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Abstract

Recent IEEE and Department of Defense (DoD) initiatives to standardize automatic test equipment (ATE)
architectures are providing unique opportunities to improve the development of test systems. The purpose of A Broad
Based Environment for Test (ABBET) initiative is to provide the next generation in ATE and test program set (TPS)
development through the standardization of test services and test development tools. The Artificial Intelligence and
Expert System Tie to Automatic Test Equipment (AI-ESTATE) initiative will provide architectures for standardizing
the test services of reasoning systems and provide guidance for test strategy services supporting the ABBET
architecture. In this paper we focus on one of the standards proposed under AI-ESTATE for developing diagnostic
models that proposes models for the object-oriented design of fault trees and enhanced diagnostic inference models.
We will also discuss the applicability of the AI-ESTATE P1232.1 Data and Knowledge Specification standard to
object-oriented testing, and we will propose an architecture for combining ABBET and AI-ESTATE into a
comprehensive ATE system. 

Introduction

Recent initiatives by the IEEE and the DoD that will standardize automatic test equipment architectures provide a
unique opportunity to improve the development of test systems. The ABBET initiative (IEEE PAR 1226) is
attempting to provide the next generation in ATE and TPS development by standardizing test services and test
development tools. By using Ada in developing test executives, test programs, and communications protocols,
ABBET-compliant test systems will be interoperable, incorporate transportable software, and move beyond vendor
product specific test stations. In addition, the AI-ESTATE initiative (IEEE PAR 1232) will provide architectures for
standardizing the test services of reasoning systems (including traditional fault trees, expert systems, model-based
systems, simulation-based systems, and neural networks) and provide guidance for test strategy services supporting
the ABBET architecture.

Central to the ABBET and AI-ESTATE initiatives is the desire to incorporate the object-oriented paradigm in
specifying test resources, test programs, and test services. The various component standards of ABBET and
AI-ESTATE are using information modeling based on the International Organization for Standardization (ISO)
Express object-oriented modeling language. In this paper, we focus on one of the standards proposed under
AI-ESTATE for developing diagnostic models: AI-ESTATE P1232.1 Data and Knowledge Specification. This
particular standard proposes models for the object-oriented design of fault trees and enhanced diagnostic inference
models. In addition, the proposed standard includes specifications for attribute models and common element models.
These correspond to specific classes of objects that would be specified for a particular test architecture.

In this paper we discuss applicability of the AI-ESTATE P1232.1 standard to object-oriented testing, and we
specifically discuss the motivation for a new standard for automatic testing and the history of ATE equipment in the
military and the commercial sector. In addition, we address object-oriented design for reusing test resources (both
software and hardware), integrating heterogeneous reasoning systems (for intelligent ATE), and increasing the
flexibility of testing that arises from using encapsulated testing. We describe a proposed architecture for combining
the ABBET and AI-ESTATE standards and conclude by describing the advantages of applying a standard ATE
architecture and object-oriented ATE/TPS design arising from the ABBET and AI-ESTATE initiatives.

Object-Oriented Design

Object-oriented design (OOD) is quickly becoming a popular approach to developing complex systems [1].
Typically, OOD is limited to the development of complex software, but the paradigm can be applied to complete
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system design and modeling. It is this latter approach that is behind recent efforts in the IEEE to develop ATE-related
standards. OOD relies on specifying structure and behavior of system components in order to maximize component
reuse and organization. The object-oriented paradigm arises from a mathematical concept called the abstract data
type and adds a mechanism for inheriting characteristics through a class hierarchy (sometimes referred to as a
semantic network [2]).

Abstract Data Types

An abstract data type
consists of a specification of a set of objects together with the operations capable of being performed on these objects
[10]. The end result of abstracting data types in this way is that they become implementation independent.
Conventional data types define the structure of data. Abstract data types, on the other hand, define the logical
behavior of values of data. This in turn specifies an interface between users of the type, e.g., designers, programmers,
and end users, and the implementation of the type. Only the specification is required to use the type, and only the
specification is referred to when implementing the type.

For an ATE system, we can consider the various elements of the tester to be abstract data types. For example, for the
instruments of the tester, the objects are defined by the instruments, and the behaviors, i.e., the functions operating on
the data, are the instructions available on the instrument. The abstract data type corresponding to a voltmeter consists
of a specification of the meter and a collection of functions such as "set scale" or "return voltage."

In specifying an abstract data type, a designer must identify syntactic information (called a signature) and semantic
information. The signature of the abstract data type consists of a list of names of the functions regarded as the basic
operations of the type. The semantic information consists of specifications of the behavior of these operations.
Semantics of data types can be expressed axiomatically, operationally, or denotationally. Implementing the data
types consists of piecing together the objects and providing the operations (through software or hardware) specified.

Inheritance

Specifying the abstract data types is the first step in applying object-oriented analysis and design. OOD attempts to
organize the data types into classes of related types. In this way, information common to more than one abstract data
type can be abstracted further from the basic objects and operations. This results in a lattice of types and a lattice of
classes. But for such abstraction to occur, a mechanism is required for members of a class to retain the attributes of
that class without explicitly storing these attributes with the members. The mechanism provided is called inheritance. 

Object-oriented systems apply either single inheritance or multiple inheritance, depending on the complexity of the
system being designed. With single inheritance, a simple hierarchy of classes is constructed and all members of a
particular class receive the attributes of that class without those attributes being explicitly specified for the member
object. For example, suppose we have a class of objects called power_supplies. Associated with this class, we may
have defined several specific objects corresponding to individual power supplies, and these individual specifications
would include information relevant to the particular power supply (such as bus_address or power_level). But several
characteristics common to all power supplies may be specified at the class level, i.e., power_supplies would have
specific attributes such as power_range or constant_rms_level, and the members of the class would have the
attributes of the class as well as their individual attributes. These general attributes are specified only once.

When an object can receive general attributes from more than one "parent" in the hierarchy, then a mechanism for
multiple inheritance
must be provided. Multiple inheritance also abstracts attributes from the individual objects to a class level, but since
conflicts can arise, a means of conflict resolution must also be provided. In addition, default values are frequently
provided for attributes that have the effect of overriding inherited values under certain circumstances.

Express Modeling Language

Although not generally considered an object-oriented design problem, data modeling can benefit from the principles
of OOD. Data modeling is generally not considered an application area for OOD because methods need not be
defined. Nevertheless, the concepts of data encapsulation and inheritance that are provided by OOD have tremendous
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applicability to data modeling.

As a means for modeling data using the object-oriented paradigm, the ISO developed a standard data modeling
language called Express, which is an implementation-independent modeling language. Express is ideal for OOD in
that it does not specify how the data of a particular model will be stored in a computer or how the data will be
accessed or manipulated. To allow the exchange of models, some physical structure must be provided as a standard
exchange format. ISO STEP 10303.21 provides a file format for data exchange. The standards being produced by the
IEEE Standards Coordinating Committee 20 (SCC20) for ATE are using Express as one of their modeling languages.

ATE Architectures

Automatic test equipment has been vastly improved since the first appearance of sequential state, paper-tape-driven
"automatic" test systems of 20 years ago. The advent of high-speed digital computers, microprocessors, sophisticated
instrumentation, and bus structures has resulted in state-of-the-art automated test systems capable of isolating failures
in equipment operating at digital rates exceeding 150 MHz [4]. Unfortunately, the advance of software used to
harness and drive this powerful instrumentation has failed to keep pace. Repair facilities still struggle with test
programs that require "full-up" instrumentation systems and can take little or no guidance from skilled technicians.
These are the same problems that plagued the operators using the paper-tape-driven systems. Such problems suggest
a need to overhaul the current approach to controlling test equipment by incorporating standard architectures for
ATE systems and incorporating intelligent approaches to fault isolation.

Classic Architectures

A typical ATE system includes a suite of test instruments in a common test station, a test control computer to control
the instruments and interpret results of tests, an interface test adapter that connects the unit under test (UUT) to the
test station, a test program set that instructs the computer on how to test the UUT, and a test executive that
determines the order in which tests are run and instructs the computer on how to drive the instruments [8]. Until now,
test programs and test executives have been developed to test a UUT by following predetermined fault trees. TPS
developers have attempted to minimize the mean time to fault isolate by constructing more efficient fault trees. This
approach has worked to a point, but the problem with writing TPSs around any fixed fault tree is the lack of
flexibility in the resulting system. Separate fault trees and TPSs are often required for different symptoms, different
optimization criteria, and different instrument suites. Further, should an instrument fail, typically, the fixed fault tree
will fail to reach a conclusion.

Military Architectures

Current ATE systems are cumbersome and subject to errors in the way they perform diagnosis. Precomputed fault
trees are used to guide the test program, and sometimes false conclusions are reached. Further, ATE systems are
incapable of adapting to failed instruments or insights from the technician.

Several initiatives are in progress to standardize ATE architectures. However, these efforts have focused on ways to
standardize and integrate analysis tools and instrument interfaces. Two current military architectures are the
Consolidated Automated Support System (CASS) and the Integrated Family of Test Equipment (IFTE).

CASS was designed with the intent of reducing the lifecycle cost of systems and ensuring that ATE systems are
standardized to meet that need. CASS provides an industry definition of operational constraints and maintenance
policy for automatic test. Further, the test systems were to be available to weapon system designers so that issues of
testability could be addressed early, and more time could be spent focusing on system performance [9].

IFTE attempted to meet the need for increasing tactical flexibility. IFTE was to provide ATE equipment for line
replaceable units (LRUs) close to their operational units and was to replace existing test methodologies for all of the
maintenance levels in the Army. The end result is a shorter logistics chain for system support [5].

Commercial Architecture

As with the military, there are several commercial initiatives in progress to incorporate automatic testing techniques.
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The commercial airline industry has gone the furthest in standardizing on ATE equipment, and initiatives in the
automotive industry appear to be making progress.

The T-100 system [6] is a fully integrated diagnostic system developed by EDS for General Motors. Its purpose is to
provide a means for automatically testing automobiles in the maintenance shop by connecting umbilical lines directly
to the automobile. The system evaluates the car and produces a fault tree for the mechanic to follow.

The Standard Modular Avionic Repair and Test (SMARTTM) system is the standard for avionics ATE for the airline
community. It utilizes ARINC Specifications 608A, 626, and 627 to provide a standardized test environment that
allows freedom of choice in selection of test instruments and test control computers [8]. SMART is currently being
used by several avionics manufacturers and third party ATE vendors to develop automatic test systems to support
avionics for new generations aircraft including the A330/A340, B-777, and MD-11. At present, three airlines are
using SMART to maintain avionics from their operational fleet: Lufthansa German Airlines, Air France, and Delta
Air Lines.

Standards for ATE

Recently, considerable effort has been taken by the IEEE to develop standards for ATE. The standardization efforts
are occurring under the administration of the IEEE SCC20. The ABBET and AI-ESTATE standards are particularly
relevant to the object-oriented design of ATE as discussed in the following sections.

A Broad-Based Environment for Test--ABBET

The initial motivation behind developing ATLAS was to provide unambiguous communication of test requirements.
ATLAS eventually evolved into a test language capable of performing functions of a specification language and a
programming language.

The Ada programming language was developed to support advanced software engineering practices and to foster the
development of reusable code for large software systems. Though not strictly an object-oriented language, Ada
provides many of the capabilities required by OOD.

In the late 1980s, initiatives were in progress to incorporate Ada into test systems while preserving the high-level
specification capabilities of ATLAS. To accomplish this, the IEEE established Project Authorization Request 1226
for the ATLAS/Ada-Based Environment for Test (ABET). Since that time, ABET has evolved considerably, and
today it exists as ABBET.

ABBET is a set of software interface standards for the test domain that enables exchange of test information and the
development of object-oriented test equipment. These interface standards are defined to support software portability,
reusability, exchangeability, and interoperability and to serve as targets for test-related software development tools.

The ABBET architecture consists of a framework of standardized service interfaces and information representations.
The primary services are underlying procedures used by ABBET application programs that perform specific
functions for the end users. Specifically, three sets of services are defined: test and diagnostic services, information
services, and user interface services. The test and diagnostic services provide the interface between the test programs
and the test resources. They also provide services between the UUT and the test system. The information services
enable access to both internal and external test-related information. Finally, the user interface services provide the
interface between a human user and the test system.

Artificial Intelligence and Expert System Tie to ATE-- AI-ESTATE

The AI-ESTATE standard P1232 is being developed to standardize the interfaces between test systems and AI-based
systems. In addition, AI-ESTATE is including standard representations for several types of knowledge bases and
databases. Currently, the standard specifies representations for fault tree models (FTMs) and enhanced diagnostic
inference models (EDIMs).

AI-ESTATE is being developed using a cooperative processing model. Under this model, all processes communicate
across a communication pathway or bus and access other parts of the system through a set of services. Thus, each
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functional block of an AI-ESTATE system consists of an object in the sense of OOD.

Specifically, each functional block is defined by the operations that can be performed on or by that block. The
attributes of the block are specified in a class lattice in order to maximize reuse of components. If one functional
block needs to interact with another, it uses the services provided by that block.

Using this architectural concept, the objects communicating in an AI-ESTATE system include the test system, the
reasoner, the presentation system, a maintenance data collection using a database management system, the UUT, and
the operating system. This architectural concept is depicted in Figure 1. Any data used by the objects on the
communication pathway will be specified in some standard representation. Even though we currently have
specifications for only the FTM and the EDIM, we anticipate defining or referencing standards for maintenance data
collection databases and other databases and knowledge bases.

Knowledge Representation

The current model representations defined by the AI-ESTATE P1231.1 Data and Knowledge Specification are
specified using the Express modeling language. Currently, AI-ESTATE has specified four models including the
Common Element Model (a collection of entities used by all models), the Attribute Model (a collection of attributes
inherited by several of the models), the Fault Tree Model (a standard representation for a static fault tree), and the
Enhanced Diagnostic Inference Model (a standard representation that extends the concepts of the dependency model
and the information flow model).

Fault Tree Models

The structure of a fault tree can be viewed as a decision tree or table. Each node of the tree corresponds to a test with
some set of outcomes. The outcomes of the tests are branches extending from the test node to other tests or fault
isolation conclusions. Typically, TPSs are designed around static fault trees; therefore, the AI-ESTATE
subcommittee developers decided it was prudent to include a representation for the fault tree in its standard even
though fault trees are not typically considered AI systems. Fault trees serve as the minimum representation for
test-related data.

The AI-ESTATE fault tree model inherits elements and attributes of the common element model and the attribute
model. The fault tree is processed by starting at the first test step, executing the indicated test, and traversing the
branch corresponding to the test outcome. The procedure is followed recursively until a leaf is reached in the tree,
indicating that fault isolation has occurred.

Enhanced Diagnostic Inference Models

The EDIM is based on concepts of dependency modeling [4] and information flow modeling [11]. As with the FTM,
the EDIM inherits elements and attributes from the common element model and the attribute model. In EDIMs,
diagnostic test outcomes are generalized beyond pass and fail outcomes to multiple outcomes for a diagnostic test.
Inferences are identified between particular test outcomes and other test outcomes and diagnostic conclusions.
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The set of inferences associated with a particular test outcome are represented in disjunctive normal form. This
representation provides flexibility and consistency in the logical expression of the inferences. No negations are
permitted within the AI-ESTATE representation because negative terms are expressly specified as atoms in the
conjunctions. In other words, each conjunction consists of a set of positive and negative inference atoms, and the
negative inference atoms are assumed to be negated.

EDIMs can be used by an AI system in several ways. The most basic approach is to limit test outcomes to pass and
fail and to assume the test outcomes are symmetric. This leads to a traditional dependency model as used by weapon
system testability analysis and system testability analysis tool. By allowing multiple failure inference, various
grouping operations, asymmetric inference, and reasoning under uncertainty, the model extends to the information
flow model as described in [11].

Finally, the EDIM extends further by permitting more detailed specification of test and UUT data, multiple test
outcomes, and a generalized attribute. This generalized attribute provides tremendous expressive power. For
example, using the generalized attribute, causal relationships between fault isolation conclusions can be specified,
thus extending the EDIM to include a causal model. The generalized attribute can also be used to include constraint
information when diagnosing by constraint satisfaction. Thus, EDIMs contain considerable power for providing
many AI-based solutions.

Test Encapsulation

An important notion in developing object-oriented test systems that include AI for test sequencing and inference is
the ability to isolate a test from the remainder of the test set. This type of test isolation is referred to as test 
encapsulation
[7]. An encapsulated test is an atomic test element defined to be independent of the current state of the UUT and the
tester. To define an encapsulated test, preconditions and post-conditions of the test need to be defined. The
preconditions indicate the steps necessary to set up the test for execution, and the post-conditions indicate the steps
necessary to return the state to neutral. Individual tests and groups of tests can be encapsulated depending on the
specific requirements of the tester and the UUT.

Combining ABBET and AI-ESTATE

To produce an object-oriented test system, it has become apparent that both ABBET and AI-ESTATE offer
capabilities that contribute to solving the problem. As such, the two standards need to be combined so that the
combination maximizes the capabilities of both. The ABBET committee envisions that AI-ESTATE will provide the
test strategy services for the test system with ABBET in control. The AI-ESTATE committee, on the other hand,
envisions that ABBET will provide test services with control being distributed throughout the objects of the test
environment. Thus, each object interacts concurrently with any other object on the bus (within the limitations of the
bus), and control is provided by the object requesting a service at a particular point in time.

The architecture of a combined ABBET and AI-ESTATE test system is shown in Figure 2. As in Figure 1, the
architecture consists of six objects, but in this architecture the services are distributed between the two standards.
ABBET would provide services for the presentation system (the user interface services), the information system (the
information services), and the test system (the test and diagnostic services). Within the test system, we see the
reliance on the ABBET architecture to use virtual resources and access to encapsulated test procedures. We could
consider the UUT to be a separate object on the communication pathway, but we will assume that it is accessed
through the test system for this architecture. AI-ESTATE, on the other hand, will be responsible for providing
services to the reasoner and the maintenance data collection system. Further, AI-ESTATE will define the formats of
the databases and knowledge bases used in the test system. Finally, standard operating system services will be
provided by whatever operating system is used on the ATE. Figure 2 shows UNIX being selected as the operating
system.
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Advantages of a Standard ATE System

Several advantages can be realized in applying a standardized object- oriented design of an ATE system.

The object-oriented paradigm facilitates the reuse of test resources. These resources include test programs,
instruments, drivers, and other objects within the test system.
The object-oriented paradigm for test encapsulation provides an easy mechanism for adding and deleting test
objects as required.
A standard form of knowledge representation provides a means of sharing knowledge between homogeneous
and heterogeneous reasoning systems. As a result, maintaining the knowledge in the knowledge base is
simplified.
The object-oriented paradigm incorporating the virtual resource concept enables the test to be configured to
required levels of performance. This results in a decrease in development cost and maintenance cost.

Several additional advantages exist for using the standards and the standardization process in determining an
architecture for intelligent ATE. These include the availability of a large pool of expertise in refining the architecture,
the development of a consistent, well-thought-out product, the acceptance by a large group of people, and the use of
a formalized review process to ensure the quality of the product. By not using the standards, the cost of incorporating
these features in a project not employing standards would be prohibitive.

Conclusions

Using the object-oriented paradigm guides the development of two ATE-related IEEE standards: ABBET and
AI-ESTATE. As discussed, OOD is quite effective in designing a complex system such as an intelligent ATE, and
several benefits can be realized. As we look to the remainder of this century and into the next, we recognize the need
for advanced techniques to continue to evolve ATE systems and architectures. This evolution must include the use of
AI because system complexity continues to grow unabated. To date, no standards have been defined for
incorporating AI in test systems. With the ABBET and AI-ESTATE standards, we have the opportunity to shape the
future of automatic testing and to provide a mechanism for grappling with the growing complexity.
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