
FUNCTIONAL PATH ANALYSIS: AN APPROACH TO SOFTWARE VERIFICATION

John W. Sheppard
William R. Simpson

ARINC Research Corporation
2551 Riva Road

Annapolis, Maryland 21401

ABSTRACT

A widely accepted approach to software
development involves successive refinement of
design and requirements specifications from a
top-level description of the system down to the
code level. As the system is refined, it is
veriEied at each phase of development beEore
proceeding to the next phase. In the past.
several tools and techniques have been developed
to assist in the development and verification
process.

Tools have been developed and have been in
use for many years to examine the testability
and system information flow in hardware systems.
These problems are approached as a knowledge
base verification and validation problem.
Several strong analogues exist between hardware
and software systems. However, several funda-
mental differences exist which affect the
approach to modeling and verifying the system.

This paper briefly describes past efforts
in verifying hardware and software systems and
then presents a preliminary synthesis and exten-
sion of these past efforts to the software
verification problem. We then conclude with an
assessment of our current status and note future
directions and recommendations for research in
this area.

INTRODUCT ION

The structured process of developing soft-
ware systems (as delineated in HXL-STD-2167 and
sometimes called top-down design or the waterfall
model) requires a disciplined approach to design,
implementation. and testinq. In order to ensure
compliance with the requirements specification
of the system and maintain quality control

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

@ 1988 ACM O-89791-260-8/88/0002/0266 $1.50 266

throughout the software life cycle, each level
of the development process needs to be verified
before proceeding to the next, more detailed
level. This structured approach is seldom
followed because the additional cost of the
structure imposed may exceed the cost of simply
developing executable code.

Software developers are faced with the
verification and validation of the system under
development as the system progresses through its
life cycle and the prevention or early detection
of as many errors as possible. What follows is
a description of an approach to software verifi-
cation utilizing artificial intelligence tech-
niques that. when applied at all phases of the
software life cycle, should produce a reliable
system with detailed documentation, both under
the structured approach and in conjunction with
“actual” software practices. It should also
provide an approach to isolating design and
implementation errors in the final product. The
approach is intended to be used in conjunction
with current approaches and development environ-
ments: however, it may also be used as a stand-
alone tool for assisting in the development and
verification process. The current implementation
is limited to the latter phases of the software
life cycle, namely, code development and mainte-
nance . However, the authors feel that this can
be extended to the entire life cycle.

BACKGROUND

Past Efforts

Several techniques and tools are currently
in use for conducting V&V (Verification and
Validation) of software systems. The techniques
are often classified according to the following
four categories:l

1. Static and dynamic techniques
2. Formal and informal techniques

3:
Automated and manual techniques
Functional and structural testing

These are intended to be applied throughout the
design and implementation process, yet they are
primarily applied in practice at the implementa-
tion phase in verifyinq that the coded system
conforms to requirements.

Other more specific techniques are intended
to be applied to testing only. However, these
techniques offer elements valuable to a more
generalized approach to software V&V. The
approach we are proposing incorporates elements
of graph theory (path analysis) and functional
analysis to determine functional interdepen-
dencies within software. These functional
interdependencies are then analyzed to generate
recommendations for improvement to the system
throughout design and implementation and a
strategy for testing the completed system.

Assumvtions

The following assumptions are made:

a. Software V&V ideally occurs throughout
the software life cycle. As development
proceeds through successive phases, the
V&V process is repeated to ensure
continued compliance with requirements.
Therefore. the following approach to
V&V is intended to be applied throughout
design and development with final goals
being a validated system and a testing
strategy in the event of the later
uncovering of errors (latent defects).
We are currently limited to the latter
phases of code development and mainte-
nance: however, we do not see extension
to other phases of software development
as a problem.

b. The compiler used will verify the
syntactic (and. to a limited extent,
semantic) correctness of the coded
system. The proposed method will be
left to analyze the functional inter-
dependencies of the system.

c. It is assumed that we are dealing with
higher-level languages that have some
code structure breakdown by module. We
define a module to be an identifiable
subset of the code that has a beginning
and an end and may be linked as an
entity into one or more locations of
the code as a whole.

d. The process of choosing the type of
tests to he performed depends on the
system under development. It is assumed
that a set of tests either exist or may
be designed from the specifications as
needed to determine the correctness of
some function of the software system.
The outcome of the test will then be
evaluated by some external agent (often
referred to as an oracle1.2 Thus,
the approach intends to determine a
test strategy using a defined test
set. It may also recommend modifica-
tions to the test set.

e. It is assumed that verification tests
can be considered information sources
and that software errors (potential
isolation to anomalies) are conclusions
that may be drawn from these tests.
The performance of a test will provide
information as to the proper or improper

functioning of some subset of the code
under consideration. Information
content is a measure of the quantity
and quality of the information provided.
The primary concern in software testa-
bility is evaluating the information
content of these information sources as
related to the desired conclusions for
the purpose of verifying the design or
implementation of the system. Thus,
the problem is treated as a knowledge-
base V&V problem. The analysis
Performed identifies ambiguous and
indistinguishable Points within the
knowledge base. It also identifies
unreachable conclusions, hidden
conclusions, falsely indicated
conclusions, knowledge-base circular-
ities, and redundancy of information
sources. 3 For purposes of this
paper, we are assuming a module level
analysis. That is, tests provide
information as to the proper functioning
of modules, and the proper/improper
functioning of modules are conclusions.

f. In developing an approach to software
verification, several similarities were
discovered to exist between software
and hardware testability analysis.
Both hardware and software systems may
be modeled as a flow of events and,
therefore, may be represented as a
knowledge-base V&V problem. The systems
consist of information sources and
fault-isolation conclusions that are
drawn from the information provided.
As a result. the actual design of the
tests (information sources) may be
treated as independent of the fault-
isolation task. Fault isolation occurs
using tests built into the system.
Test design then verifies the informa-
tion source dependencies or recommends
modifications to them.

g. There exist some fundamental differences
between hardware and software systems.
Hardware analysis assumes the existence
of a verified system in which components
may fail. When the components fail,
the system is fault isolated and the
component is either repaired or
replaced. Software, on the other hand,
does not have components that can fail
and be repaired or replaced. A fault
in software is a design flaw. Sy
design flaw, we mean a coding. logic,
or compiler-acceptable syntax/semantic
error. (A requirements error is not
considered a design flaw and is assumed
to be handled during validation.) When
a fault is uncovered, the system must
undergo some level of redesign to
correct the fault.

Path Analysis

One of the most coaunon approaches to soft-
ware testing is path analysis (which incorporates
elements of graph theoryjs4 In performing
path analysis, the module to be tested is modeled

267

as a directed graph (digraph). and tests are
performed to cover the various paths through the
module.

Functional Analysis

Another approach to software testing is
functional analysis. which is based upon the
assumption that a program Is made up of one or
more functions, each of which is a combination
of smaller functions.5 Within a module, the
functions may be visualized as blocks corre-
sponding to sequential blocks, conditional
blocks, and iterative blocks, or calls to other
modules. In verifying these functions, all
lower level functions must be veriEied as well.
This Indicates a hierarchical interdependency of
functions which is ideally suited to verification
throughout design and implementation.

System Testability and Maintenance Proqram
(ST-)

ARINC Research Corporation’s STAMP is a
computer-aided testability design and fault-
isolation development tool. It has been applied
to a number of hardware systems, often achieving
field maintainability improvements of 60 to 100%.
STAHP analyzes a model representing a system’s
functional interdependencies to determine the
system’s level of testability. It then provides
a detailed strategy to isolate anomalies (Faults)
in the system.

The system to be analyzed by STAMP must be
modeled according to the functional flow of
information through the system. This flow of
information is represented as interdependencies
of information sources: therefore, the inmrediate
(or first-order) dependencies of each information
source (test) must be determined. These Eirst-
order dependencies are then input for analysis,
and STAW generates all higher-order dependen-
cies, analyzes the system’s tests, makes recom-
mendations for modification of these tests, and
generates a fault tree using the tests provjded.6
In performing its analysis. STAMP uses a unique
inference engine that pre-chains the dependencies
of the system under study, using a form of
matrix closure.7

In STAHP, the assertion of a functional
information source as true corresponds to a
failed (or bad) test outcome. STAMP evaluates
each information source according to the amount
of Information that can be gained from the
assertion of these information sources as true
(fail) or false (pass) and determines the best
sequence of procedures to locate the anomalies
that may exist in the system based on the amount
of information available at each point.8

module level: however, extension to more detailed
levels is not seen to be a problem. The proto-
type system uses the inferencing process employed
in STAnP and will generate metrics directly
related to software in addition to testability
metrics.

A SCWTWARE TESTABILITY APPROACH

Functional Path Analvsis

Functional path analysis of software systems
combines path and Eunctional analysis approaches
to software testing with the functional approach
to testability analysis performed by STAMP.
This approach evolves through three levels which
should be applied throughout design and imple-
mentation where appropriate.9 These three
levels are:

1. nodule Level analysis
2. Functional Path Level analysis
3. Independent Function Level analysis

These three levels provide a means of efficient
verification oE a system and successive local-
ization of anomalies in the system in the event
verification fails.

During the code development and maintenance
phases of the software life cycle, the design
process consists of iterative refinement OP the
system. At each step in development, the system
may be modeled at the module level in the form
of a digraph where modules are represented as
nodes, and the modules’ Eunctional interdepen-
dencles are represented by edges between nodes
with a direction specified.

Hodule digraphs are primarily represented
in the form similar to the visual table of
contents (VTOC) of Hierarchy-Input-Process-Output
(HIPO)* diagrams (Figure 1). Control and data

FIGURE 1

lWDlJLE DEPENDENCIES

A system for analyzing software testability
is currently under development. The method
proposed below followswell deEined rules for
analysis of software structures. As a result,
it is ideally suited to automatic analysis of
design documentation and system code. In fact.
the system under development currently performs
automatic modeling and analysis of coded systems
written in FORTRAN and various FORTRAN dialects.
Currently. auto-analysis occurs only at the

flow are not indicated by the diagrams; however,
the diagrams serve well to show the overall
interdependency of the system’s modules. The
direction indicated on the diagrams reElects the
functional flow of information (as opposed to
data) through these modules; the lower levels

*IElM terminology

266

feed the higher levels, thus the higher levels
depend on the lower levels. (In representing
recursion, only the initial call to the recursive
routine is indicated in the hierarchy. Recursive
testing is handled at the functional path level
with the specific call.) Generally, it is
assumed that a functional test will be placed on
the “output” of each module. This is represented
by indicating a test point attached to the line
feeding the higher-level module. This level of
analysis corresponds to integration testing in
which the way modules interconnect with each
other in the system as a whole is of interest.

Digraphs representing the structure of the
modules (Independent Function stage) are also
drawn with functions (or statements when at the
code level) being represented as nodes and
control/data flow represented as directed edges.
Once again, the direction reflects the functional
flow of information through the nodes, but it
also combines the information represented in
data flow and logic flow digraphs. The resulting
model represents the module at a high level of
parallelism (Figure 2). For example, a sequence

FIGURE 2

STATRMENT DEPENDENCIES

I+

of assignment statements that do not share
variables are diagranuned in parallel. In a
serial machine. they are dependent upon one
another because of the order imposed on them,
but functionally. they have no interdependency.

In Functional Path Level analysis, the
first step is to generate the functional digraph
of the module to be analyzed (discussed above).
Paths representing the flow of information at a
single level of control are then separated out
of the graph. The level of control is said to
have changed upon (a) calling another module.
(bl executing the result of a conditional, or
(cl entering an iterated set of functions (a
loop). The resulting digraph (Figure 3)
represents the functional dependency of these
levels with the higher-level elements
(lower-level numbers), depending upon the
lower-level elements.

FIGURE 3

PATH LEVEL DEPENDENCIES

As these three levels of analysis (Module.
Functional Path, and Independent Function1 are
completed, an algorithm. such as the one employed
by STAMP, is used to determine the test strategy
to verify the system. The software testability
prototype inference engine is based on an infor-
mation theoretic search algorithm that chooses
tests that provide the most information. The
resulting sequence of tests may then be followed
to isolate an anomaly in the system in the fewest
steps. A specific example of the application
process is given below.

Example Application

An analysis was made of an existing program
at the module level. The program chosen, called
COMBINE, merges two STAMP input files (File 1
and File 2) into one file (File 3) for STAMP
processing. The prototype system automatically
scanned the coded system and generated the
dependency model for analysis.

The module level dependencies were generated
automatically by our prototype system using the
method outlined above. The module level digraph
appears in Figure 4. A test is assumed to be

/

/

FIGURE 4

I4DDULE DEPENDENCIES - COMBINE UTILITY

associated with the output of each module. and
the output should feed its calling module.
Next, the first-order dependencies are generated.
The first-order dependency of a test is deter-
mined by following the paths that feed the test

269

back until another test is found or until the
path ends. The first-order dependencies for
COWSINE’s modules are as follows:

1. Test Combine

2. Test Read Input

3. Test Write Input

4. Test Size Matrix

5. Test Fetch Label

6. Test Convert Dep

7. Test Fetch C Lb1

a. Test Fetch C N

9. Test Elem Dump

10. Test Fetch Cond

11. Test Store Cond

12. Test Fetch

13. Test Store

14. Test I4 Fetch

Dependencies

Combine, Test Read Input,
Test Write Input, Test
Size Wat rix

Read Input File

Write Input File

Size Matrix, Test Fetch
Label, Test Convert Dep.
Test Fetch C Lbl. Test
Fetch C N. Test Elem Dump

Fetch Label

Convert Dep. Test Fetch
Label, Test Fetch C
Label. Test Fetch Cond.
Test Store Cond. Test
Fetch, Test Store

Fetch Cond Label

Fetch Cond N, Test Fetch
Cond

Element Dump. Test M
Fetch

Fetch Cond

Store Cond

Fetch

Store

Waster Fetch. Test Fetch
Label, Test Fetch C Lbl.
Test Fetch Cont

Once these dependencies have been determined,
all higher-order dependencies are calculated.
These higher-order dependencies are then
analyzed to determine the test strategy. The
decision tree for COMSINE is given in Figure 5

To read this tree. start at Step 1 and
perform the requested test. If the test passes,
proceed to the step indicated in the Pass
column. If the test fails, proceed to the step
indicated in the Fail column. When an anomaly
is isolated, the module name is given in the
column corresponding to the last test outcome.
If the system verifies as correct, the isolated
conclusion should be “System Verified.” If
functional “debug” prints are coded into the
module, then system anomalies can be isolated
with the resident data that gave the first
indication of anomalous behavior.

Let us assume that there is an anomaly with
the utility: the labels do not properly
correspond to the dependencies being mapped into
the new file.

Step 1:

Step 2:

Step 6:

Step 8:

Test Convert Dep
Convert Dep maps the dependencies
from the input files File 1 and
File 2 into File 3. After
checking the mapping procedure,
it is determined that the
dependencies are being mapped
properly. pAss

Test Size Matrix
Size Matrix determines the size
of the new file (File 31. maps
the dependencies from the two
input files (File 1 and File 2).
and calls Element Dump. The
dependencies map correctly, but
the labels do not correspond with
the default labels assigned by
STAMP. E

Test Elem Dump
Element Dump displays the
dependency mappings as they
occur. As in Step 2. the labels
are wrong. piIJ

Test W Fetch
Master Fetch returns the label of
any element given its row in the
matrix. Some of the labels are
wrong. &

Waster Fetch is isolated.

In many cases, it is sufficient to isolate
to a problem module. Once in the module, given
the symptoms of the anomaly, it becomes obvious
where the problem lies. However. at times the
complexity of the module may be such that the
solution is not obvious. This is when the next
level of analysis is performed.

TEST CHOICE AND EVALUATION

It must be pointed out that the problem of
designing the appropriate test for use in any
form of software verification is a difficult
one. and such is the case in this approach as
well. Therefore. the subject of designing tests
will only be dealt with generically in this
paper and will be limited to the module level.

Testing of any item may be thought of as a
stimulus-response analysis. In general. a
functional test must provide as outputs both the
stimulus and the response so that the oracle may
evaluate the response in terms of adequate or
anomalous (pass/fail) behavior. A special test
may provide its own stimulus. In software
systems. this may be a Wdebug* call to a routine
with the appropriate data contrived for the
test. In such cases, the known stimulus should
provide a known output to be evaluated as
adequate or anomalous.

A module test is intended to verify that a
module, independent of the system, is in
compliance with that module’s design specifi-
cations. It need not take into account how the

270

Step Test Prev Step Pass Fail

:
3
4
5
6
7
8

1:

::

13
14

Test Test Convert Size Matrix Dep
Test Combine
Test Read Input
Test Write Input
Test Elem Dump
Test Fetch C N
Test M Fetch
Test Elem Dump
Test Store Cond
Test Fetch
Test Store
Test Fetch C N
Test Fetch C Lb1

0 1
2
3
4
2
6
6
;

10
11
9

13

Step Step 2 3 Step Step 9 6
System Verified Step 4
Step 5 Read Input File
Combine Write Input File
step 7 step a
Size Matrix Fetch Cond N
Element Dump Master Fetch
Step 10 Step 13
Step 11 Store Cond
Step 12 Fetch
Convert Dep Store
step 14 Fetch Cond
Fetch Label Fetch Cond Label

FIGURE 5

COMBINE DECISION TREE

module has been integrated in the system. The
module may be called from several locations
using different parameter values. yet only one
test is to be designed for that module. In
designing the module test, however, one must
take into account the stimulus and response
(data passed into the module. the expected
results given the passed data, the possible
effects on global variables and data structures,
and the ramifications associated with side
effects). The test being dependent on called
modules. as well as the module It is testing,
must also take into account the effect these
called modules have on the tested module.

C.

d.

e.

A first attempt at designing the module
level test is derived from the Functional Path
Level analysis of the module. Once a module has
been modeled at the functional path level, a
test strategy for the module may be generated
using the functional path level tests. The
design of these tests are more directly related
to the structure of the module and should there-
fore be more straightforward.

f.

9.

EXTENSIONS OF CURRENT WORK h.

The procedure discussed above shows
considerable promise in the area of software
validation and verification. However, there are
several issues we have just started to consider
that will need further investigation. These
include:

a. Test design issues - Determining tech-
niques and approaches to mapping system
requirements to tests of the system.

b. Test evaluation techniques - Evaluating
large quantities of data to determine
whether the test passes or fails based
upon system specifications.

An approach has been presented for verifying
software systems at the code development and
maintenance phases of the software life cycle.
The approach involves modeling the system
hierarchically (module level) and then breaking
down each module to the lowest level and modeling
its implementation. The lowest level is then
generalized to a point in between where
functional paths are modeled. These paths are

Real-time modeling and temporal
dependency - Modeling systems to consider
timing factors concurrent with functional
dependencies.

Inconsistency in test outcomes -
Determining consistency between test
design and evaluation, system
implementation and requirements, and
system implementation and modeling.

Software metrics - Analyzing quantifiable
attributes of software to tag potential
sources of error and candidates for
redesign.

Automated software modeling - Analyzing
program design languages, software
modeling schemes, and coded systems to
automatically develop the dependency
model for the system.

Built-in tests - Embedding code in the
system to allow testing of the software
according to the generated test strategy.

Extension to all development phases -
Applying the above techniques to design
and requirement phases of the software
life cycle.

SUMMARY

271

hierarchical in nature yet are based on the
control flow oE the module. After the system is
modeled, veriEication occurs from the top level
down. nodules in conflict with design specifi-
cations are isolated. Then, the path that
contains the conflict is identified. Finally,
if the problem is not readily apparent. the
independent function containing or contributing
to the problem is located (these latter two
Points have not been fully automated yet). A
development efEort that incorporates this type
of approach in verifying the system will end
with (a) a well documented system, (b) a
verified software system, and (cl a detailed
strategy to isolate the sources of future
soEtware errors as they become apparent.

REFERENCES

1. James Martin and Carma McClure, Structured
Techniques for Computinq. Prentice-Hall,
Inc., Englewood Cliffs. New Jersey, 1985.
pp. 671-675.

2. William E. Howden, “The Theory and Practice
of Functional Testing,” IEEE Software,
September 1985. p. 6.

3. Jerry L. Graham. “Knowledge Base
Verification,” Proceedinqs 1987 Symposium
on Space Technoloqical Challenqes for the

Future, U.S. Naval Academy, Annapolis,
Maryland, Hay 1987.

4. Shashi Phoha , “A Quantifiable Methodology
for Software Testing: Using Path
Analysis. ” United States Air Force Report
ESD-TR-81-259, Hanscom Air Force Base.
Massachusetts, December 1981.

5. William E. Howden. pp. 6-17.

6. Y. R. Simpson and H. S. Balaban. “The ARINC
Research System Testability and Maintenance
Program (STAMP), ” Proceedings 1982 IEEE
AUTOTESTCON Conference, Dayton. Ohio.
October 1982.

7. Y. R. Simpson and B. A. Kelley. “Multi-
Dimensional Context Representation of
Knowledge-Base Information,” Proceedinqs of
the 1987 Data Fusion Symposium (DFS-87).
Laurel, Haryland, June 1987.

8. B. A. Kelley and W. R. Simpson. “The Use of
Information Theory in Propositional
Calculus,” Proceedinqs of the 1987 Data
Fusion Symposium (DFS-87), Laurel,
Maryland, June 1987.

9. The appropriateness of a stage being applied
depends upon the level of detail of the
system documentation.

272

