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but this process is independent of 
design and manufacturing for the most 
part. 

The general problem of diagnosis is 
extremely difficult. Optimizing a diag- 

tempting to address these prob- T h e  complexity of modern sys- WILLIAM R. SIMPSON 
lems, developers have created sev- 
eral tools to build efficient fault-iso- 

JOHN W. SHEPPARD tems is putting new demands on 
system maintenance. Every system, 
whether airplane, radio, or com- lation strategies using many ap- 
puter, has a mission to perform.The proaches, including bruteforce/ 
primary goal of system mainte exhaustive search, heuristic search, 
nance is to keep the system avail- and entropy-directed search. 

In the early 198Os, industry and 
nostic sequence of tests is known to be government developed several initia- 
an NP-complete problem, and deriving tives to help keep pace with growing sys- 
heuristics to improve practical diagno tem and diagnostic complexity From 
sis is a long-standing problem.'"l In at- these programs and initiatives, groups 

able for that mission. When the sys- 
tem fails, the job of maintenance is 
to diagnose and repair the failure 
as rapidly as possible to return the 
system to correct operation. But di- 
agnosing failures in complex sys- 
tems requires analyzing system 
characteristics in great detail. 

How do you reconcile the need 
for rapid repair with the need for in- 
depth analysis? Fault-tolerant sys- 
tems approach the problem by lim- 
iting the need for diagnosis and 
repair, identifying failures as they 
occur on line, and reconfiguring 
the system to maintain functional- 
ityThose in field maintenance have 
also tried to provide system-level di- 
agnosis, incorporating ad hoc p r o  
cedures based on field expertise, 

In this article,part 1 of a series,we 
describe a method of assessing 
and diagnosing testability that uses 
several well-established techniques 
from artificial intelligence. The 
method provides a way to describe 
the flow of diagnostic information 
through a system, and the resulting 
model serves as the knowledge 
base for several analysis tools. At 
Arinc, we have applied this method 
to assess and diagnose the testabil- 
ity of many systems over the last 10 
years. 

Integrated 
diagnosis 
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are now developing useful testing and 
diagnostic products, some of which are 
becoming well recognized in the auto- 
matic test community5-’ 

Unfortunately, each of these initiatives 
treated only one aspect of the life-cycle 
testability problem or treated each as- 
pect as a separate issue. None of the ini- 
tiatives significantly addressed the un- 
derlying philosophy of integration or its 
impact. Instead, integrated diagnosis 
was treated as nothing more than file 
and data sharing. 

As diagnosis and maintenance began 
to receive more attention, the focus 
shifted to methods that more truly re- 
flected the nature of integrated diagno- 
sis. In 1990, Keiner formally defined inte- 
grated diagnostics as8 

tion with its set of tests to determine the 
test set’s specific diagnostic capability. 
On the basis of the results,the testability 
analyst may design new tests, eliminate 
or redesign old tests, or repackage the 
system to meet testability goals or con- 
fine potential testability problems to sin- 
gle, replaceable unit packages. 

The process used to modify a design 
to meet a set of testability goals is called 
design for testability. Testability goals 
may be generic,such as those identified 
i n  Mil-Std-2165,“ or they may arise from 
specific design criteria. These goals are 
usually set at thesystem or mission level. 

“ ... a structured process which maxi- 
mizes the effectiveness of diagnostics by 
integrating the individual diagnostic ele- 
ments of testability, automatic testing, 
manual testing, training, maintenance 
aiding,and technical information.” 

hangar,the maintenance technician can 
pull the unit identified and test it  with 
automatic test equipment to determine 
which card within the unit contains the 
fault. The ATE may also identify the 
card’s failed component or compo- 
nents.An alternative is to have the tech- 
nician manually test the unit to find the 
faulty component. 

Electronic maintenance aids and on- 
line technical information make diag- 
nosis more effective.These aids permit a 
technician prompt and easy access to 
the information needed to identify the 
fault and make the repair. Training pro- 
grams for technicians need to cover the 
use of these aids and tools so that tech- 

This definition encompasses much 
more than file and data sharing. Here, 
the primary goal of integrated diagnosis 
is to optimize field-maintenance re- 
sources within the system’s operational 
environment. Strategies include mini- 
mizing the mean time to isolate system 
faults, the mean time to repair systems, 
and the sparing requirements associ- 
ated with systems. Training is also in- 
cluded as an area of concern. By reduc- 
ing the need for specialized diagnostic 
skill,we can reduce the impact of losing 
experts and expertise and reduce the 
training costs. 

The process used to attribute these 
goals to a specific subsystem or hard- 
ware element is called testability alloca- 
tion. 

Once the design team defines and de- 
termines the testability for a system, test- 
ability analysts from that team can d e  
velop diagnostic strategies or 
procedures to identify faults as they 
occur. This strategy development fre- 
quently involves the integration of auto- 
matic and manual testing. In avionics 
systems, for example, the built-in-test 
(BIT) system on an airplane may iden- 
tify one of the avionic units as having 
failed. When the airplane returns to the 

The elements 
Following Keiner’s definition, the prin- 

cipal components of an integrated diag- 
nostic system are tools that allow us to 
evaluate the design and develop diag- 
nostic strategies. Design evaluation con- 
sists of analyzing the system in conjunc- 

agnostic process at the next level. 
According to Keiner’s definition, we 

must apply a carefully determined struc- 
ture to the problem in a way that guar- 
antees a complete and consistent archi- 
tecture. A structured approach ensures 
that the problem is properly and appro- 
priately represented. That is, the ap- 
proach does the 

w covers hierarchical details 
w is applicable at different maintenance 

levels 
w includes information relevant to differ- 

ent technologies and interfaces 
w represents system details to enable ei- 

theron-line or off-line testing 
w provides a mechanism for efficient 

analysis 

EIectronic 

maintenance 
aids make 

diagnosis more 
effective. Training 
programs need to 
cover the use of 

these aids. 

nicians can effectively,efficientlyand re- 
liably repair and maintain the system as 
required. 

When implementing a hierarchica1,in- 
tegrated maintenance architecture, we 
must consider how on-line and off-line 
test systems are integrated. BIT and per- 
formance monitoring/fault locating sys- 
tems provide on-line monitoring of a 
system’s performance and health state. 
As problems arise, these systems flag 
and report the problem so that techni- 
cians can take the appropriate action. 
Any actions taken and the results of 
tests are stored for use as input to the di- 
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Testability definitions 1 components or parts without removing 

Keiner’s definition includes testability 
as one of the elements in integrated di- 
agnostics. Mil-Std-2165 defines testability 
a 2  

“...a design characteristic which al- 
lows the status (operable, inoperable, or 
degraded) of an item to be determined 
and the isolation of faults within the 
item to be performed in a timely and ef- 
f i c i en t man ne r.” 

We say that equipment has good test- 
ability when we can confidently and ef- 
ficiently identify existing faults. Fre- 
quently identifying only the failed 

good items establishes a high confi- 
dence level. Efficiency is optimizing the 
resources required, including staffing, 
labor hours, test equipment, and train- 
ing. 

The literature describes at least two 
types of testabilitylnherent testability is a 
design characteristic that provides the 
potential ability to observe system be- 
havior under test stimuli. The location, 
accessibility, and sophistication of tests 
that we may include in the system de- 
fine its inherent testability 

Achieved testability,on the other hand, 
is a maintenance characteristic that pro- 
vides the actual ability to observe sys- 
tem behavior under test stimuli.We mea- 

sure achieved testability by the results 
of the diagnostic process, including the 
set of tests defined for the system, real- 
ized false alarms, ambiguities, and cor- 
rect as well as incorrect diagnoses. 

Achieved testability is the same as in- 
herent testability if all diagnostic tests 
are available,no diagnostic tests are sub- 
ject to false alarms, and the fault-isola- 
tion techniques fully exploit inherent 
testability For this reason, inherent test- 
ability is the upper bound on achieved 
testability, while achieved testability has 
no practical lower bound except per- 
haps no testability. 

Central to achieving maximum test- 
ability is the design of the test. Test here 
is “a signal, indication, or other observ- 

~- - ..__ ._ .__ 

MODEL-BASED DESIGN FORTESTABIUTY: ONE COMPANY’S APPROACH 
The 1980s saw a shift from systems that emphasized 

design for performance to those that stressed design for 
field operations. With th is  shift has come an increased 
demand for systems that sustain a certain performance 
level throughout their life. Customers are demanding to 
know how maintainable systems will be in the field, almost 
before they ask about performance. 

Clearly then, the old way of doing business is giving way 
to a more structured approach. Companies can no longer 
afford the luxury of designing to performance specifica- 
tions and then supplying maintenance and diagnostic pro- 
cedures as an afterthought. This afterthought, or 
nonintegrated, approach led to unsatisfactory conditions: 
Retest OK, or RTOK (pronounced ree-tock) rates were 40+ 
percent with field NFF (no-fault-found) rates of 50 percent, 
and false-alarm rates often exceeded valid detections. 

Companies tried to combat these deficiencies in testabil- 
ity by providing detailed specifications, but results in the 
field diverged significantly from the ad hoc testability 
measures the designers had taken. In 1985, recognizing 
the problem, the US Department of Defense instituted Mil- 
Std-2165 to require a detailed analysis of testability issues 
during design. 

Since then, a number of companies have developed ap- 
proaches to comply with the standard. Many use a model- 
based approach to design for testability and diagnosis. 
This article i s  the first in a series reporting on work done by 

Arinc Research Corp. in developing a model for inte- 
grated diagnostics. The series, which documents 10 years 
of development and application, addresses the mathemat- 
ical approaches taken in Arinc‘s System Testability and 
Maintenance Program, called STAMP, and Portable Inter- 
active Troubleshooter, called Pointer. 

Arinc‘s model-based approach, called information-flow 
modeling, differs from the traditional model-based ap- 
proach because it does not use a physical model of the 
system during diagnosis. Instead, a limited form of intelli- 
gence is  placed into the diagnostic process, taking into 
account any known information, such as built-in-test read- 
ings, operator reports, logistics history, and specific symp- 
toms. The model represents the knowledge base of the 
system to be tested as the system’s flow of diagnostic infor- 
mation. Consequently, the maintenance technician has 
maximum flexibility because the model can adapt to 
changing conditions during maintenance and i s  able to 
work around deficiencies in test equipment and other fac- 
tors. 

The first article in the series is  an overview of the infor- 
mation-flow model’s structure. Later articles will expand 
on this structure and related subiects. 

The article on assessing system testability includes 
graphical representations, groupings, and multiple-con- 
clusion mapping and describes in detail the processing of 
the model, including higher order representations and the 
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able event that may be a normal output 
of a system or be caused to happen."" 
This definition is based on the concept 
of information fusion, in which a test 
serves as information that we can apply 
to the diagnostic problem. We must then 
fuse the multiple sources of information 
to correctly diagnose the fault. 

This definition of test is much broader 
than the typical, more restrictive defini- 
tion of test as a stimulus-response pair 
indicating the behavior of the system. 
What a maintenance technician may 
see or hear, for example, qualifies as a 
test. Since most tests can have two out- 
comes-pass and fail-we assume that 
all tests are binary. In this waywe control 
combinatorial explosion by requiring a 

multiple-outcome test to be described 
as a set of binary-outcome tests. 

As with testability,diagnosis often rep- 
resents more than one concept, usually 
distinguishable by context. We are con- 
cerned here with three aspects of diag- 
nosis,all of which apply whether we are 
considering on-line monitoring or off- 
line diagnosis. Detection refers to the 
ability of a test,a combination of tests,or 
a diagnostic strategy to identify that a 
failure in some system has occurred. 
This term is often associated with BIT 
and may actually be the primary design 
criterion for BIT. 

Localization is the ability to say that a 
fault has been restricted to some subset 
of the possible causes.This also is asso- 

types of information that can be derived from these repre- 
sentations. The authors compute several testability charac- 
teristics and describe their use in  assessing system 
testability. 

The article on using test resources describes one of the 
classic problems arising from an ad hoc approach to de- 
sign for testability: some portions of the system are over- 
tested and other parts are undertested. The article gives 
procedures for analyzing the test set with the goal of pro- 
viding the minimum testing to achieve all testability obiec- 
tives-including incorporating multiple failures, 
compensating for false alarms, identifying inadequate test 
resources, and eliminating unnecessary test resources. 

In an article on static and dynamic fault isolation, the 
authors describe fault isolation as a search problem in 
which selected tests prune the space of possible diagnoses. 
They review approaches to diagnostic search with empha- 
sis on an approach that uses information theory. They also 
derive entropy-based approaches to choosing tests using 
a set of inference rules tailored to fault diagnosis. An inter- 
active process that uses test-choice and inference algo- 
rithms allows diagnosis without precomputing fault trees. 
Details are given on how to incorporate machine learning 
into diagnosis. 

Although inference has been applied successfully to 
many diagnostic problems, testing frequently yields uncer- 
tain or incomplete information. In an article on fault isolu- 

ciated with a combination of tests or a 
diagnostic strategy Clearly all BIT that 
detects faults also localizes them to at 
least one of all possible faults. I f  the lo- 
calization issufficient to repair or recon- 
figure the system, we often refer to BIT 
as smart BKBIT, however, is not the only 
diagnostic technique that localizes 
faults. Often ATE and manual isolation 
use diagnostic strategies that localize 
the fault sufficiently to repair or recon- 
figure the system. 

Isolation is the identification of the 
specific fault through some test, combi- 
nation of tests, or diagnostic strategy Iso- 
lation in this article is restricted to local- 
ization that is sufficient to repair a single 
uni t  at a specific maintenance level. 

tion under uncertainty, the authors describe how uncer- 
tainty may arise because of poorly defined tests, inaccu- 
rate instrumentation, or inadequate skill levels. Within an 
interactive environment, confidence in test data can be 
input to diagnostic reasoning. The authors' approach to 
reasoning with uncertain or incomplete information incor- 
porates solutions to a number of problems, such as speci- 
fying certainty in test results, computing certainty values 
for possible diagnoses, and recommending a repair ac- 
tion. 

All the analyses for diagnostics can be combined in one 
integrated approach to diagnosis and repair. In an article 
on integrated diagnostic architectures, the authors cover 
the basic elements of an integrated architecture, including 
design for testability, testability allocation, logistics sup- 
port, built-in test, performance monitoring, embedded 
maintenance, automatic test equipment, electronic main- 
tenance aids, logistics feedback, and training. 

The series encompasses more than 10 years of work on 
developing these techniques and applying them to the test- 
ability and diagnosis of complex systems. All the areas 
described have been directly addressed in applications 
with successful results. To date, Arinc has not fully applied 
this integrated architecture, but several full applications 
are currently underway. Full diagnostic architecture inte- 
gration may take considerable time but, ideally, will span 
the life cycle of the system. 
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The model 
Our model-based approach incorpo- 

rates techniques from information fu- 
sion and artificial intelligence to guide 
analysis.The model represents the prob- 
lem to be solved as information flow. 
Tests provide information. Diagnostic in- 
ference combines information from 
multiple tests using symbolic logic and 
pattern recognition. 

Primitive elements 
Because the model uses information 

fusion, testability analysts have to con- 
sider the information gained from per- 
forming a test as they develop the 
model. The analyst begins by specifying 
the primitive elements and then pro- 
ceeds to a description of the logical re- 
lationships and groupings of these ele- 
ments. 

The primitive elements of the model 
are the tests and fault-isolation conclu- 
sions,which are based directly on infor- 
mation fusion. Tests correspond to the 
information sources, while fault-isola- 
tion conclusions correspond to the set 
of conclusions that can be drawn after 

running tests. A test is any source of in- 
formation available that the analyst can 
use to discern a fault-isolation conclu- 
sion. A fault-isolation conclusion is any 
element that we can isolate within the 
model.Thus,a conclusion is often a fail- 
ure mode of some component or func- 
tional unit within the system. 

The model also includes three special 
primitive elements: testable input, un- 
testable input, and No Fault. The inputs 
represent information entering the sys- 
tem that may have a direct bearing on 
the health of the system.A testable input 
is a conclusion corresponding to an ex- 
ternal stimulus combined with a test 
that examines the validity of that stimu- 
lus. I f  we have an input that cannot be 
examined for validity, that element is 
called an untestable input. Finally, the 
model includes a special conclusion 
corresponding to the condition that the 
test set found no fault. No Fault, also re- 
ferred to as RTOK (for retest okay), p ro  
vides us with a closedset formulation 
that includes anything not directly ac- 
counted for. 

The analyst organizes conclusions ac- 
cording to the required repair level.Con- 
clusions include line-replaceable units 

Test 

Testable input 

Figure 1. Example ofa dependency graph. 
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(LRUs) if the need is at the organiza- 
tional level, shop-replaceable units 
(SRUs) if it is at the intermediate level, 
ar  components if it is at the depot level. 
Further, the analyst can develop models 
that cross levels. That is, in a single 
model, a conclusion may be a subsys- 
tem, an LRU, an SRU, a component, or a 
failure mode, depending on what is a p  
propriate. 

Dependency relationships 
After specifying the primitive ele- 

ments, the next step is to determine the 
logical relationships among the tests 
and between the tests and the conclu- 
sions.To determine logical relationships, 
the analyst considers the following for 
each test: 

1. inferences drawn from a test failing 
2. inferences drawn from a test passing 

In the initial stages of developing a 
model, the first issue is more important. 
The modeler is interested in listing con- 
clusions that, corresponding to a failure, 
would explain the current test failure. 
The modeler is also interested in listing 
tests that, should they fail, would cause 
the current test to fail. If such tests do 
exist, we say that the current test de- 
pends on tests and conclusions that may 
cause it  to fail. That is, a dependency re- 
lationship exists. The second question is 
important in determining the type of 
test (for example, whether the informa- 
tion provided is symmetric). 

We represent dependency relation- 
ships in the model as a directed graph in 
which tests and conclusions are nodes 
and dependencies are edges. Figure 1 il- 
lustrates such a graph. If test tz depends 
on test f l ,  then either an edge is drawn 
from t, to t,,or a path exists from tl to t2 
in which all other nodes on the path are 
conclusions. We can interpret the de- 
pendency graph as “If tl fails, then t2 will 
also fail.” 

Figure 1 shows edges from tests to 
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conclusions.This representation is an ar- 
tifact of the way analysts typically create 
dependency models. In general, we can- 
not say that if a test fails, then a conclu- 
sion will fail, unless test performance 
causes a system component to fail. 

As an alternative, we can consider a 
logical representation of dependency, 
shown in Figure 2 as an edge from t2 to 
t,. We interpret this representation as “ I f  
t2 passes, then t i  must also pass.” Clearly, 
we can draw a similar graph for a test 
that depends on a conclusion.The graph 
would have a path that terminates at a 
conclusion or input. In this approach, 
conclusions never depend on tests. 

The model differentiates between two 
orders of dependence. A firsforder de- 
pendency corresponds to a single edge 
in the flow graph. The dependence of t2 
on ti and the dependence of t3 on t:, in 
Figure 2 are first-order dependencies. A 
higher order dependency is determined 
by the transitive property of implication 
applied to dependencies in the flow 
graph.That is, it corresponds to a path in 
the graph that includes at least one addi- 
tional test.The dependence of t3 on t ,  in 
Figure 2 is a higher order dependency. 

Test variants 
The model allows the analyst to spec- 

ify several types of tests, including sym- 
metric, asymmetric, cross-linked, and 
conditional. The basic test form is the 
symmetric test, which provides comple- 
mentary information given a pass out- 
come and a fail outcome. Let A be the 
set of candidate conclusions when a test 
fails,and B be the set of conclusions that 
are no longer candidates when the test 
passes. I f  A = B, then the corresponding 
test is symmetric. 

To determine inferences drawn from a 
test passing the analyst lists the conclu- 
sions that have not failed and the tests 
that should also pass. I f  this list is the 
same as the list of tests and conclusions 
that remain after eliminating inferences 
drawn from a test failing, then the test is 

symmetric. 
I f  a test is not symmetric (conditions 

for symmetry do not hold), then it is 
asymmetric.An example of an asymmet- 
ric test is a warning light on a panel. I f  
the warning light is on, the technician 
learns that an alarm condition has oc- 
curred. On the other hand, i f  the light is 
not on, the technician learns very little 
because the bulb or voltage to the bulb 
may be bad. 

An asymmetric test can be one of 
three types. In a positioe-inference asym- 
metric test, all elements in the test’s de- 
pendency list will pass if the test passes, 
but no information is gained i f  the test 
fails. The negatioe-inference asymmetric 
test is mathematically similar to the pos- 
itive-inference test. I f  a negative-infer- 
ence test fails, then the elements in the 
test’s dependency list are the candidates 
and all tests dependent on the negative- 
inference test will fail. But i f  the test 
passes, no information is gained. 

The third type of asymmetric test is the 
fully asymmetric test. This test combines 
the characteristics of the positive-infer- 
ence test and the negative-inference test. 
In fact, i t  is actually a positive-inference 
“subtest” and a negative-inference 
“subtest” linked. I f  the fully asymmetric 

test passes, then the dependencies spec- 
ified by the positive-inference subtest 
are considered good elements and re- 
moved from consideration. On the other 
hand, if the fully asymmetric test fails, 
then the dependencies specified by the 
negative-inference subtest are consid- 
ered the set of failure candidates,and all 
other elements are removed from con- 
si deration. 

Related to the fully asymmetric test is 
the cross-linked test. Cross-linkages 
occur when the outcome of one test im- 
plies the opposite outcome of another 
test.For example, if the warning light de- 
scribed earlier is on (the test fails), then 
a press-to-test of the bulb circuit will 
pass. The analyst can link any two tests, 
ti and t2, in one of three ways: 

1. The passing of ti implies that t2 fails. 
2. The failing of ti implies that tz passes. 
3. Both 1 and 2 are true. 

The last test variant, a conditionaltest, 
is a more general form of asymmetric 
test. In a conditional test, a system state 
or mode, such as user inputs, scale set- 
tings,switches, or operational modes,de- 
termines the list of dependencies. The 
model represents conditional tests as 

Figure 2. Logic diagram for the dependency graph in Figure I .  
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copies of some general test. Each cop 
has a dependency list appropriate to it 
condition. When the test is specified, thc 
system is placed in the condition re 
quired for that test. Of course, during di 
agnosis, the technician may wish to con 
trol or restrict the mode. 

Diagnosing conclusions 
In diagnosing a failure, the inferenci 

system reports either a single conclu 
sion or many conclusions. In single-cor; 
clusion diagnosis, it reports a fault afte 
identifying the first failure. It then identi 
fies additional failures through subs€ 
quent repair and test. We can implemen 
singleconclusion diagnosis in one o 
two ways. Either the inference system re 
ports a conclusion as soon as it cai 
infer one, or inference on premises an( 
intermediate conclusions continue 
until i t  has gathered all information. I1 

the latter case, we impose additional ir 
ference rules to limit the search space tc 
yield a single conclusion. In multiple 
conclusion diagnosis, on the other hand 
the system tries to identify as man: 
faults as possible. 

The model permits both forms of diag 
nosis.Tests are done until the inferenci 
system knows all test outcomes eithe 
through evaluation or inference.The sy: 
tern then examines the set of conch 
sions to determine which conclusions i 

Table 1. Fint-order dependencies for the 
network in Figure I .  

~ 

Test Element Dependencies 

tl inti, ci 

t2 tl , c2 

t3 t2, t4, c4 

t4 

t5 t4, C6 

tl , t6, C3, C9 

t6 t4, c7 

tr t3, t5, t6, C5, C8 

can actually draw. 
Multiple-conclusion diagnosis results 

quite naturally when the inference sys- 
tem considers only direct inferences 
from the dependencies in the model. 
Single-conclusion diagnosis results 
when the system eliminates conclusions 
and tests that are unrelated to a discov- 
ered failure indication. 

In most cases, we assume single-con- 
clusion diagnosis because the search 
space is significantly smaller.The model 
does permit a limited level of multiple- 
conclusion diagnosis under the single- 
conclusion assumption by mapping 
multiple failures as singleconclusion el- 
ements. In another article in this series, 
we will describe the implications of the 
singleconclusion assumption and the 
methods used to relax it. 

Representing logical constructs 
Test-to-test dependencies provide the 

framework for information flow through 
the system with conclusions at the start 
of various chains (or at the end i f  we are 
considering logic diagrams). To gener- 
ate the dependency graph in Figure 1, 
we begin with a functional representa- 
tion of the system and construct a typi- 
cal functional block diagram. Such a di- 
agram is a directed graph in which 
nodes define functions and edges d e  
fine functional flow Functional tests pro- 
vide information about whether the 
functions are behaving as specified. 
They also measure the system’s health at 
a given point. Thus, any function that 
feeds a functional test will affect the out- 
come of that functional test.To represent 
this relationship, we put tests in the ap- 
propriate flow paths of the functional 
block diagrams. 

To interpret the corresponding logic 
diagram (Figure 2) for this system, we 
need to reverse the logic such that con- 
clusions are drawn when the corre 
sponding components function prop- 
erly. Thus, a test premise that is “true” 
corresponds to a passing test. By normal 

inference, this truth value propagates 
down the chain, asserting all down- 
stream tests and conclusions as true 
(functional). Thus, in the dependency 
framework, the failure of a test depends 
on all downstream elements of that test 
in the logic diagram. In either formula- 
tion, tests may depend on other tests or 
on conclusions, but conclusions do  not 
depend on anything.That is, they are ter- 
minal nodes. Thus, when a conclusion 
fails,information about that failure flows 
through the network to the tests on the 

Tests 
int, 

tl 

t 2  

z? t3 

I-“ t, 

t5  

t7 

(4 
Tests 

inti 

C1 

CP 

.s c4 
g 

3 - g c5 
0 

‘6 

c7 

C8 

C9 

No 
Fault 

inti t, t, t3 t, t, t, t7 
(b) 

Figure 3. Dependency mafrices for the sys- 
tem represented in Figures I and 2. lest-io- 
test dependency matrix (a) and 
test-to-conclusion matrix (b). f = a first-order 
dependency and h = a higher order depen- 
dency. 
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dependency chain.Table 1 shows the de- 
pendencies for the network in Figures l 
and 2. 

We can store this network using tradi- 
tional data structures for representing 
graphs. We chose to represent test-to-test 
dependencies as a bit-adjacency matrix 
in which rows correspond to test feeds 
and columns to test dependencies. The 
test-to-conclusion dependencies are 
also represented as a bit-adjacency ma- 
trix. In this matrix, rows correspond to 
tests fed by conclusions, while columns 
correspond to tests that depend on con- 
clusions. 

Figure 3 shows the matrices corre- 
sponding to the sample system. Figure 
3a shows the test-to-test dependency 
matrix,while Figure 3b shows the test-to- 
conclusion dependency matrix. 

This form of representation is limited. 
Because of the way we have defined de- 
pendency, the matrix orientation forces 
a logical interpretation on the rows and 
columns. We can say that i f  a given con- 
clusion is true (the corresponding com- 
ponent has failed), then all tests fed by 
that conclusion (the conclusion’s row) 
are also true, unless we have asymmetr- 
ies. This relationship is represented in 
the following logical form: 

where tesfi depends on conclusion,,and 
n represents conjunction. This form is 
also true if we know that a test has failed. 
In this case,all tests fed by the failed test 
must also fail. 

given test, depends on test,. 
The columns in the matrices provide 

information about the possible cause of 
a test failure. Thus, if a test passes, then 
all elements in the corresponding col- 
umn (both tests and conclusions) must 
also pass. 

given test, depends on test, and con- 
clusionk. 

We may, however,want to have the cor- 
responding logical expressions with the 
connectives reversed: 

conclusion, 3 C test, (4) 
/ 

test, 2 tes\ 0 
J 

7 test, 3 (E test]) v 

1 (C 7 conclusionk) (6) 
k 

where C represents disjunction. We do 
not address Equations 4 and 5 directly 
but provide methods for using the con- 
ditional test and for mapping special el- 
ements into the matrix. 

Equation 6 provides for including mul- 
tiple conclusions in the model. We cre- 
ate a special conclusion,called a failure 
group, and make a test depend on that 
group. The result is that the row corre- 
sponding to this conclusion contains all 
test feeds from the corresponding indi- 
vidual conclusions as well as the test 
that depends on the group. Thus, all 
members of the group must fail for the 
test to fail. 

The following example illustrates how 
to include a multiple failure in the 
model.Assume three possible failures in 
a computer:a burnt-out disk-drive motor, 
a defective read/write head, and corrupt 
disk media. The burn-out may or may 
not have caused the read/write head to 
crash into the disk media. If we simply 
define a test that depends on the motor, 
the read/write head,and the disk media, 
then i f  one of these three fails, the test 
fails. On the other had, if we want a test 
to fail only when all three faults exist,we 
must specify a multiple failure group of 

the three faults. We can then define a 
test that depends on the group. 

The result is the addition of a new 
primitive conclusion to the model. The 
new test depends only on the new con- 
clusion rather than the members of the 
group, and all tests that depend on the 
elements of the group also depend on 
the group. Figure 4 illustrates this idea. 

Weighting factors 
Our goal in generating a diagnostic 

strategy is to minimize some set of re- 
sources and still effectively isolate the 
cause of the problem. Tests are often se- 
lected on the basis of how much infor- 
mation they provide, thus minimizing 
the number of tests required. Frequently, 
however, this approach is inadequate. 
Selected tests may be extremely difficult 
to perform or require a lot of time to 
complete. Thus, we need a way to select 
tests that considers avai I ab le resources 
as well as the amount of information. 
Our approach is to weight the test-infor- 
mation yield according to several cost 
or probability criteria. 

A direct weight is applied directly to 
the tests in the model.An increase in di- 
rect weight makes the test less desirable. 
An indirect weight, on the other hand, is 
attributed only to tests in the model 

Figure 4. M ultiple-failure group wih test de- 
pendencies. 
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through a calculation based on the con- 
clusions in the model. In this weighting, 
an increase in a value associated with a 
conclusion will make all tests that de- 
pend on that conclusion more desirable. 
We apply indirect weights directly to the 
conclusions and determine the corre- 
sponding test weight by examining the 
dependencies of the tests on the conclu- 
sions. 

For each test in the model, we assign 
cost weights.A cost weight may indicate 
any test factor such as time to test, cost 
of resources, and skill-level require 
ments. In general, we select weights to 
be inversely proportional to the desir- 
ability of doing the test from a cost per- 
spective.These weights define the direct 
weighting factor for the model. 

We also assign weights to the conclu- 
sions in the model We select them in a 
way that makes them directly propor- 
tional to the desirability of identifying 
that conclusion. Some appropriate 
weights include how often a component 
fails and how critical a component is to 
mission completion. These weights de- 
fine the indirect weighting factor for the 
model. 

Related elements 
In addition to the individual primitive 

elements-tests and conclusions- 
groups of tests and conclusions are im- 
portant to our diagnostic model. A test 
group includes tests that have some logi- 
cal relationship. For example, tests may 
require the same piece of equipment or 
may be accessed in the same physical 
location in the system. By grouping the 
tests together, we can generate a diag- 
nostic strategy that remains within a 
group until we have all the required in- 
formation. Once the test group has been 
tested, the normal process of selecting 
tests resumes. 

Conclusions are grouped according to 
types. The first type is called a repluce- 
able unit group, which specifies a higher 
level fault-isolation conclusion. Since 

systems are frequently subdivided, the 
replaceable unit group permits two lev- 
els of detail in a single model.For exam- 
ple, we can construct a model to the 
component level but include grouping 
at the SRU (shopreplaceable unit) level. 

Alternatively, we can construct models 
in which primitive conclusions are fail- 
ure modes and groups correspond to 
specific diagnoses that require system 
repair. For example, a resistor may have 
one of three failure modes. It may fail 
open, be shorted,or be out of tolerance. 

The model ullows 
test groups to be 
sequenced but 

provides for 
overrides to 
uccom m odu te 

different types of 
test ordering. 

We can combine these failure modes 
into a replaceable unit group that corre- 
sponds to a single resistor. I f  one of the 
three failures occurs, the failure will 
identify the resistor group, and we can 
replace the resistor. 

Within the framework of an inference 
system, the replaceable unit group de- 
fines where test selection stops. Nor- 
mally, the maintenance technician s e  
lects and evaluates tests until the 
inference system isolates a primitive ele- 
ment or ambiguity group. When the test- 
ability analyst groups the primitives as 
replaceable units, test selection contin- 
ues until the system isolates a group. We 
no longer need to test down to the prim- 
itive level. In addition, we can conduct 

testing in stages in which the replace- 
able unit group is isolated first.Once the 
inference system identifies a group,it re- 
ports it.After isolating the group, the sys- 
tem continues selecting tests down to 
the primitive level. When the primitive 
conclusion is drawn, it too is reported. 

The second type of conclusion group 
within our model is the failure group. 
The failure group is a group of conclu- 
sions that we expect to fail simulta- 
neously. Because we assume that only a 
single conclusion will be drawn, we 
specify multiple conclusions as a single 
failure group. This permits a limited 
form of testability analysis for multiple 
failures and the isolation of faults from 
multiple failures. During analyses, we 
treat failure groups as primitive ele- 
ments. We synthesize these new ele- 
ments from the previous primitives that 
are members of the group,thus handling 
the failure group directly. In fact, if  a test 
depends on a multiple failure group, the 
group is actually mapped as a primitive 
element directly into the model. 

Test-sequencing declarations 
One of the goals in developing the di- 

agnostic model is to derive a diagnostic 
strategy that effectively and efficiently 
uses a system’s testability. We want to be 
able to identify all failures as they occur, 
and we want to identify only the ele- 
ments that have failed. In addition, we 
want the process used to test a system to 
be inexpensive in terms of any number 
of cost criteria. 

Our model provides the basis for a 
method to develop such a strategy. Nev- 
ertheless, at times we need to override 
optimization to choose tests in an order 
that makes sense. 

For example, suppose a technician is 
testing a card on an ATE test station.As- 
sume that the ATE performs each test in 
approximately the same time and with 
the same reliability. Further assume that 
all tests are automatic. Under this sce- 
nario, we can use the model to select 
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tests to minimize the average number of 
tests evaluated. 

A technician typically tests a unit 
under test,such as an electronic circuit, 
after running a set of tests to determine 
that it is safe to apply power to the UUT. 
These tests are called safe-to-turn-on 
tests. But these tests provide little diag- 
nostic information. A selection ap- 
proach based purely on theoretical in- 
formation would not be likely to select 
these tests unless absolutely necessary 
Common sense, however, dictates that 
these tests should be run first. Thus, the 
model needs a mechanism for overrid- 
ing the information-based choice and 
choosing the group of safe-to-turn-on 
tests. 

Our model allows test groups to be se- 
quenced. lf the technician selects the 
option to sequence test groups, then 
one or more test groups must be defined 
in the model. The test choice algorithm 
then selects the first test group, chooses 
all needed tests from this group,chooses 
the next test group, selects all needed 
tests, and continues in this fashion until 
i t  has exhausted all the test groups. It  
then considers any remaining (ungrou- 
ped) tests for evaluation. 

Using this approach, the analyst de- 
fines a test group containing the safe-to- 
turn-on tests and then invokes the test- 
group-sequencing option. The algorithm 
chooses the safe-to-turn-on tests first 
and then the remaining tests in the 
model. 

At times, there is a need to order a set 
of tests within a group. Tests for a se- 
quential circuit, for example, may be 
sensitive to the current state of the cir- 
cuit (values in the flip-flops). Many test 
programmers write tests to follow a se- 
quence of states. lf a technician has to 
test a portion of the circuit according to 
a sequence, then the analyst must order 
the corresponding tests to maintain the 
appropriate system state throughout the 
test process.This ordering is another op- 
timization override that may be in- 
cluded in the model. 

Of course, ordering operations are not 
limited to the sequencing options pre- 
sented so far. Sheppard examined 
Allen’s temporal calculus13 and devel- 
oped a mapping of 18 temporal rela- 
tions into the modeling framework.I4 
He also developed an algorithm that ef- 
ficiently chains temporal relations. With 
this approach, modelers can specify 
first-order temporal relations at the 
same time they specify the first-order 
model. 

Additional order operators, such as 
test overlapping and test inclusion, are 
also possible because the algorithm ex- 
amines potential time intervals in which 
tests are performed. It  also provides for 
extensions to include concurrency 
among test events as well as test prereq- 
uisites to drive test selection. 

Analyzing the model 
Several types of analyses are possible 

with an information-flow model, includ- 
ing determining testability characteris- 
tics, generating fault-isolation strategies, 
and evaluating strategies generated by 
other approaches. Figure 5 provides a 

flow chart describing the complete 
analysis process.The first step in analyz- 
ing the model is to develop a higher 
order representation through logical 
chaining. 

Logical chaining 
Once we have developed an informa- 

tion-flow model of a system, we prepro- 
cess i t  to determine higher order impli- 
cations. Part 2 in this series of articles 
will describe this preprocessing in more 
detail. 

Testability characteristics 
After logical chaining,we are in a posi- 

tion to assess system testability There 
are many ways to measure a system’s 
testability characteristics, both directly 
and indirectlyThe first step is to identify 
problem areas. Our model identifies 
(among others) 

ambiguous failures 
undetected failures 
information-flow feedback 
operational isolation 

r- A tl / \  

1 1 
Figure 5. Overview of testability and diagnostic analysis. 
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potential for hidden failures or false fail- 

tolerance of false alarms 
use of test resources 

ures 

Ambiguous failures. When the de- 
fined set of tests cannot distinguish be- 
tween two or more failure conclusions, 
the failures are ambiguous.Our model is 
concerned with two levels of ambiguity 
The first is ambiguity between primitive 
conclusions. For every conclusion, we 
define a failure signature.The failure sig- 
nature is the set of tests that we expect 
to fail i f  the conclusion is true. If two or 
more conclusions have the same failure 
signature, they are ambiguous. If this 
condition exists, then regardless of the 
testing level, the defined set of tests will 
never distinguish between the two con- 
clusions.This type of ambiguity is only a 
potential deficiency in the system, how- 
ever, because our concern may be at a 
higher level. 

The second level of ambiguity is ambi- 
guity between two replaceable unit 
groups. Group ambiguity arises when 
two or more conclusions in the same 
ambiguity group are members of two or 
more replaceable unit groups. If testing 
isolates the ambiguous conclusions, we 
do not know which of the replaceable 
unit groups to repair or replace.But i f  an 
ambiguity group is wholly contained in 
one replaceable unit group, and we are 
interested only in isolating the fault to 
the replaceable unit group, then this am- 
biguity is benign. 

Clearly, we want to identify ambiguity 
within the system. If analysis occurs 
early enough in development, we may 
be able to design additional tests to 
break up the ambiguity If we are inter- 
ested in testing only at the group level, 
we may be able to repackage the com- 
ponents of the system to contain any 
ambiguity within a replaceable unit. In 
this case,we do not need to define addi- 
tional tests. 

Undetected failures. We say a failure is 
not detected if none of the tests fail 
when the system has a fault. By examin- 
ing the failure signatures of the conclu- 
sions, we can identify cases in which 
failures are not detected.If a conclusion 
has a failure signature that has no tests, 
then that conclusion is a case in which 

We must improve 
testability to either 
trap the multiple 

failures or 
separate them 

so that no false 
failure occurs. 

the failure is not detected. The model 
has a special conclusion called No Fault. 
The No Fault conclusion has no depen- 
dent tests,so the condition in which fail- 
ures are not detected will be ambiguous 
with No Fault. Conditions in which fail- 
ures are not detected frequently arise 
when the set of tests at one level (say the 
LRU level) detects a failure,and the unit 
containing the failure is pulled for fur- 
ther testing. Yet the tests defined at the 
next level (say the SRU level) do not de- 
tect the same failure. This leads to a 
RTOK (retest okay) situation, thus indi- 
cating a deficiency in the complete 
maintenance system. 

Information-flow feedback. When di- 
agnostic information feeds back on it- 
self to form a cycle, then all conclusions 
directly related to tests in the cycle will 
appear to be ambiguous. For example, 
suppose we have three tests t,, $,and t3 
and three conclusions cl,c2,and c3.Sup- 

pose tl depends on c1 and t3; t, depends 
on c2 and tl;and t3 depends on cg and t,. 
After prechaining, each test depends on 
the other two tests and all the conclu- 
sions. Thus, i f  c,, c2, or cg fails, the same 
failure signatures will result.So the three 
conclusions are ambiguous. 

Generally, such circularities result 
from poorly defined tests or errors in the 
model. Sometimes the feedback loops 
required for proper system performance 
also lead to information-flow feedback. 
We must be careful when breaking 
these loops. We cannot permanently 
break required loops for functionality, 
and we must ensure that additional test 
hardware or procedures do not degrade 
the system performance. 

Operational isolation. Operational 
isolation is the percentage of fault-isola- 
tion events that result in the ambiguity 
of n or fewer replaceable units. Fre- 
quently, design specifications include 
the requirement that fault isolation be 
to n or fewer replaceable units x percent 
of the time. We arrive at measures for o p  
erational isolation by considering the 
sizes of the ambiguity groups and the 
probabilities of isolating faults to partic- 
ular ambiguity groups. These measures 
have a direct impact on logistics sup- 
port planning for the system analyzed. 

Potential for hidden and false failures. 
These two testability problems concern 
how to isolate a fault when multiple fail- 
ures occur. The first problem is to ana- 
lyze the potential for hidden failures- 
when the failure of one element masks 
the failure of other elements-which is 
a natural consequence in complex sys- 
tems. 

Masking can cause serious mainte 
nance problems when one of the 
masked items is a root-cause failure, 
which results in a secondary failure of 
another system component. If we can- 
not isolate the root cause, we cannot ef- 
fectively repair the system, since repair- 
ing a secondary failure is futile. The 
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secondary failure recurs when the sys- 
tem is reinitialized with the same symp- 
toms as before. We are then in a repair 
circularity that will not return the system 
to operational status. 

If we find no root-cause relationship, 
we can locate multiple failures and re- 
pair the system by repeat isolation. If we 
establish a root-cause relationship, we 
need to improve the testability If we es- 
tablish a tight root-cause relationship, 
such as when failure of the secondary 
element occurs if and only if a failure of 
the root cause happens, then we can 
handle the problem by annotating the 
repair procedures to include repair of 
both the root-cause and secondary fail- 
ures. Without this tight relationship, we 
need tests to separate the root-cause 
from the secondary failure. 

The second problem in analyzing mul- 
tiple failures is the potential for false 
failures. A false failure occurs when the 
symptoms of two or more failures add 
up to mimic the failure of an unrelated 
element. Repairing the indicated failure 
has no effect, and the system is not put 
into an operational status. In other 
words, we have not identified the faulty 
components, and maintenance leaves 
the system in the original failed state. We 
must improve testability to either trap 
the multiple failures or separate them so 
that no false failure occurs. 

Tolerance of false alarms. If we are 
concerned about the test set itself, we 
need to determine the tolerance of false 
alarms. Some tests may indicate a prob- 
lem when no problem exists because of 
exceedingly tight test tolerances, inabil- 
ity to fully measure the required param- 
eters, or inadequate understanding of 
the mechanisms and dependencies in- 
volved in taking test measurements. 
When field false alarms manifest them- 
selves, two principal actions are taken: 
opening the test tolerances, which at- 
tacks the first problem but often at the 
expense of missed detections, and re- 
peat testing, which is designed to allow 

transients to die down before the final 
evaluation. Repeat testing often takes 
the form of “n occurrences of anoma- 
lous behavior within y milliseconds for 
a bad test outcome.” 

Another action, often overlooked, is a 
common~ense check of the form “if test 
tu indicates an anomalous reading then 

Don ’t elim inu te 

tests solely 
because they are 

excess or 
redun dun t. 

Insteud, examine 
the totul impuct on 
muin tenunce. 

test tb should reflect that problem also.” 
This action requires some understand- 
ing of the system. The false-alarm toler- 
ance, which we compute by examining 
the test-to-test dependencies, provides a 
measure of the system’s ability to verify 
previous test outcomes. If this ability to 
verify previous test outcomes is suffi- 
cient,we may invoke consistency check- 
ing in the isolation strategies when false 
alarms are a problem. When it is insuffi- 
cient we may wish to add extra tests to 
provide a margin for field false alarms. 

Use of test resources. When analyzing 
a system in the design phase, we may 
still need to develop the tests through 
detailed test specifications. These test 
specifications are normally put together 
in a test requirements document, which 
is often a costly and time-consuming 
process. Before actually writing the ele 
ments of the TRD, we may want to ascer- 
tain which tests are contributing to fault 

isolation and which are not. Some tests 
under development may not contribute 
anything to fault isolation and can 
therefore be eliminated. Moreover, we 
may need additional tests because of 
ambiguity within the system, inadequate 
operational isolation, or frequently oc- 
curring false alarms. 

We can identify some of these prob- 
lems during design, but others, such as 
false-alarm tolerance, may require the 
system to be operational. 

#en considering tests for elimina- 
tion, we need to identify two types of 
tests. An excess test provides the same 
diagnostic information as some combi- 
nation of other tests. A redundant test, 
which is a special form of excess test, 
provides the same diagnostic informa- 
tion as some other single test. In infor- 
mation-flow feedback, we found that all 
conclusions in the feedback loop are 
ambiguous. Thus, all tests in the feed- 
back loop are redundant because all of 
them examine the entire feedback loop. 

We must be careful in eliminating re- 
dundant or excess tests from the model 
and thus from the diagnostic system. 
The elimination of excess tests will most 
likely reduce the tolerance to false 
alarms. If false alarms are a concern, ex- 
cess tests may provide invaluable assis- 
tance in minimizing inappropriate ac- 
tion when a false alarm occurs; however, 
including excess tests may reach a point 
of diminishing returns in providing the 
necessary c ross-c he cks . 

Another concern in removing these 
tests is that each test may have a differ- 
ent cost. For example, test tu and test tb 
may be redundant, but t, may be inex- 
pensive to perform and somewhat unre 
liable while tb is highly reliable but diffi- 
cult to perform. We could choose either 
t, or tb, depending on the available re- 
sources and how critical each was to 
mission completion. 

Finally, removing excess tests may in- 
crease the problems with isolating faults 
when there are multiple failures.The po- 
tential for false failures may increase be- 
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cause tests no longer exist to differenti- 
ate the sympt0ms.A good strategy is not 
to eliminate tests solely because they 
are excess or redundant, but to analyze 
the total impact on maintenance. 

Developing diagnostic 
strategies 

The purpose of any testability analysis 
is to provide the system with adequate 
diagnostics. After the analyses just d e  
scribed, defining a diagnostic strategy is 
the next logical step. 

Mathematically, fault isolation is a set 
partition problem. Let C = (c,, c2, ..., cn) 
represent the set of components. After 
the j th test, a fault-isolation strategy par- 
titions C into two classes: 

F J  = (c{, ci, ..., CA) 

which is the set of components that are 
still failure candidates after the j th test 
(feasible set),and 

which is the set of components found to 
be good after thejth test (infeasibleset). 
By this structure,a strategy will have iso- 
lated the failure when F’ consists of a 
single element or a component ambigu- 
ity group that cannot be divided. 

Test results impart information. Any di- 
agnostic strategy must consider the type, 
amount, and quality of such informa- 
tion. In our model, we assume that what 
the test indicates (good or bad) actually 
reflects the state of the UUT. If we know 
all the dependencies in a system,we can 
calculate the information content of 
each test. When a test is performed, the 
set of dependencies allows us to draw 
conclusions about a subset of compo- 
nents. 

At any point in a sequence of tests,we 
can compute the set of remaining fail- 
ure candidates. The algorithm we have 
developed looks at the information con- 

tent to minimize the average number of 
tests required to isolate a fault over the 
set of potential failure candidates. This 
adaptive approach embodies several ar- 
tificial intelligence algorithms, including 
inference and pattern recognition. 

Let D represent the full set of depen- 
dency relationships between compo- 
nents and test points as a matrix. sk is a 
sequence of k tests, (t,,r, ,..., t,+).Fk is the 
feasible failure candidate set associ- 
ated with Sk.  An information measure 
I,” for each unperformed test r, is a func- 
tion of the dependency relationship and 
the remaining candidate failure class, 
say, 1: = f(D, F”>. 

We obtain Sk,which is based on an un- 
known current outcome, by optimizing 
at each decision point. That is, we take 
the next test in the sequence as the test 
that maximizes 1; for the conditions im- 
posed by each previous test outcome. 
The sequence ends when we have 
enough information to isolate the fault. 

Although this algorithm uses the 
greedy heuristic, it is based on a higher 
order representation and has been pro- 
viding performance near the theoretical 
optimum. The algorithm also allows for 
weighting by individual resource fac- 
tors. 

Evaluating diagnostic 
strategies 

An added benefit of our information- 
modeling approach is that we can evalu- 
ate existing diagnostic strategies in the 
form of fault trees.Rather than using the 
testchoice algorithm described earlier, 
we use the tests specified in the fault 
tree and compute the corresponding in- 
ferences with the model and the infer- 
ence system.Using the inference system, 
we can directly compute the following 
information: 

actual isolationsforeachpath in the tree 
including conflicts or resulting ambigu- 
ity groups 

average cost and expected cost for the 
strategy based on supplied data on test 
cost 
average time and expected time for the 
strategy based on supplied data on test 
time 
a detailed analysis of test cost,test time, 
and failure frequency for each branch in 
the tree 

If we do not have a model and assume 
that the available strategy is correct, we 
can use paths in the fault tree to deter- 
mine failure attributes of the system. 
These attributes can provide an initial 
model. However, we are still developing 
this analysis technique. 

Interactive diagnosis 
We can also develop fault-isolation 

strategies in a dynamic environment, as 
information is obtained during testing. 
This type of strategy,called adaptive test- 
ing, is sensitive to the context of the 
problem. Interactive maintenance aids, 
automatic test equipment, and embed- 
ded maintenance systems are tools for 
adaptive testing. 

Interactive maintenance aids 
Interactive maintenance aids are usu- 

ally either electronic manuals, intelli- 
gent maintenance aids, or semiauto- 
matic maintenance aids. Their cap- 
ability is limited to how well we can 
electronically manipulate the diagnos- 
tic process using today’s computing 
technology Portable diagnostic aids 
may be strictly electronic manuals or in- 
telligent maintenance assistants, while 
large computer systems could use large- 
scale simulation to guide diagnosis. Our 
focus is the environment of the small 
computer. 

Technical information devices are ma- 
chine representations of technical man- 
uals in the form of electronic manuals 
that use static fault-isolation strategies. 
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These strategies display test procedures 
in proper order for fault isolation by fol- 
lowing the fault tree and “turning the 
manual’s pages” for the technician. 
When the fault is isolated, they present 
repair procedures. These devices have 
minimal machine requirements but pro- 
vide little in terms of flexibility, training, 
or logistics support.They are also unable 
to learn from repeated  application^.'^ 

Intelligent maintenance aids are com- 
puter programs with extensive knowl- 
edge of the UUT.These devices have the 
potential for considerable flexibility be- 
cause they can compute the next main- 
tenance action using the known infor- 
mation and the problem context. 
Obtaining the desired level of flexibility, 
however, takes some effort unless we 
have done compatible testability model- 
ing of the system. Intelligent mainte- 
nance devices tie a model to an elec- 
tronic manual’s database to form an 
interactive, contextsensitive mainte- 
nance aid.The model-based approaches 

described here are useful in exploiting 
the flexibility of these devices.I6 

Semiautomatic maintenance aids art 
intelligent maintenance assistants tha 
can query other databases for answer! 
to test questions (such as embeddec 
BIT) or can execute and interpret tests 
They are connected to the system being 
analyzed for downloading informatior 
or measuring through stimulus-responsc 
testing. Fault isolation in semiautomatic 
maintenance aids is similar to that in in 
telligent maintenance aids except tha 
semiautomatic aids can answer many o 
their own questions. 

Automatic test equipment 
With only a small extension, the semi 

automatic maintenance aid can be 
come intelligent ATE. ATE systems an 
developed for second- and third-leve 
maintenance and typically consist of ar 
instrument suite, an interface tes 
adapter,a computer,a test executive,anc 

Tabie 2. Results of applying information-/low modeling to integrated diagnostics. 

system Customer Results 

Air pressurization Intemotional 
system Fuel Cell 

AN/MSQ- 1 03C EW/RSTA/USA 
Teampack 

Mk 84 60/400 Hz Static Navsea/USN 

UH-60A Stability ATL/USA 
Augmentation System 

ALQ-131 Podded ASD/USAF 
EW System 

ALQ- 1 84 Podded AFLC/USAF 
Ew System 

8-2 Bomber DFT Program USAF/Northrop 

Improved unique isolation by 100% 

Reduced required testin by 87% 
and developed a portaile 
maintenance aid 

Reduced required testin by 70% 
and developed a portabge 
maintenance aid 

Reduced mean time to isolate fault 
by 90%; reduced maintenance 
complexity by 70% 

Reduced mean time to isolate fault 
by 75% 

Reduced false-alarm rate by 90%; 
developed software test procedures 
for unit under test 

Improved specification compliance 
at the shop-replaceable-unit level 
by 80% 

a test program set. The TPS, which d e  
fines how to diagnose a piece of equip 
ment, is usually developed using static, 
predefined fault trees. But because the 
static fault tree has limited flexibilitywe 
generally require a limited amount of in- 
telligence. 

Intelligent ATE considers known infor- 
mation such as BIT readings, operator 
complaints, and logistical history. It also 
adapts to changing conditions during 
maintenance and provides sufficient 
flexibility for the technician to work 
around deficiencies in test equipment 
or other factors. An example of intelli- 
gent ATE that Arinc has developed is a 
system that uses a Racal-Dana VXI auto- 
matic test unit to diagnose faults in 
power supplies on the AV-8B (Harrier) 
aircraft.I7 

Embedded diagnostics 
The most significant application of the 

model-based approach has yet to be r e  
alized. Many complex system architec- 
tures have evolved to the point of hav- 
ing on-board processors, on-board 
measurement devices, bulk memory, 
and data buses for information transfer. 
One such architecture for avionics sys- 
tems includes all of these elements and 
some reconfiguration capabilitpI8 
These hardware developments, together 
with the modeling approaches de- 
scribed in this article, make possible an 
embedded diagnostic system that can 
examine its own maintainability and 
testability. The system then diagnoses 
possible failures and reconfigures itself 
to complete mission  requirement^.'^ 

W e  have covered some of the basics 
in information-theoretic approaches to 
integrated diagnostics. We have de- 
scribed how to create a mathematical 
structure that is both hierarchical and 
technology independent. This structure, 
however, is not a global solution to diag- 
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nosis because it discards much of the 
detail about a particular test’s worth- 
detail that is needed to develop a reli- 
able and complete diagnostic system. 

Our modeling approach uses informa- 
tion as the medium of exchange and in- 
formation fusion as the inference pro- 
cess. It handles imprecise testing by 
reasoning under uncertainty and has 
been used for the analysis of testability 
and fault diagnosis,diagnostic strategies, 
and maintenance aids. 

We have applied this approach to 
more than 200 systems and have repeat- 
edly demonstrated the effectiveness of 
information modeling in improving field 
performance. Table 2 lists a few of our 
successes. The results in the table are 
consistent with the results we have 
achieved overall. Improvements have 
been significant in most cases and occa- 
sionally spectacular. 
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