(¢D)
—
>
+—J
(q0]
(¢b)
LL
e
o
—
©
(¢D)
(7))
(€D)
o

John W.
Sheppard

ARINC

William R.
Simpson
Institute for
Defense
Analyses

Managing Conflict In
System Diagnosis

As modern systems become more complex, it becomes more likely

that system maintainers will be presented with conflicting information
when testing them. Maintainers need advanced techniques to make

an accurate diagnosis of the problem, especially in the face of large
numbers of conflicts. This article describes two approaches to resolving
conflicting test results: modified Dempster-Shafer statistical inference

and certainty factors.

he complexity of modern systems has led to

new demands on system diagnostics. As sys-

tems grow in complexity, the need for reliable

testing and diagnosis grows accordingly. The

design of complex systems has been facili-
tated by advanced computer-aided design/computer-
aided engineering (CAD/CAE) tools. Unfortunately,
test engineering tools have not kept pace with design
tools, and test engineers are having difficulty devel-
oping reliable procedures to satisfy the test require-
ments of modern systems.

The testing of complex systems is rarely perfect. In
software, it is almost impossible to track system state
or all the ways values might be affected. Hardware
systems are frequently subject to noise and other ran-
dom events, which makes it difficult to interpret test
results and thus lowers the confidence in what the tests
indicate. Even with digital testing, which eliminates
some noise problems, developers must still contend
with the effects of state. Finally, modern systems
depend heavily on both hardware and software, and
the interactions between hardware and software fur-
ther compound the problem of managing test errors.

When testing a complex system, what is the proper
response to unexpected and conflicting test results?
Should the results be scrapped and the tests rerun?
Should the system be replaced or redesigned? Should
the test procedures be redeveloped? Determining the
best answers to these questions is not easy. In fact, each
of these options might be more drastic than necessary
for handling conflict in a meaningful way.

When test results conflict, the potential source of
the conflict must be analyzed to determine the most
likely conclusion. To date, test systems have done lit-
tle more than identify when a conflict exists. Since the
early 1970s, artificial intelligence researchers have
attempted to ““handle” uncertain and conflicting test
information. But this handling has been limited to

0018-9162/98/$10.00 © 1998 IEEE

assigning probabilities or confidence values to the con-
clusions, providing a ranked list of alternative
actions.*2 When test results are uncertain but consis-
tent, this is about the best we can do.

In this article, we discuss two approaches to system
diagnosis that apply several tests and interpret the
results based on an underlying model of the system
being tested. These tests are used to determine if the
system is functioning properly and, if not, to explain
the faulty performance. When test information con-
flicts, ignoring or improperly handling the conflict will
degrade diagnostic accuracy. By examining potential
sources of conflict and the way conflict might become
manifest in a reasoning system, we developed an
approach to extend diagnosis to handle the conflict
and draw more reliable conclusions.

TRADITIONAL DIAGNOSTICS

Frequently, test engineers define a system-level diag-
nostic process that is independent of the design and
manufacturing process. The first step, for example, is
to develop built-in test (BIT) or built-in self test (BIST),
which make the initial detection and localization of
faults. When used with other tests, these tests—which
are embedded in the system itself—may localize faults
to a level sufficient to take action.

Subsequent steps apply a battery of automatic and
manual tests to the system (or subsystem). Eventually,
these tests might identify the subunit suspected of con-
taining the fault. The subunit is then tested to find the
faulty unit. Once a unit or subunit is separated from
the system, maintainers frequently use specialized
equipment (usually from the unit manufacturer) to
test it.

Despite improvements in BIT, BIST, and automatic
testing, manufacturers typically have not provided
maintainers with comprehensive diagnostic proce-
dures. Instead, they rely on part screenings and spe-

March 1998

Despite
improvements in
BIT, BIST, and
automatic testing,
manufacturers
typically have
not provided
maintainers with
comprehensive
diagnostic
procedures.

cial test approaches, which are inadequate
because they emphasize proper system function
rather than the isolation of a fault when the sys-
tem does not function properly. (One exception
is the screening of complex incoming parts such
as chips, which is much more comprehensive.
This is due to both improved manufacturing
reliability and the complexity of testing a large
microchip.)

This approach to system testing is an artifact
of a manufacturing process that tests only pieces
of systems. It is clearly insufficient to explain
anomalous behavior at the system level, as it
fails to account for the complex interactions
among system components. At this level, we are
left with a few euphemisms that describe heuris-
tic approaches, such as “tickle testing” (when

we snug all fittings and clean all contacts) or “shot-
gun maintenance” (when we guess where the fault
resides and take action until the system anomalies dis-

appear).

INTEGRATED DIAGNOSTICS

In developing an alternative to this approach, we
focused on ideas developed in integrated diagnostics
programs. Integrated diagnostics emphasizes the
application of structured approaches to system test-
ing and diagnosis. Such programs have three objec-
tives:

= to maximize the reuse of design and test data,
information, knowledge, and software;

« to integrate support equipment and manual test-
ing, so that complete coverage of diagnostic
requirements is covered; and

= to integrate the available diagnostic information,
so that resources are minimized and performance
optimized.

Our research focuses on applying a single uniform
method for representing diagnostic information: One
model type represents the system at all levels of detail.
Using this model, test engineers can determine BIT
requirements, define test programs for automatic test
equipment, and guide the manual troubleshooting
process.

The model we use captures test information flow: It
models the information provided by a set of tests with
respect to a set of desired conclusions. During trou-
bleshooting, the information gathered from perform-
ing the series of tests is combined to make a diagnosis.
Defining the relationships between tests and conclu-
sions results in an information flow model. The mod-
els are hierarchical, in that a conclusion in one model
can be used to invoke a lower level model. The rules
for handling each model and submodel are the same,

Computer

regardless of their position in the hierarchy.

We begin by developing a set of information flow
models for the system to be tested. We develop mod-
els for on-board diagnosis (thus determining the
requirements for BIT) and for each subsequent level of
testing. The conclusions we draw at one level deter-
mine the appropriate model to use at the next level.

Once developed, we analyze the models to evalu-
ate the system’s testability. We verify specification com-
pliance and perform design trade-offs to improve
testability. Thus the modeling process begins in the
early stages of system development. As the system
progresses through the life cycle, the models are
revised to reflect changes and refinements in the
design. For diagnosis, the models define available tests
and inferences that can be drawn by obtaining test
outcomes. Hence, the same models used to evaluate
testability of the system can be used for trou-
bleshooting.

INFORMATION FLOW MODEL

An information flow model® represents the prob-
lem to be solved via the flow of diagnostic informa-
tion. Tests provide information, and diagnostic
inference combines information from multiple tests
using several logical and statistical inference tech-
niques. The structure of the information flow model
facilitates our ability to compute testability measures
and derive diagnostic strategies.

An information flow model has two basic elements:
tests and conclusions. Tests include any source of infor-
mation that can be used to determine the health of a
system. Conclusions typically represent faults, includ-
ing hardware fault modes, failure of functionality, spe-
cific nonhardware failures (such as bus timing), and
specific multiple failures. A conclusion may also indi-
cate the absence of a failure indication (no fault).

Information obtained during testing might be a con-
sequence of observing system operation or a response
to a test stimulus. Thus we include observable symp-
toms of failure in the information flow model as tests.
Including these symptoms allows us to analyze situa-
tions involving information sources in addition to for-
mally defined tests.

When developing a fault isolation strategy, test
engineers should consider the type, amount, and qual-
ity of test information. We initially assumed equal
quality among test results. In other words, we assumed
that every test outcome actually reflects the state of
the unit being tested. In practice, we relax this assump-
tion and allow a measure of confidence to be associ-
ated with each test.

If all possible inferences drawable from performing
each test are known, then the information gained by
performing each test can be calculated. The set of test
inferences allows us to draw conclusions about a sub-

set of components. At any point in the test sequence,
the information flow model can be used to compute
the set of remaining failure candidates.

In designing our model, we developed a precise
algorithm to look at the information content of the
tests. Specifically, we determine test information gain
by computing the reduction in size of the failure can-
didate set for each test. The algorithm selects tests such
that the number of tests required to isolate a fault is
minimized over the set of potential failure candidates;
it does this by maximizing information gain at each
step in testing.

DEMPSTER-SHAFER INFERENCE

The algorithms our approach applies for drawing
inferences from actual test information are a modifi-
cation of Dempster-Shafer statistical inference,*®
which is derived from Bayesian inference theory. It has
four steps:

1. We compute for every conclusion the two
extremes of a credibility interval: support and
plausibility. The probability that a given conclu-
sion is true lies between its support and plausibil-
ity values. A test outcome supports a conclusion
(and thereby its associated fault) when the out-
come indicates the detection of the fault associ-
ated with that conclusion. A test outcome denies
a conclusion if it eliminates the conclusion from
consideration. Denial is the complement of plau-
sibility. To compute a conclusion’s support and
plausibility values, we begin by assigning a confi-
dence value to the test outcome. \We use these con-
fidence values to compute support and denial
values. In particular, we uniformly distribute the
confidence value over all conclusions supported
and apply the full weight of the confidence value
to all conclusions denied.

2. Using this result as a basis, we compute support
and plausibility measures incrementally. \We deter-
mine how much the new evidence conflicts with
previously accumulated evidence (initially assum-
ing no disagreement). Then we revise the support
for each conclusion using a variant of Dempster’s
Rule of Combinations. Dempster’s rule computes
normalized mutual support and denial for each
conclusion by combining the current accumula-
tion of support and denial and the support and
denial received from the most recently evaluated
test. Figure 1 shows how the rule works. To deter-
mine plausibility, we keep a running average of the
denial obtained thus far and subtract from one:
plausibility equals 1 minus denial.

3. We modified the Dempster-Shafer process by defin-
ing a special conclusion, which we call the unan-
ticipated result.® The unanticipated result

Accumulated support
(from tests 1 ... t-1)

CTAEACo 2 Ca Cn
C1 000
New support €2 A
(from test t) cs
G
H H

= Area on diagonal indicates mutual support for c;

« Area of matrix not on diagonal indicates uncertainty
« Old hypothesis corresponds to widest intervals (H)

« New hypothesis corresponds to greatest areas (H")

compensates for disappearing uncertainty, even in
the face of conflict—a known deficiency in the
Dempster-Shafer process. Support for the unan-
ticipated result (representing conflict) is computed
whenever evidence denies the current hypothesis.
For this to occur, the evidence must deny all of the
conclusions in the current hypothesis set, because
the hypothesis corresponds to the logical OR of the
members of the set. If the current hypothesis set is
denied, the amount of conflict is then computed
on the basis of the number of tests executed so far.
When no conflict exists, support for the unantici-
pated result decays with each test performed.

4. To determine the final support measure, we nor-
malized the previously calculated support mea-
sure by the sum of all conclusion support values
plus the support for the unanticipated result.

The primary computational burden of this proce-
dure lies in determining the normalization constant
of Dempster’s rule. This normalizer requires a sum-
mation over all pairwise combinations of support val-
ues. It has a complexity of O(n?), where n is the
number of conclusions. The calculations for combin-
ing support and denial and for computing conflict are
relatively simple, being of complexity O(1), and the
final calculation for normalizing support is O(n).
Thus, the overall computational complexity of this
process is O(n?) in each step.

CERTAINTY FACTORS
Because the support value depends so strongly on
previously normalized data, the Dempster-Shafer cal-

Figure 1. Dempster’s
Rule of
Combinations.

March 1998

Integrated
diagnostics
emphasizes the
application of
structured
approaches to
system testing
and diagnosis.

culations exhibit a temporal-recency effect. In
other words, more recent events have a greater
impact on the evidential calculation than more
distant events. As a result, if the same set of tests
is analyzed with the same outcomes and the
same confidences but in different orders, the
resulting Dempster-Shafer statistics might be dif-
ferent.

Because of this undesirable property, we
explored alternative approaches to reasoning
under uncertainty. We wanted to be able to base
our inferences on the information flow model,
assign confidences to test outcomes, and per-
form consistent inference, independent of tem-

poral ordering.

To guide us, we identified the reasonable charac-
teristics for any uncertainty-based inference system.
These characteristics include

« the ability to track the levels of support and
denial for each conclusion in the model;

« the ability to convert these support and denial
measures in a reasonable, intuitive way, in order
to estimate the probability that the conclusion is
true;

« the assurance that test results applied in any order
would yield the same result; and

« the ability to evaluate levels of conflict such that all
measures associated with conflict have the same
properties as any other conclusion in the model.

From these characteristics, we derived a simplified
approach to reasoning with uncertain test data and
discovered that we had rederived a relatively old
method called certainty factors.

Certainty factors were first used by Edward
Shortliffe in his Mycin diagnostic system, developed in
the early 1970s. With roots in probability theory, cer-
tainty factors provide an intuitive approach to rea-
soning under uncertainty in rule-based systems.”
Certainty factors satisfied all of our requirements
except for handling conflict, and so we developed an
approach to satisfy this requirement.®

CERTAINTY FACTORS ADAPTED
TO DEMPSTER-SHAFER

Recall that test outcomes either support or deny
conclusions in the conclusion space. Our application
of certainty factors to system diagnosis differs from
Dempster-Shafer because it assigns the full confidence
value to all conclusions either supported or denied,
rather than apportioning confidence to the supported
conclusions. Obviously, support is applied to a con-
clusion only if the test outcome actually supported
that conclusion, and denial is applied only if the test
outcome actually denied the conclusion.

Computer

Updating support and denial over time is also dif-
ferent from the Dempster-Shafer approach and is
straightforward; it is similar to combining probabili-
ties. We update these measures by adding the current
support or denial to the previously accumulated sup-
port or denial and subtracting the product of the two.
We determine certainty in a conclusion by subtract-
ing the accumulated denial from the accumulated sup-
port. We then rescale the resulting certainty value so
that it lies between zero and one, so we can interpret
the value like a probability.

Shortliffe’s approach does not identify conflict. Our
approach, on the other hand, determines conflict on
the basis of levels of mutual consistency among tests
in the test set. We then include the unanticipated result
in the model.

Support and denial

Our approach to determining support and denial
for the unanticipated result requires that we designate
a support set and a denial set for each test prior to the
diagnosis. The support set is defined to be the set of
conclusions (or faults) that are potentially drawable
or detectable, either by a test failing or the set of con-
clusions not being eliminated from consideration
because a test passes. We determine the denial set by
taking the complement of the support set, which adds
no new complexity to our calculation.

Using the information flow model, for any given
test we can determine the set of conclusions supported
by the test when the test has a given outcome. We want
to compare this support set with the support sets of
other tests. In particular, for a sequence of tests, we
are interested in determining the relative conflict
between all pairs of tests in that sequence, under the
assumption of a single conclusion being drawn at a
time. Relevant and likely multiple faults can be desig-
nated as a single conclusion in the model.

For example, consider Test 1 and Test 2, which have
only pass and fail outcomes. These two tests might
conflict in any of four possible situations: when both
tests pass, when both tests fail, when Test 1 passes and
Test 2 fails, and when Test 1 fails and Test 2 passes.

Relative amount of conflict

Suppose both tests fail. If we consider the intersec-
tion of the tests’ support sets given their failure, we
claim that if the intersection is the empty set, these two
outcomes are inherently conflicting; that is, they sup-
port completely different sets of conclusions and deny
each other’s sets of conclusions, as illustrated in Figure
2. Given this, we can determine the relative amount
of conflict by dividing the size of the intersection (the
amount of mutual support) by the size of the union
(the potential amount of mutual support) and sub-
tracting from one.

Similarly, we can determine the relative amount of
conflict denial associated with a pair of test outcomes.
If the intersection of the support sets is not empty, then
there exists a set of conclusions that is mutually sup-
ported by these two test outcomes. This area of mutual
support indicates that the test outcomes are inherently
nonconflicting, thus indicating we can deny the pres-
ence of conflict in the diagnostic process, as shown in
Figure 2. Therefore, we can compute that the relative
denial of conflict between two test outcomes is the
same as the relative conflict, except we do not sub-
tract from one. Individual values for the support or
denial of the unanticipated result depend on the con-
fidence in the test outcomes and can be computed by
treating the confidence values as weighting factors.

We use these comparisons between the support sets
for the various outcome combinations to determine
the support and denial of an unanticipated result. We
update support and denial for an unanticipated result
at each step in the sequence.

As tests are evaluated, we accumulate support or
denial for the unanticipated result similar to combin-
ing support and denial for any other conclusion,
except that a single test outcome can cause several new
“events” to be added. Thus, we have to combine con-
flict at each step by considering all past steps in the
test process. This is the most computationally expen-
sive part of the certainty factor approach: It requires
O(T ?) time, where T is the number of tests performed.
The complexity of computing relative conflict is
O(m?) for each of the four alternatives, where m is
the number of tests in the model; however, this process
need be performed only once for each model.

The primary advantages to using certainty factors
rather than Dempster-Shafer include reduced compu-
tational complexity and sequence independence in
determining support and denial for each of the con-
clusions. Dempster-Shafer’s primary advantage is a
firmer grounding in probability theory and a larger
base of practical experience demonstrating acceptable
behavior.

INTERPRETING CONFLICT

Drawing conclusions from uncertain but consistent
test information is relatively straightforward. How-
ever, interpreting conflicting test results can be prob-
lematic, and some basic assumptions are necessary for
making a diagnosis in which conflict might arise. We
make three assumptions:

« We interpret only those test results that limit the
possible outcomes of a test to be either pass or
fail.

< We assume that the diagnostic system focuses on
identifying a single fault.

* We reject the assumption that the model is correct

Mutual support
for t; and t;

— Mutual denial
for t; and t;

Mutual conflict for t; and t;

and the test results (or at least their confidences)
are correct.

Causes of conflict
We believe there are only three fundamental rea-
sons for conflict:

« An error occurred in testing or test recording

« Multiple faults exist in the system

« The diagnostic model or underlying fault model
is incomplete or inaccurate

We claim all other “reasons’ can be reduced, ulti-
mately, to one of these three reasons.

By providing a separate conclusion in the model for
conflicting information (that is, the unanticipated
result), we offer a powerful mechanism for identifying
whether one of these situations exists. We point out,
however, that independent analysis might be required
to distinguish these potential sources of conflict in any
particular instance. Three approaches have been used
in actual diagnosis to identify causes of conflict: iden-
tifying testing errors, identifying multiple faults, and
identifying modeling errors.

|dentifying testing errors

Automatic testing takes much of the uncertainty
associated with test performance out of testing
because the same test is applied every time, and a
machine performs and evaluates the results of the test.
Unfortunately, automatic testing, while eliminating
many sources of error, introduces many more sources.

First, it uses software, which must be written and
tested. Until recently, much of the test software had
been written from scratch for every new system test,
leading to high development costs and a high likeli-
hood of repeated mistakes.

March 1998

Figure 2. Determining
support and denial for
an unanticipated
result.

Figure 3. Nominal
range for a value.

Figure 4. Nominal
range for an
instrument.

Nominal range

Measurement value

Nominal range

Instrument accuracy

Second, the instrumentation used to apply test stim-
uli (inputs) and interpret responses (outputs) has phys-
ical limitations that can introduce errors. For example,
suppose we are measuring a value in a system that
might be subject to noise. The expected nominal value
might fit a normal distribution (assuming Gaussian
noise), and the actual nominal value should appear
within a specified range, as Figure 3 shows. The instru-
ment measuring the output might not be able to inter-
pret the output with sufficient accuracy or precision,
which also introduces errors. The nominal range for
the instrument, therefore, is modeled in a similar fash-
ion, as Figure 4 shows. The problem arises when we
overlay these nominal ranges, as Figure 5 shows.

If the actual value falls on the inside of the nominal
range but we declare that the test fails, we have intro-
duced a false alarm. On the other hand, if the actual
value falls outside the nominal range and we declare
that the test passed, we have introduced a false assur-
ance. In statistics, these errors are referred to as Type
I and Type Il errors; correspondence of a false alarm
to Type | or Type Il depends on whether our hypoth-
esis is that the system is nominal or faulty.

Sensitivity to Type | and Type Il errors depends on
the variance of the noise associated with a measure-
ment and the variance on the measurement device
itself. When errors exist in comparing the measured

Computer

value to the test limits, the potential for conflict in
diagnosis increases. Inconsistent test results lead to
conflict or to an incorrect diagnosis. The modified
Dempster-Shafer approach provides a means for iden-
tifying the conflict and for gathering supporting or
denying evidence through additional testing. For
example, in an aircraft radar diagnostic system devel-
oped applying this approach,® accumulated BIT was
regarded as a single application of an associated test
procedure. Because accumulated BIT relies on repeat
evaluation of the associated test procedure, confidence
in that test is dependent on the number of repeat fail-
ures that occur. When the total number of failures
recorded nears the threshold, we might see an increase
in support for the unanticipated result.

Identifying multiple faults

The next step in managing conflict involves identi-
fying the possibility of multiple faults in the system
being tested. Multiple fault diagnosis is highly com-
plex,¢1011 but many of today’s diagnostic systems claim
to diagnose multiple faults. Actually, it is possible to
estimate most likely multiple faults fairly efficiently in
many cases. Nevertheless, the ability to correctly and
efficiently isolate the multiple fault every time one
occurs is impossible mathematically. Support from the
reasoning process to guide the search for multiple
faults can be extremely valuable.

We use the conflict conclusion, or unanticipated
result, as an indication that a multiple fault might be
present. If diagnosis leads to a single fault conclusion
with no conflict, the probability is high that the single
fault identified is correct (ignoring the problems of
masked root cause faults and false failure indications).
Therefore, if testing yields inconsistent results, one
possible cause is the presence of multiple faults.

Conflict occurs when two or more results contradict
each other. Such conflict is manifest in Dempster-Shafer
when a test result denies the current hypothesis and in
certainty factors when the support sets for two tests
are disjoint. Typically, when examining the ranked list
of faults returned by either Dempster-Shafer or cer-
tainty factors, the technician treats them as ambigu-
ous. When conflict occurs, this flags the technician that
more than one of the faults in the list might be present.
Generally, the technician considers the faults in order
of probability. This approach can still be used. In addi-
tion, with the indication of conflict, the diagnostic sys-
tem can apply a separate process among the
top-ranked faults to determine if their combined symp-
toms match the observed symptoms. If so, this is a
strong indication that the multiple fault might be pre-
sent.

The radar system?® we tested provided several exam-
ples of possible multiple faults. In one case, the prob-
lem was the presence of two antenna faults: Two

independent BIT codes were obtained directly, indi-
cating two separate failure modes of the antenna. The
diagnostic system noted the conflict and called for a
separate initiated BIT (IBIT) to be run; that is, a set of
built-in tests invoked by a technician while the airplane
was on the ground. This test identified the antenna and
both faults were equally supported in the fault candi-
date list. At the flight line, the multiple fault was
benign: The individual faults were contained within
the same replaceable unit. Without recognizing the
multiple fault, however, personnel repairing the
removed antenna would have had a problem finding
the actual cause of the antenna failing.

Identifying modeling errors

Diagnostic modeling and fault modeling are
extremely difficult and error-prone. It is also extremely
difficult to identify errors in the diagnostic model or
deficiencies in the fault model. So far, the best
approaches for model verification have been based on
an analysis of the model’s logic characteristics and the
insertion of faults in the diagnostic strategies.

Fault insertion is generally the most effective approach
but it can be time-consuming and even damaging. Using
fault simulation together with fault insertion eliminates
the problem of potentially damaging the system.
However, it adds to the verification problem because
now the simulation model must also be verified.

One of the advantages of modeling systems with
the information flow model is that a model’s logical
characteristics can be extremely useful in verifying it.
Identifying ambiguity groups, redundant and excess
tests, logical circularities, masked and masking faults,
and potential false failure indications can all indicate
potential problems with a model.

Even with the best verification tools and techniques,
errors invariably remain (especially in complex mod-
els). During actual testing, it is frequently difficult to
identify when model errors arise. However, including
the unanticipated result in the set of possible conclu-
sions allows a flag to be raised whenever a model error
might have been encountered, because support for the
unanticipated result would be nonzero. As with test
error and multiple fault diagnosis, if the model is in
error, at some point a test result will likely be contrary
to what is expected—in which case a conflict occurs
and the unanticipated result gains support.

For the radar system,® we found model errors
because two types of models were available for com-
parison—a system-level model and multiple replace-
able unit-level models. (Although the two types of
models were not derived independently, they offered
alternative representations of the system.) In one case,
when test results were processed through the model
representing the transmitter, no conflict was encoun-
tered and a large ambiguity group was identified (the

Measurement

Accuracy

wiring, the transmitter itself, and the power supply).
When the same test results were run through the sys-
tem-level model, the same ambiguity group was con-
cluded as the most likely fault, but considerable
conflict was encountered during testing. No conflict
was encountered in the replaceable unit model.

We addressed this discrepancy by looking at the
diagnostic log files for the two runs. Only one test was
considered for the replaceable unit-level model, and
that test pointed directly at the fault in question. The
failing test determined if the transmitter was trans-
mitting by examining the least significant bit in a data
word sent in a loop-back test. At the system level,
seven tests were considered (including the one from
the replaceable unit level). Four of these tests did not
appear in the replaceable-unit level model. Six tests,
including these four, depended on the common test in
the system-level model and all passed where the com-
mon test failed. Because each of these tests depended
on the common test, when the common test failed
each of these additional tests should have failed as
well. Because they did not, they were in conflict with
previous experience.

This discrepancy led us to take a closer look at the
tests in question. One of the conflicting tests that
appeared in both models served as a “collector” of
test information in the BIT. In other words, all test
information was funneled through that test such that
if any other test failed, that test was expected to fail
as well. But this test had another odd characteristic.
Whenever certain of these other tests failed, this test
was disabled and not run. The diagnostic system
assumed that a test that was not run would have
passed (a bad assumption) and this led to the conflict.
This problem was solved in the model by linking the
failed test to the tests being skipped such that the
skipped tests were no longer considered, thus cor-
recting the model.

complex and often leads to conflicting infor-
mation. Traditional fault tree-based approaches
might miss apparent conflicts and yield inferior diag-
nostic accuracy. Whether interpreting uncertain test

D iagnostic modeling and diagnostic testing is

Figure 5. Uncertain
pass/fail criteria.

March 1998

results, handling multiple faults, or contending with
modeling errors, the diagnostics should support gath-
ering information capable of identifying conflict and
assessing the cause of the conflict.

Because modeling and knowledge engineering are
complex and error-prone tasks, the diagnostics can be
used to assist modeling by identifying when inconsistent
conditions arise. Such inconsistency is identified in the
diagnostics with the unanticipated result gaining sup-
port. If the certainty in the test results is correctly repre-
sented and no multiple fault exists in the system, then an
analyst can assume that a problem exists in the model.

Test outcomes can result in a wide range of possible
inferences, and unexpected inferences can be identified
with conflict. By examining the tests evaluated and the
conclusions drawn, the potential cause of the conflict
can be localized and the possible problems in the model
identified. On the other hand, if the problem is not
within the model, the unanticipated result can guide
analysis of the test process to determine unreliable tests
or to identify multiple faults.

To date there has been little discussion of the
positive role of conflict in the testing and diagnosis of
complex systems. Conflict cannot be avoided, only
ignored, and ignoring conflict results in a loss of diag-
nostic information. Conflict can provide valuable
information about the tests, the diagnostics, and the
system being tested. The approaches herein can be used
to capture and quantify the conflict in the testing of
complex systems. Then the resulting information can be
used to identify errors or improve the diagnosis itself.
Thus these approaches provide a method for using the
conflict to benefit the testing process, leading in turn to
more robust overall system diagnostics. [

Acknowledgments

This article describes the results of work that has
been performed over several years, and we have
received input and guidance from several people to
improve the techniques and the article itself. We thank
Brian Kelley, John Agre, Tim McDermott, Jerry
Graham, Don Gartner, and Steve Hutti for their com-
ments as the algorithms were developed and the sys-
tem fielded. We also thank Elizabeth Reed, the four
anonymous reviewers, Jim Aylor, and the editors of
the IEEE Computer Society, whose comments helped
to significantly improve this article.

References
1. J. Pearl, Probabilistic Reasoning in Intelligent Systems,
Morgan Kaufmann, San Mateo, Calif., 1988.
2. Y.Pengand J. Reggia, Abductive Inference Models for Diag-
nostic Problem Solving, Springer-Verlag, New York, 1990.
3. J.W. Sheppard and W.R. Simpson, System Test and Diag-

Computer

nosis, Kluwer Academic, Norwell, Mass., 1994.

4. A.P. Dempster, “A Generalization of Bayesian Infer-
ence,” J. Royal Statistical Society, Series B, 1968, pp.
205-247.

5. G. Shafer, A Mathematical Theory of Evidence, Prince-
ton Univ. Press, Princeton, N.J., 1976.

6. J.W. Sheppard and W.R. Simpson, “Multiple Failure
Diagnosis,” Proc. Autotestcon, IEEE Press, New York,
1994, pp. 381-389.

7. E.H. Shortliffe, Computer Based Medical Consultations:
Mycin, Elsevier, New York, 1976.

8. J.W. Sheppard, “Maintaining Diagnostic Truth with
Information Flow Models,”” Proc. Autotestcon, IEEE
Press, New York, 1996, pp. 447-454.

9. D. Gartner and J. Sheppard, ““An Experiment in Encap-
sulation in System Diagnosis,” Proc. Autotestcon, IEEE
Press, New York, 1996, pp. 468-472.

10. J. deKleer, “Diagnosing Multiple Faults,”” Artificial Intel-
ligence, Vol. 28, 1987, pp. 163-196.

11. M. Shakeri et al., “Sequential Test Strategies for Multi-
ple Fault Isolation,” Proc. Autotestcon, IEEE Press, New
York, 1995, pp. 512-527.

John W. Sheppard is a staff principal analyst at
ARINC, where he is responsible for internal and con-
tract research and development in intelligent testing
and diagnosis. He is the author of more than 100 pub-
lications, including the first book on system diagnos-
tics. Sheppard received a BS in computer science from
Southern Methodist University and an MS and a PhD
in computer science from Johns Hopkins University.
He is a member of the IEEE Computer Society.

William R. Simpson is a professional staff member at
the Institute for Defense Analyses, where he is
involved in defining software architectures and the
commercial standards associated with automatic test-
ing systems. He has written more than 180 publica-
tions and is the coauthor, with John Sheppard, of
System Test and Diagnosis (Kluwer Academic Pub-
lishers, 1994). Simpson received a BS in aerospace
engineering from Virginia Polytechnic Institute and
State University, an MS and a PhD in aerospace engi-
neering from Ohio State University, and an MSA in
engineering administration from George Washington
University. He also graduated from the US Naval Test
Pilot School.

Contact Sheppard at ARINC, 2551 Riva Rd.,
Annapolis, MD 21401; jsheppar@arinc.com. Contact
Simpson at IDA, 1801 N. Beauregard St., Alexandria,
VA 22311; rsimpson@ida.org.

