17] used encoder-decoder neural networks to learn an agent-
specific feature space that can be used to transfer skills.
However, using a network representation diminishes the in-

terpretability of the intertask mapping. In this paper, we are
motivated to learn intertask mappings that explicitly state the
relation between tasks.

C. Evolutionary Reinforcement Learning

Our proposed approach falls within the purview of Evolu-
tionary Reinforcement Learning (ERL). Moriarty et al. [18]
published a survey on Evolutionary Algorithms for Reinforce-
ment Learning (EARL), a class of algorithms that applies
an evolutionary approach to evolving optimal policies. The
authors summarized several prominent EARL algorithms and
discussed their strengths and limitations. That said, Bishop and
Miikkulainen [19], used an evolutionary algorithm to search
the space of feature subsets to rank features for online RL,
which is much closer to our approach. There has also been
work that applied population-based methods explicitly to TL
in RL, but their focus was on multiagent settings for stock
trading [20]. To the best of our knowledge, our work is the first
to apply evolutionary algorithms to learn intertask mappings.

Due to the representation that we chose for our mappings,
we can treat the learning problem as a combinatorial opti-
mization problem (COP), where the task is to search for a
combination of state and action mappings that maximizes the
offline evaluation score. Our approach uses genetic operators
proposed by Chu [21], which solved four NP-Hard COPs using
a GA-based approach.

IV. APPROACH

A. Problem Domains Studied

The first source task we considered was two-dimensional
Mountain Car (MC2D), where a car travels along the curve
sin(3x) in the range −1.2 ≤ x ≤ 0.6. The state variables are
the car’s horizontal position x and its velocity ẋ. The possible
actions are {Left,Neutral,Right}, which change the
car’s velocity by -0.001, 0, and 0.001, respectively. To simulate
the force of gravity on the car, −0.025(cos(3x)) is added to
ẋ at each time step. The car starts at the bottom of the hill,
and the goal states are locations where x ≥ 0.5.

The corresponding target task we considered was three-
dimensional Mountain Car (MC3D), where the mountain’s
curve is extended to a surface defined by sin(3x) + sin(3y).
We added two state variables corresponding to the po-
sition y and the velocity ẏ. The possible actions are
{Neutral,West,East,South,North}. West and East
modify ẋ by -0.001 and 0.001 respectively, while South and
North modify ẏ by -0.001 and 0.001 respectively. The goal
states are locations with coordinates x ≥ 0.5 and y ≥ 0.5.

An episode in each task terminates when the car reaches
the goal state or if 5,000 steps have been taken. Each step
incurs a reward of −1 except when the car reaches the goal
state, in which case the agent earns a reward of 0. We used the
Mountain Car environment available in OpenAI GYM [22] for
MC2D and implemented our own version of MC3D in GYM.

The second problem domain we considered was Robot
Soccer Keepaway [23]. In Keepaway, a team of keepers must
maintain possession of a ball within a limited region while

another team of takers attempts to steal the ball or force it
out of bounds. Each keeper is controlled by a separate agent
while each taker follows a hand-coded strategy. Each agent is
rewarded for the number of time steps that the ball remains
in play after the agent acts. Each time step lasts for 100ms in
simulation time and the field’s dimensions are 25m × 25m.

The Keepaway state space consists of several variables
that represent the angles and distances between the current
player, their teammates, and the takers. A keeper may only
take an action when it possesses the ball; otherwise, the
keepers run a hand-coded routine to try to get open for
passing. Therefore, the state variables are focused on the
keeper currently possessing the ball, K1, who may hold the
ball or pass it to one of its teammates. The action space is
{Hold, Passi}, where Passi passes the ball to the i-th
nearest teammate. The closest teammate to K1 is K2, and
so on. Similarly, T1 is the closest taker to K1, and so on. C
denotes the center of the field. Besides the state variables that
involve distances between two objects, there are two further
types of state variables: min(dist(Ki, T1), . . . , dist(Ki, Tn))
is the distance from the i-th nearest teammate to the nearest
taker, while min(ang(Ki,K1, T1), . . . , ang(Ki,K1, Tn)) is
the angle of the passing lane between the keeper currently
possessing the ball and the i-th closest teammate.

Our first source task for this domain is 3 vs. 2 Keepaway,
where three keepers play against two takers. There are 13
state variables and three possible actions. More complex
variants add more players, which increases the number of
state variables as well as the number of possible actions. The
corresponding target task we investigate is 4 vs. 3 Keepaway,
which has 19 state variables and four actions. We used Aijun
Bai’s implementation of Keepaway as our testbed.1

B. The GAME Algorithm

Our approach incorporates the intertask mapping definition
and the offline evaluation method proposed by Taylor et al.
[7]. We also define the following notation. Let Ssource =
{ss,1, ss,2, . . . , ss,n} be a set of n state variables in the source
task. Let Starget = {st,1, st,2, . . . , st,m} be a set of m state
variables in the target task. Let Asource = {as,1, as,2, . . . , as,u}
be a set of u actions in the source task. Let Atarget =
{at,1, at,2, . . . , at,v} be a set of v actions in the target task.

The first step in our approach is to create an offline evalu-
ation mechanism for the intertask mappings. We first train an
agent on the source task for p episodes and collect observation
tuples to create a dataset Dsource. Then, we allow an agent
to explore the target task for a small number of episodes
q ≪ p and collect observation tuples to create a dataset Dtarget.
For all sets of tasks, we used a Sarsa(λ) agent with CMAC
tile coding function approximation. After creating Dtarget, we
learn transition models of the target task Tat,i,st,j (s) 7→ s′t,j
using feedforward neural networks, where i = 1, . . . , v and
j = 1, . . . ,m. Each network takes as input a vector of the
current state variables and approximates the effect of one

1https://github.com/aijunbai/keepaway

https://github.com/aijunbai/keepaway

target action (at,i) to predict the next value for one target
state variable (s′t,j). Thus, if the target task has v actions and
m state variables, then we will require v×m neural networks.

After training the networks, we use them to evaluate the
intertask mappings generated by the three algorithms. During
each iteration, we use the inverse of the state and action
mappings currently being evaluated to transform tuples from
Dsource into “mapped tuples,” creating a dataset D′

source. Specif-
ically, D′

source has as its columns the target task’s current and
next state variables and the current action, but the actual values
for the state variables come from the source task and are
populated according to the mapping. An action as ∈ Dsource
becomes an action at ∈ D′

source according to the action map-
ping. Then, for every tuple (s, a, s′) ∈ D′

source, we calculate
the mean squared error (MSE) between the predicted successor
state Tat,i,st,j (s) and the actual successor state s′t,j .

We evaluate three different methods to generate intertask
mappings automatically. First, we evaluate MASTER [7],
which enumerates all possible intertask mappings. MASTER
evaluates nm different state mappings, and for each state
mapping, MASTER evaluates u × v single action mappings
using an offline evaluation scheme similar to the one explained
above. Note that a single action mapping refers to a relation
between one action in the source task and one action in the
target task. A full action mapping (called an action mapping in
this paper), however, refers to a set of v single action mappings
that maps all the actions in the target task. There are u × v
possible single action mappings but uv possible combinations
of single action mappings. Thus, each mapping has u × v
different MSE values, and we score each state mapping using
the average 1− MSE values over all single action mappings.

Our population-based method is called Genetic Algorithm
for Mapping Evolution (GAME) and uses a non-binary ge-
netic algorithm (GA) to evolve a population of intertask
mapping individuals, ρk = {χS,k, χA,k}. A state mapping
χS : Starget → Ssource assigns each st,j ∈ Starget to a
corresponding ss,i ∈ Ssource. Thus, a state mapping is a
list of length |Starget|, where the j-th element corresponds to
the source task state variable mapped to the j-th target task
state variable. An action mapping χA : Atarget → Asource is
defined in a similar fashion. For example, assume that we
order the MC3D state variables and actions as {x, ẋ, y, ẏ}
and {Neutral,West,East,South,North}. Then, a state
mapping χS = {x, ẋ, x, ẋ} maps the state variables x and y
in the target task to the state variable x in the source task
and maps the state variables ẋ and ẏ in the target task to
the state variable ẋ in the source task. Similarly, an action
mapping χA = {Left,Left,Left,Right,Right} maps
the target actions Neutral, West, and East to the source
action Left and maps the target actions South, North to
the source action Right. In this sense, GAME formulates
the problem of learning an intertask mapping as one of
searching for the combination of state and action mappings
that maximizes a fitness value.

The fitness of each individual ρk is defined by its ability to
generate samples that match the approximated target task tran-

sition dynamics. Thus, the aforementioned offline evaluation
scheme is used as the fitness function for GAME. After using
the inverse of χS,k and χA,k to create D′

source and running
the transition networks for prediction, we average the v ×m
individual 1 − MSE values to determine the fitness of the
intertask mapping.

We initialize a population of mappings randomly. Each gene
in a state (action) mapping chromosome is sampled uniformly
from the set of source task state variables (actions). In addition,
we use top-k elitism, a standard generational GA model, and
tournament selection to control the selection pressure.

We evaluated GAME with the one-point and fusion
crossover operators [21]. For each crossover operator, two
individuals may cross their state mappings or action mappings,
but not cross a state mapping with an action mapping. The
fusion crossover operator produces only one offspring where,
at each gene, the offspring inherits the value of the parents’
genes if they are the same. Otherwise, the offspring inherits the
gene from the higher-fitness parent with a higher probability.
We are motivated by the fact that although we are not certain of
the single state mapping that performed the best, the individual
with the higher fitness should have a larger proportion of good
single state mappings. Finally, we use uniform mutation with a
constant mutation rate, where each gene in the state and action
mapping chromosomes has a constant probability of mutating.

We also evaluated a random-mutation hill-climbing variant
of GAME to see if the complexity of our population-based
method is justified. GAME-RMHC uses the same mapping
representation as GAME, but the population contains only one
individual (i.e., it is effectively a (1+1)-evolution strategy). At
each generation, GAME-RMHC randomly mutates one state
mapping and one action mapping to produce one offspring,
which replaces the parent if its fitness is higher.

We employed two transfer learning methods. For Mountain
Car, we used Q-Value Reuse, which modifies the action-value
computation in the target task with CMAC weights from the
source task [7]. Given a target state st, a target action at,
and an intertask mapping ρ = {χS , χA}, the action-value for
the pair (st, at) is computed as Q(st, at) = Qtarget(st, at) +
Qsource(χS(st), χA(at)) where Qtarget uses the CMAC weights
of the MC3D agent and Qsource uses the CMAC weights of the
MC2D agent. For Keepaway, the learned mappings are used
to initialize the CMAC weights of an agent in the target task
with weights from a trained agent in the source task [12]. For
each weight in the source agent, we determine the source state
variable and action that activate that weight. Then, we use the
inverse intertask mapping to look up the corresponding target
CMAC weight that is activated. We then copy the weights from
the source agent to the corresponding weights in the target
agent. Otherwise, the remaining weights in the target agent
are initialized to zero. We randomly select one agent trained
on 3 vs. 2 Keepaway as the source material for transfer.

C. Experimental Design

After the agent explores the target task environment for q
episodes, we generated a dataset Dtarget of transition samples.

We split 20% of Dtarget into a test set and the remaining 80%
into a training set. We then tuned the networks over the entire
training set using grid search with five-fold cross validation.

For each Mountain Car agent, we used Sarsa(λ) and tuned
the learning rate α, trace decay rate λ, discount factor γ,
exploration rate ϵ, and the number of CMAC tilings. For each
parameter setting, we evaluated the agent for 250 episodes.
The best parameters found for the MC3D Sarsa(λ) agent were
α = 0.75, λ = 0.99, γ = 1, ϵ = 0.01, and eight CMAC
tilings. We used these parameter settings for the MC3D agent
without transfer learning, while each transfer learning agent
was re-tuned using the same parameter ranges. Due to time
constraints, we were not able to tune the Keepaway agents.
Recognizing this as a limitation, we consulted the literature
and chose α = 0.1, λ = 0, γ = 1, ϵ = 0.01, and 32 tilings.

For GAME, we tuned the population size, crossover rate,
mutation rate, crossover operator, tournament size, and k in
top-k elitism. We did not tune GAME on Mountain Car
because initial experiments demonstrated that the optimal
state mapping was frequently found during the initialization
process. To run GAME on Mountain Car, we used a population
size of 10, a crossover rate of 0.8, a mutation rate of 0.14,
the fusion crossover operator, a tournament size of 4, and
top-1 elitism. Due to the complexity of Keepaway, we tuned
GAME by running the algorithm with different parameter
combinations for a maximum of 200 FEs. The best parameters
found for GAME on Keepaway were a population size of 100,
a crossover rate of 0.8, a mutation rate of 0.04, the fusion
crossover operator, a tournament size of 10, and top-5 elitism.

To test H1 and H2, we ran MASTER to obtain baseline
results; however, this was only feasible for Mountain Car as
Keepaway would have required us to evaluate 4 × 3 × 1319

intertask mappings. Then, we ran GAME and GAME-RMHC
with the best parameters in 10 independent trials. For each
trial, we ran GAME and GAME-RMHC for 240 FEs on
Mountain Car and 2,000 FEs on Keepaway. We measured each
approach’s complexity through the number of comparisons and
fitness evaluations performed before convergence.

To test H3–H5, we first trained agents in the source tasks
and saved their weights. On MC2D, we trained the source
agent and collected transitions for 100 episodes. For 3 vs. 2
Keepaway, we trained the source agent and collected samples
for four simulator hours. Next, we trained agents without
transfer on the target tasks until a performance threshold was
reached for 30 independent trials. We chose to run 30 trials
based on standard statistical guidance assuming the results
are likely to follow a normal distribution. For MC3D, the
performance threshold was to reach the goal state within
an average of 1,000 steps over 10 episodes. We chose this
threshold because the minimum number of steps required to
solve MC3D usually falls within 1,000 steps. For 4 vs. 3
Keepaway, the performance threshold was the ability to keep
the ball for an average of more than nine seconds over 1,000
episodes. We chose this threshold because it was close to the
best performance achieved within the training budget without
transfer.

TABLE I
AVERAGE NUMBER OF COMPARISONS AND FITNESS EVALUATIONS

MC3D Keepaway
Comparisons FEs Comparisons FEs

GAME 2150.2 145.4 62 438.8 1840
GAME-RMHC 126.6 63.3 3567.8 1783.9

MASTER 240 240 Ω(12 · 1319)

Fig. 1. Learning curves on MC3D for GAME and GAME-RMHC.

To train the transition networks, we collected transition
samples for 50 episodes in MC3D and 1,000 episodes in
4 vs. 3 Keepaway. Then, we used the learned mappings to
train agents with transfer. For each problem, we also evaluated
an agent with a hand-coded mapping informed by intuition.
We evaluated each transfer agent in 30 independent trials.

V. RESULTS

A. Evolving Intertask Mappings

Experiments evolving intertask mappings for Mountain Car
demonstrate that GAME and GAME-RMHC are able to find
mappings with scores that are no worse than the score of the
mapping found by MASTER, supporting H1. Specifically,,
GAME and GAME-RMHC both converged to the mapping
with the highest offline evaluation score at 0.999949 in ev-
ery trial. MASTER converged to the same state mapping
as GAME, but this intertask mapping’s fitness was slightly
lower at 0.999946 due to its averaging over all single action
mappings. Table I shows the average number of comparisons
and FEs required by each algorithm before the best solution
was found in each trial. On Mountain Car, GAME incurred
the highest number of comparisons, exceeding even MASTER.
GAME-RMHC, however, was the quickest to converge, requir-
ing an average of only 63.3 FEs before the best solution was
found, partially supporting H2. This result is confirmed by
Figure 1, which shows the best fitness found by GAME and
GAME-RMHC as a function of FEs.

In contrast, the Keepaway results do not support the second
part of H1 that the scores of the mappings found by GAME
will be higher than the scores of the mappings found by
GAME-RMHC. Specifically, supporting H2, GAME-RMHC
converged faster than GAME (Figure 2) and converged to
mappings with higher offline scores on all 10 Keepaway trials
(see Tab. II). A Wilcoxon rank-sum test (α = 0.05) confirms

Fig. 2. Learning curves on 4 vs. 3 Keepaway for GAME and GAME-RMHC.

that the fitness scores of the mappings found by GAME-
RMHC are higher than the fitness scores of the mappings
found by GAME. In addition, GAME-RMHC had the lowest
number of comparisons and FEs out of all three methods.

The hand-coded Mountain Car state mapping is
{xtarget, ytarget} → xsource and {ẋtarget, ẏtarget} → ẋsource.
There is no best hand-coded action mapping because the
source actions Left and Right could each map to West,
East, South, and North in the target task depending
on the car’s orientation. However, if the car was facing
the goal state, the most intuitive action mapping would be
Neutraltarget → Neutralsource, {West,South} → Left,
and {East,North} → Right. Interestingly, the fitness for
the hand-coded mapping is not optimal at 0.999944.

GAME, GAME-RMHC, and MASTER all converged
to the hand-coded state mapping. Given this state map-
ping, the action mapping with the highest fitness maps
{Neutraltarget,West,South} → Neutralsource and
{East,North} → Right, which was found by GAME
and GAME-RMHC. This action mapping is not perfect, but
we observe that three of the target actions are mapped in
the same way as the hand-coded action mapping. Given this
result, we expect that an agent that uses this mapping might
perform poorly during transfer learning due to the fact that the
source action Left is not utilized and two target actions are
not mapped correctly. However, that the fitness of the hand-
coded action mapping was within 10−4 of this action mapping
confirms our intuition that there is no optimal action mapping,
which would have made it difficult for the offline evaluation
scheme to identify the hand-coded action mapping as optimal.

The most intuitive 4 vs. 3 Keepaway state mapping as-
signs each target state variable to the source state variable
with the most semantic similarity, e.g. dist(K1, C)target →
dist(K1, C)source. The only exceptions are the state variables
that are novel to 4 vs. 3 Keepaway. We assigned these state
variables to the most similar state variables in the source task.
The mapping for the actions followed a similar process. This
hand-coded mapping is also not optimal, having an offline
fitness value of only 0.99427. The best mapping evolved
by GAME had an offline evaluation score of 0.99886, and
the best mapping evolved by GAME-RMHC had an offline
score of 0.9991. Although these mappings have higher offline

evaluation scores than the hand-coded mapping, they are more
difficult to understand due to the seemingly random matching
of the state variables. Due to the exponential number of
possible state mappings on Keepaway, we could not feasibly
run MASTER during this part of the experiment, which
reinforces a weakness with its brute force approach.

Despite evolving a state mapping with a lower fitness score,
five of the single state mappings evolved by GAME matched
the hand-coded state mapping. That said, only two of the single
state mappings evolved by GAME-RMHC matched the hand-
coded state mapping. Furthermore, both GAME and GAME-
RMHC erroneously mapped source state variables involving
angles to target state variables involving distances, and vice
versa. Finally, both GAME and GAME-RMHC mapped every
target action to the source action Pass1, which is reminiscent
of a similar problem on MC3D where many target actions
were mapped to the same source action. However, transfer
learning experiments show that the agents that utilize the
learned mappings perform better than the baseline agent.

B. Transfer Learning

Figure 3 graphs the learning curves for the MC3D agents
with and without transfer learning. Each data point is averaged
over 30 independent trials and represents a moving window of
10 episodes. The first agent to reach the threshold performance
on MC3D was the agent using the hand-coded mapping.
Despite the imperfect action mapping found by GAME and
GAME-RMHC, however, a Wilcoxon rank-sum test (α =
0.05) confirms that the agents that used the best mapping
found by GAME and GAME-RMHC performed comparably
to the agent using the transfer learning method employed
by MASTER, supporting the first part of H4. Additional
Wilcoxon rank-sum tests (α = 0.05) show that the time-to-
threshold of all transfer learning agents were less than the
time-to-threshold of the agent without transfer, supporting H3.

Shifting the transfer learning curves by 100 episodes to
account for the pre-training in the source task, we see that
transfer learning provided significant benefit to all transfer
learning agents. Although the Q-Value Reuse method em-
ployed by MASTER allowed it to match the performance of
GAME on Mountain Car, it has a serious deficiency in that
it requires the enumeration of every single action mapping,
which might not be feasible in complex problem domains.
Nevertheless, we predict that the mappings found by GAME
and GAME-RMHC would have outperformed the mapping
found by MASTER had the offline evaluation scheme been
more accurate and instead assigned the highest fitness to the
hand-coded action mapping.

Figure 4 shows the learning curves for the 4 vs. 3 Keepaway
agents with and without transfer. Each data point is the average
of 30 independent trials and represents a moving window
of 1,000 episodes. The first set of keepers to hold the ball
for more than nine seconds used the hand-coded mapping.
Wilcoxon rank-sum tests (α = 0.05) demonstrate that the
agents that used the mappings evolved by GAME and GAME-
RMHC performed worse than the agent that uses the hand-

TABLE II
FITNESS OF BEST KEEPAWAY MAPPINGS AVERAGED ACROSS 10 TRIALS

1 2 3 4 5 6 7 8 9 10
GAME 0.99874 0.99875 0.99882 0.99884 0.99886 0.99884 0.99876 0.99866 0.99862 0.99866

GAME-RMHC 0.99892 0.99891 0.99908 0.99894 0.99903 0.99910 0.99897 0.99879 0.99902 0.99909

Fig. 3. Learning curves on MC3D with and without transfer.

coded mapping, but better than the agent without transfer
learning. In addition, the agents that used the mapping evolved
by GAME and GAME-RMHC performed comparably, which
does not support the second part of H4. We also verified our
transfer learning method by evaluating agents with weights
sampled randomly from the source agent. These agents per-
formed comparably to the agents without transfer. Shifting the
transfer learning curves by four simulator hours to account
for the pre-training in the source task illustrates that transfer
learning yielded moderate benefits for the agents that used
the mappings evolved by GAME and GAME-RMHC. These
modest results stem from the fact that the action mappings
found by GAME and GAME-RMHC once again ignored many
source actions and mapped many target actions to the same
source action. The fault lies with the offline evaluation scheme,
which provided an inaccurate fitness signal. In fact, combining
the state mapping found by GAME with the hand-coded action
mapping resulted in a lower fitness of 0.997, to which GAME
would not have converged.

VI. DISCUSSION

The results support our hypothesis that an agent that uses
transfer will learn faster than an agent that does not use any
transfer. On Mountain Car, the results support our hypothesis
that an agent that uses the mappings evolved by GAME
and GAME-RMHC will take at most as much time learning
as an agent that uses the mapping found by MASTER. On
Keepaway, the results show that an agent that uses the mapping
evolved by GAME-RMHC takes as much time to reach the
performance threshold as an agent that uses the mapping
evolved by GAME, but does not support the hypothesis that
the latter will outperform the former. Finally, the results do

Fig. 4. Learning curves on 4 vs. 3 Keepaway with and without transfer.

not support our hypothesis that the offline evaluation scheme
will be correlated with time-to-threshold (H5).

Perhaps the most puzzling results were that the hand-coded
mappings had the lowest offline scores, and the mappings
with the highest offline scores mapped all the target actions
to one single source action. First, in complex tasks like
Keepaway, the offline evaluation scheme is not an accurate
measure of how well an intertask mapping might perform,
which makes it an unreliable fitness signal. Our experiments
indicate that the offline evaluation scheme works better in tasks
with semantically distinct state variables like Mountain Car.

On Keepaway, many of the state variables were either
distances or angles, which made it hard to determine whether
it is better to map dist(K1,K2)target to dist(K1,K2)source,
dist(K1, T1)source, or dist(K1, C)source. One solution is to use
an online evaluation scheme where each mapping’s fitness
is related to the reward received by an agent that uses this
mapping. In this sense, GAME can identify the high-fitness
mappings as promising candidates and the online evaluation
scheme can then be used to search within this reduced pool
of mappings. Alternatively, we can employ the state mapping
found by GAME with algorithms like COMBREL, which uses
multiple action mappings [8]. Additionally, we can incorporate
a Quality-Diversity approach to facilitate the generation of
diverse and high-quality mappings to combat the accumulation
of homogeneous action mappings in the final population [24].

The transition networks most likely led to the hand-coded
mappings’ low scores and the phenomenon where every target
action was mapped to one source action. On Keepaway, the
hand-coded mapping’s single state mapping with the lowest
score at 0.98489 was for the prediction of dist(K1,K3),
despite the fact that the single state mapping correctly mapped

dist(K1,K3)target → dist(K1,K3)source. In contrast, GAME
and GAME-RMHC had scores of 0.9994 and 0.99949 respec-
tively despite mapping dist(K1,K3)target to dist(K3, C)source.
Since an intertask mapping is evaluated by how well the
mapped dataset D′

source conforms to the transition neural net-
works, it is highly probable that the mapped datasets generated
by GAME and GAME-RMHC better matched the original
dataset on which the neural networks were trained. Similarly,
if every target action is mapped to one source action, then
only the samples in Dsource containing that source action gets
evaluated in D′

source. Thus, if the samples corresponding to a
specific source action were biased to the networks’ training
data, then the same situation can occur.

VII. CONCLUSIONS

Our work demonstrated that a metaheuristic approach can
generate explicit intertask mappings in a tractable amount of
time. Our GA and hill-climbing algorithms both converged to
highly-fit mappings and explored a search space that was too
massive for the brute force algorithm. However, weaknesses
with the offline evaluation method undermined our transfer
learning results. Specifically, the fitness function introduced a
disconnect between a mapping’s fitness and its performance in
transfer learning. We will address this disconnect in the future.

Although we have demonstrated that our approach scales
with the size of the mapping search space, we acknowledge
that we could have evaluated problems with even more state
variables and actions. Preliminary experiments with transfer
from 6 vs. 5 to 7 vs. 6 Keepaway suggest that GAME can
scale to larger problems, but we were unable to run enough
trials due to time constraints. We also plan to compare our
transfer method to ones that use different intertask mapping
representations. We only compared our approach to MASTER
due to time constraints and to our knowledge, MASTER is the
only other algorithm that generates explicit intertask mappings.
However, we acknowledge the importance of considering
methods beyond GAME to understand the full benefits of
transfer methods that rely on explicit mappings. Finally, we
will also study how GAME works with RL algorithms other
than Sarsa(λ), and investigate alternative complexity measures.

To improve GAME, we will focus on algorithms that are
more sensitive to the differences between state variables and
can better handle domains with complex decision processes.
We also plan to incorporate auxiliary information to improve
the model learning process. For example, on Keepaway, know-
ing the ball’s location at each time step might have helped to
distinguish between holding and passing the ball. Finally, we
could have transformed the MSE values into a fitness signal
that is more informative than an average. Given GAME’s
ability to converge tractably to mappings with high fitness,
with a fitness signal to reflect the benefit of using the mapping
during learning more accurately, we believe that GAME will
be a competitive intertask mapping learning algorithm.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

[2] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big Data, vol. 3, no. 1, pp. 1–40, 2016.

[3] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey.” Journal of Machine Learning Research, vol. 10,
no. 7, 2009.

[4] Z. Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement
learning: A survey,” arXiv:2009.07888, 2020.

[5] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-
task mappings for temporal difference learning.” Journal of Machine
Learning Research, vol. 8, no. 9, 2007.

[6] H. B. Ammar, “Automated transfer in reinforcement learning,” PhD
Dissertation, Maastricht University, Department of Advanced Computing
Sciences, 2013.

[7] M. E. Taylor, G. Kuhlmann, and P. Stone, “Autonomous transfer for
reinforcement learning.” in Proceedings of the Autonomous Agents and
Multi-Agent Systems Conference, 2008, pp. 283–290.

[8] A. Fachantidis, I. Partalas, M. E. Taylor, and I. Vlahavas, “Transfer learn-
ing with probabilistic mapping selection,” Adaptive Behavior, vol. 23,
no. 1, pp. 3–19, 2015.

[9] L. Torrey, T. Walker, J. Shavlik, and R. Maclin, “Using advice to transfer
knowledge acquired in one reinforcement learning task to another,”
in Proceedings of the European Conference on Machine Learning.
Springer, 2005, pp. 412–424.

[10] M. E. Taylor, N. K. Jong, and P. Stone, “Transferring instances for
model-based reinforcement learning,” in Proceedings of the Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2008, pp. 488–505.

[11] Q. Cheng, X. Wang, and L. Shen, “Transfer learning via linear multi-
variable mapping under reinforcement learning framework,” in Proceed-
ings of the 36th Chinese Control Conference (CCC), 2017, pp. 8795–
8799.

[12] M. E. Taylor, “Autonomous inter-task transfer in reinforcement learning
domains,” PhD Dissertation, The University of Texas at Austin, Depart-
ment of Computer Sciences, 2008.

[13] F. L. Da Silva and A. H. R. Costa, “Towards zero-shot autonomous inter-
task mapping through object-oriented task description,” in Workshop on
Transfer in Reinforcement Learning (TiRL), 2017.

[14] H. B. Ammar, K. Tuyls, M. E. Taylor, K. Driessens, and G. Weiss, “Re-
inforcement learning transfer via sparse coding,” in Proceedings of the
11th International Conference on Autonomous Agents and Multiagent
Systems, vol. 1. International Foundation for Autonomous Agents and
Multiagent Systems, 2012, pp. 383–390.

[15] H. B. Ammar, D. C. Mocanu, M. E. Taylor, K. Driessens, K. Tuyls, and
G. Weiss, “Automatically mapped transfer between reinforcement learn-
ing tasks via three-way restricted Boltzmann machines,” in Proceedings
of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2013, pp. 449–464.

[16] Q. Cheng, X. Wang, and L. Shen, “An autonomous inter-task mapping
learning method via artificial neural network for transfer learning,” in
Proceedings of the IEEE International Conference on Robotics and
Biomimetics, 2017, pp. 768–773.

[17] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant
feature spaces to transfer skills with reinforcement learning,” ICLR,
2017.

[18] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary
algorithms for reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 11, pp. 241–276, 1999.

[19] J. Bishop and R. Miikkulainen, “Evolutionary feature evaluation for
online reinforcement learning,” in Proceedings of the IEEE Conference
on Computational Intelligence in Games, 2013, pp. 1–8.

[20] B. Hirchoua, I. Mountasser, B. Ouhbi, and B. Frikh, “Evolutionary deep
reinforcement learning environment: Transfer learning-based genetic
algorithm,” in Proceedings of the 23rd International Conference on
Information Integration and Web Intelligence, 2021, pp. 242–249.

[21] P. C. H. Chu, “A genetic algorithm approach for combinatorial op-
timisation problems,” PhD dissertation, Imperial College of Science,
Technology, and Medicine, The Management School, London, United
Kingdom, 1997.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI gym,” arXiv:1606.01540, 2016.

[23] P. Stone and R. S. Sutton, “Keepaway soccer: A machine learning test
bed,” in Robot Soccer World Cup. Springer, 2001, pp. 214–223.

[24] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new
frontier for evolutionary computation,” Frontiers in Robotics and AI,
p. 40, 2016.

	Introduction
	Problem Statement and Hypothesis
	Related Work
	Intertask Mappings
	Autonomous Learning of Intertask Mappings
	Evolutionary Reinforcement Learning

	Approach
	Problem Domains Studied
	The GAME Algorithm
	Experimental Design

	Results
	Evolving Intertask Mappings
	Transfer Learning

	Discussion
	Conclusions
	References

