
I N T E G R A T E D D I A G N O S T I C S

but this process is independent of
design and manufacturing for the most
part.

The general problem of diagnosis is
extremely difficult. Optimizing a diag-

tempting to address these prob- T h e complexity of modern sys- WILLIAM R. SIMPSON
lems, developers have created sev-
eral tools to build efficient fault-iso-

JOHN W. SHEPPARD tems is putting new demands on
system maintenance. Every system,
whether airplane, radio, or com- lation strategies using many ap-
puter, has a mission to perform.The proaches, including bruteforce/
primary goal of system mainte exhaustive search, heuristic search,
nance is to keep the system avail- and entropy-directed search.

In the early 198Os, industry and
nostic sequence of tests is known to be government developed several initia-
an NP-complete problem, and deriving tives to help keep pace with growing sys-
heuristics to improve practical diagno tem and diagnostic complexity From
sis is a long-standing problem.'"l In at- these programs and initiatives, groups

able for that mission. When the sys-
tem fails, the job of maintenance is
to diagnose and repair the failure
as rapidly as possible to return the
system to correct operation. But di-
agnosing failures in complex sys-
tems requires analyzing system
characteristics in great detail.

How do you reconcile the need
for rapid repair with the need for in-
depth analysis? Fault-tolerant sys-
tems approach the problem by lim-
iting the need for diagnosis and
repair, identifying failures as they
occur on line, and reconfiguring
the system to maintain functional-
ityThose in field maintenance have
also tried to provide system-level di-
agnosis, incorporating ad hoc p r o
cedures based on field expertise,

In this article,part 1 of a series,we
describe a method of assessing
and diagnosing testability that uses
several well-established techniques
from artificial intelligence. The
method provides a way to describe
the flow of diagnostic information
through a system, and the resulting
model serves as the knowledge
base for several analysis tools. At
Arinc, we have applied this method
to assess and diagnose the testabil-
ity of many systems over the last 10
years.

Integrated
diagnosis

16 07407475/91/0M)4016/$01 .OOO 1991 IEEE IEEE MIl6N & TEST OF COMPU~RS

are now developing useful testing and
diagnostic products, some of which are
becoming well recognized in the auto-
matic test community5-’

Unfortunately, each of these initiatives
treated only one aspect of the life-cycle
testability problem or treated each as-
pect as a separate issue. None of the ini-
tiatives significantly addressed the un-
derlying philosophy of integration or its
impact. Instead, integrated diagnosis
was treated as nothing more than file
and data sharing.

As diagnosis and maintenance began
to receive more attention, the focus
shifted to methods that more truly re-
flected the nature of integrated diagno-
sis. In 1990, Keiner formally defined inte-
grated diagnostics as8

tion with its set of tests to determine the
test set’s specific diagnostic capability.
On the basis of the results,the testability
analyst may design new tests, eliminate
or redesign old tests, or repackage the
system to meet testability goals or con-
fine potential testability problems to sin-
gle, replaceable unit packages.

The process used to modify a design
to meet a set of testability goals is called
design for testability. Testability goals
may be generic,such as those identified
i n Mil-Std-2165,“ or they may arise from
specific design criteria. These goals are
usually set at thesystem or mission level.

“ ... a structured process which maxi-
mizes the effectiveness of diagnostics by
integrating the individual diagnostic ele-
ments of testability, automatic testing,
manual testing, training, maintenance
aiding,and technical information.”

hangar,the maintenance technician can
pull the unit identified and test it with
automatic test equipment to determine
which card within the unit contains the
fault. The ATE may also identify the
card’s failed component or compo-
nents.An alternative is to have the tech-
nician manually test the unit to find the
faulty component.

Electronic maintenance aids and on-
line technical information make diag-
nosis more effective.These aids permit a
technician prompt and easy access to
the information needed to identify the
fault and make the repair. Training pro-
grams for technicians need to cover the
use of these aids and tools so that tech-

This definition encompasses much
more than file and data sharing. Here,
the primary goal of integrated diagnosis
is to optimize field-maintenance re-
sources within the system’s operational
environment. Strategies include mini-
mizing the mean time to isolate system
faults, the mean time to repair systems,
and the sparing requirements associ-
ated with systems. Training is also in-
cluded as an area of concern. By reduc-
ing the need for specialized diagnostic
skill,we can reduce the impact of losing
experts and expertise and reduce the
training costs.

The process used to attribute these
goals to a specific subsystem or hard-
ware element is called testability alloca-
tion.

Once the design team defines and de-
termines the testability for a system, test-
ability analysts from that team can d e
velop diagnostic strategies or
procedures to identify faults as they
occur. This strategy development fre-
quently involves the integration of auto-
matic and manual testing. In avionics
systems, for example, the built-in-test
(BIT) system on an airplane may iden-
tify one of the avionic units as having
failed. When the airplane returns to the

The elements
Following Keiner’s definition, the prin-

cipal components of an integrated diag-
nostic system are tools that allow us to
evaluate the design and develop diag-
nostic strategies. Design evaluation con-
sists of analyzing the system in conjunc-

agnostic process at the next level.
According to Keiner’s definition, we

must apply a carefully determined struc-
ture to the problem in a way that guar-
antees a complete and consistent archi-
tecture. A structured approach ensures
that the problem is properly and appro-
priately represented. That is, the ap-
proach does the

w covers hierarchical details
w is applicable at different maintenance

levels
w includes information relevant to differ-

ent technologies and interfaces
w represents system details to enable ei-

theron-line or off-line testing
w provides a mechanism for efficient

analysis

EIectronic

maintenance
aids make

diagnosis more
effective. Training
programs need to
cover the use of

these aids.

nicians can effectively,efficientlyand re-
liably repair and maintain the system as
required.

When implementing a hierarchica1,in-
tegrated maintenance architecture, we
must consider how on-line and off-line
test systems are integrated. BIT and per-
formance monitoring/fault locating sys-
tems provide on-line monitoring of a
system’s performance and health state.
As problems arise, these systems flag
and report the problem so that techni-
cians can take the appropriate action.
Any actions taken and the results of
tests are stored for use as input to the di-

SEPTEMBER 1991 17

I N T E G R A T E D D I A G N O S T I C S

Testability definitions 1 components or parts without removing

Keiner’s definition includes testability
as one of the elements in integrated di-
agnostics. Mil-Std-2165 defines testability
a 2

“...a design characteristic which al-
lows the status (operable, inoperable, or
degraded) of an item to be determined
and the isolation of faults within the
item to be performed in a timely and ef-
f i c i en t man ne r.”

We say that equipment has good test-
ability when we can confidently and ef-
ficiently identify existing faults. Fre-
quently identifying only the failed

good items establishes a high confi-
dence level. Efficiency is optimizing the
resources required, including staffing,
labor hours, test equipment, and train-
ing.

The literature describes at least two
types of testabilitylnherent testability is a
design characteristic that provides the
potential ability to observe system be-
havior under test stimuli. The location,
accessibility, and sophistication of tests
that we may include in the system de-
fine its inherent testability

Achieved testability,on the other hand,
is a maintenance characteristic that pro-
vides the actual ability to observe sys-
tem behavior under test stimuli.We mea-

sure achieved testability by the results
of the diagnostic process, including the
set of tests defined for the system, real-
ized false alarms, ambiguities, and cor-
rect as well as incorrect diagnoses.

Achieved testability is the same as in-
herent testability if all diagnostic tests
are available,no diagnostic tests are sub-
ject to false alarms, and the fault-isola-
tion techniques fully exploit inherent
testability For this reason, inherent test-
ability is the upper bound on achieved
testability, while achieved testability has
no practical lower bound except per-
haps no testability.

Central to achieving maximum test-
ability is the design of the test. Test here
is “a signal, indication, or other observ-

~- - ..__ ._ .__

MODEL-BASED DESIGN FORTESTABIUTY: ONE COMPANY’S APPROACH
The 1980s saw a shift from systems that emphasized

design for performance to those that stressed design for
field operations. With th is shift has come an increased
demand for systems that sustain a certain performance
level throughout their life. Customers are demanding to
know how maintainable systems will be in the field, almost
before they ask about performance.

Clearly then, the old way of doing business is giving way
to a more structured approach. Companies can no longer
afford the luxury of designing to performance specifica-
tions and then supplying maintenance and diagnostic pro-
cedures as an afterthought. This afterthought, or
nonintegrated, approach led to unsatisfactory conditions:
Retest OK, or RTOK (pronounced ree-tock) rates were 40+
percent with field NFF (no-fault-found) rates of 50 percent,
and false-alarm rates often exceeded valid detections.

Companies tried to combat these deficiencies in testabil-
ity by providing detailed specifications, but results in the
field diverged significantly from the ad hoc testability
measures the designers had taken. In 1985, recognizing
the problem, the US Department of Defense instituted Mil-
Std-2165 to require a detailed analysis of testability issues
during design.

Since then, a number of companies have developed ap-
proaches to comply with the standard. Many use a model-
based approach to design for testability and diagnosis.
This article i s the first in a series reporting on work done by

Arinc Research Corp. in developing a model for inte-
grated diagnostics. The series, which documents 10 years
of development and application, addresses the mathemat-
ical approaches taken in Arinc‘s System Testability and
Maintenance Program, called STAMP, and Portable Inter-
active Troubleshooter, called Pointer.

Arinc‘s model-based approach, called information-flow
modeling, differs from the traditional model-based ap-
proach because it does not use a physical model of the
system during diagnosis. Instead, a limited form of intelli-
gence is placed into the diagnostic process, taking into
account any known information, such as built-in-test read-
ings, operator reports, logistics history, and specific symp-
toms. The model represents the knowledge base of the
system to be tested as the system’s flow of diagnostic infor-
mation. Consequently, the maintenance technician has
maximum flexibility because the model can adapt to
changing conditions during maintenance and i s able to
work around deficiencies in test equipment and other fac-
tors.

The first article in the series is an overview of the infor-
mation-flow model’s structure. Later articles will expand
on this structure and related subiects.

The article on assessing system testability includes
graphical representations, groupings, and multiple-con-
clusion mapping and describes in detail the processing of
the model, including higher order representations and the

18 IEEE DESIGN & TEST OF COMPUTERS

able event that may be a normal output
of a system or be caused to happen.""
This definition is based on the concept
of information fusion, in which a test
serves as information that we can apply
to the diagnostic problem. We must then
fuse the multiple sources of information
to correctly diagnose the fault.

This definition of test is much broader
than the typical, more restrictive defini-
tion of test as a stimulus-response pair
indicating the behavior of the system.
What a maintenance technician may
see or hear, for example, qualifies as a
test. Since most tests can have two out-
comes-pass and fail-we assume that
all tests are binary. In this waywe control
combinatorial explosion by requiring a

multiple-outcome test to be described
as a set of binary-outcome tests.

As with testability,diagnosis often rep-
resents more than one concept, usually
distinguishable by context. We are con-
cerned here with three aspects of diag-
nosis,all of which apply whether we are
considering on-line monitoring or off-
line diagnosis. Detection refers to the
ability of a test,a combination of tests,or
a diagnostic strategy to identify that a
failure in some system has occurred.
This term is often associated with BIT
and may actually be the primary design
criterion for BIT.

Localization is the ability to say that a
fault has been restricted to some subset
of the possible causes.This also is asso-

types of information that can be derived from these repre-
sentations. The authors compute several testability charac-
teristics and describe their use in assessing system
testability.

The article on using test resources describes one of the
classic problems arising from an ad hoc approach to de-
sign for testability: some portions of the system are over-
tested and other parts are undertested. The article gives
procedures for analyzing the test set with the goal of pro-
viding the minimum testing to achieve all testability obiec-
tives-including incorporating multiple failures,
compensating for false alarms, identifying inadequate test
resources, and eliminating unnecessary test resources.

In an article on static and dynamic fault isolation, the
authors describe fault isolation as a search problem in
which selected tests prune the space of possible diagnoses.
They review approaches to diagnostic search with empha-
sis on an approach that uses information theory. They also
derive entropy-based approaches to choosing tests using
a set of inference rules tailored to fault diagnosis. An inter-
active process that uses test-choice and inference algo-
rithms allows diagnosis without precomputing fault trees.
Details are given on how to incorporate machine learning
into diagnosis.

Although inference has been applied successfully to
many diagnostic problems, testing frequently yields uncer-
tain or incomplete information. In an article on fault isolu-

ciated with a combination of tests or a
diagnostic strategy Clearly all BIT that
detects faults also localizes them to at
least one of all possible faults. I f the lo-
calization issufficient to repair or recon-
figure the system, we often refer to BIT
as smart BKBIT, however, is not the only
diagnostic technique that localizes
faults. Often ATE and manual isolation
use diagnostic strategies that localize
the fault sufficiently to repair or recon-
figure the system.

Isolation is the identification of the
specific fault through some test, combi-
nation of tests, or diagnostic strategy Iso-
lation in this article is restricted to local-
ization that is sufficient to repair a single
uni t at a specific maintenance level.

tion under uncertainty, the authors describe how uncer-
tainty may arise because of poorly defined tests, inaccu-
rate instrumentation, or inadequate skill levels. Within an
interactive environment, confidence in test data can be
input to diagnostic reasoning. The authors' approach to
reasoning with uncertain or incomplete information incor-
porates solutions to a number of problems, such as speci-
fying certainty in test results, computing certainty values
for possible diagnoses, and recommending a repair ac-
tion.

All the analyses for diagnostics can be combined in one
integrated approach to diagnosis and repair. In an article
on integrated diagnostic architectures, the authors cover
the basic elements of an integrated architecture, including
design for testability, testability allocation, logistics sup-
port, built-in test, performance monitoring, embedded
maintenance, automatic test equipment, electronic main-
tenance aids, logistics feedback, and training.

The series encompasses more than 10 years of work on
developing these techniques and applying them to the test-
ability and diagnosis of complex systems. All the areas
described have been directly addressed in applications
with successful results. To date, Arinc has not fully applied
this integrated architecture, but several full applications
are currently underway. Full diagnostic architecture inte-
gration may take considerable time but, ideally, will span
the life cycle of the system.

SEPTEMBER 1 99 1

I N T E G R A T E D D I A G N O S T I C S

The model
Our model-based approach incorpo-

rates techniques from information fu-
sion and artificial intelligence to guide
analysis.The model represents the prob-
lem to be solved as information flow.
Tests provide information. Diagnostic in-
ference combines information from
multiple tests using symbolic logic and
pattern recognition.

Primitive elements
Because the model uses information

fusion, testability analysts have to con-
sider the information gained from per-
forming a test as they develop the
model. The analyst begins by specifying
the primitive elements and then pro-
ceeds to a description of the logical re-
lationships and groupings of these ele-
ments.

The primitive elements of the model
are the tests and fault-isolation conclu-
sions,which are based directly on infor-
mation fusion. Tests correspond to the
information sources, while fault-isola-
tion conclusions correspond to the set
of conclusions that can be drawn after

running tests. A test is any source of in-
formation available that the analyst can
use to discern a fault-isolation conclu-
sion. A fault-isolation conclusion is any
element that we can isolate within the
model.Thus,a conclusion is often a fail-
ure mode of some component or func-
tional unit within the system.

The model also includes three special
primitive elements: testable input, un-
testable input, and No Fault. The inputs
represent information entering the sys-
tem that may have a direct bearing on
the health of the system.A testable input
is a conclusion corresponding to an ex-
ternal stimulus combined with a test
that examines the validity of that stimu-
lus. I f we have an input that cannot be
examined for validity, that element is
called an untestable input. Finally, the
model includes a special conclusion
corresponding to the condition that the
test set found no fault. No Fault, also re-
ferred to as RTOK (for retest okay), p ro
vides us with a closedset formulation
that includes anything not directly ac-
counted for.

The analyst organizes conclusions ac-
cording to the required repair level.Con-
clusions include line-replaceable units

Test

Testable input

Figure 1. Example ofa dependency graph.

20

(LRUs) if the need is at the organiza-
tional level, shop-replaceable units
(SRUs) if it is at the intermediate level,
ar components if it is at the depot level.
Further, the analyst can develop models
that cross levels. That is, in a single
model, a conclusion may be a subsys-
tem, an LRU, an SRU, a component, or a
failure mode, depending on what is a p
propriate.

Dependency relationships
After specifying the primitive ele-

ments, the next step is to determine the
logical relationships among the tests
and between the tests and the conclu-
sions.To determine logical relationships,
the analyst considers the following for
each test:

1. inferences drawn from a test failing
2. inferences drawn from a test passing

In the initial stages of developing a
model, the first issue is more important.
The modeler is interested in listing con-
clusions that, corresponding to a failure,
would explain the current test failure.
The modeler is also interested in listing
tests that, should they fail, would cause
the current test to fail. If such tests do
exist, we say that the current test de-
pends on tests and conclusions that may
cause it to fail. That is, a dependency re-
lationship exists. The second question is
important in determining the type of
test (for example, whether the informa-
tion provided is symmetric).

We represent dependency relation-
ships in the model as a directed graph in
which tests and conclusions are nodes
and dependencies are edges. Figure 1 il-
lustrates such a graph. If test tz depends
on test f l , then either an edge is drawn
from t, to t,,or a path exists from tl to t2
in which all other nodes on the path are
conclusions. We can interpret the de-
pendency graph as “If tl fails, then t2 will
also fail.”

Figure 1 shows edges from tests to

IEEE DESIGN & TEdT OF COMMRS

conclusions.This representation is an ar-
tifact of the way analysts typically create
dependency models. In general, we can-
not say that if a test fails, then a conclu-
sion will fail, unless test performance
causes a system component to fail.

As an alternative, we can consider a
logical representation of dependency,
shown in Figure 2 as an edge from t2 to
t,. We interpret this representation as “ I f
t2 passes, then t i must also pass.” Clearly,
we can draw a similar graph for a test
that depends on a conclusion.The graph
would have a path that terminates at a
conclusion or input. In this approach,
conclusions never depend on tests.

The model differentiates between two
orders of dependence. A firsforder de-
pendency corresponds to a single edge
in the flow graph. The dependence of t2
on ti and the dependence of t3 on t:, in
Figure 2 are first-order dependencies. A
higher order dependency is determined
by the transitive property of implication
applied to dependencies in the flow
graph.That is, it corresponds to a path in
the graph that includes at least one addi-
tional test.The dependence of t3 on t , in
Figure 2 is a higher order dependency.

Test variants
The model allows the analyst to spec-

ify several types of tests, including sym-
metric, asymmetric, cross-linked, and
conditional. The basic test form is the
symmetric test, which provides comple-
mentary information given a pass out-
come and a fail outcome. Let A be the
set of candidate conclusions when a test
fails,and B be the set of conclusions that
are no longer candidates when the test
passes. I f A = B, then the corresponding
test is symmetric.

To determine inferences drawn from a
test passing the analyst lists the conclu-
sions that have not failed and the tests
that should also pass. I f this list is the
same as the list of tests and conclusions
that remain after eliminating inferences
drawn from a test failing, then the test is

symmetric.
I f a test is not symmetric (conditions

for symmetry do not hold), then it is
asymmetric.An example of an asymmet-
ric test is a warning light on a panel. I f
the warning light is on, the technician
learns that an alarm condition has oc-
curred. On the other hand, i f the light is
not on, the technician learns very little
because the bulb or voltage to the bulb
may be bad.

An asymmetric test can be one of
three types. In a positioe-inference asym-
metric test, all elements in the test’s de-
pendency list will pass if the test passes,
but no information is gained i f the test
fails. The negatioe-inference asymmetric
test is mathematically similar to the pos-
itive-inference test. I f a negative-infer-
ence test fails, then the elements in the
test’s dependency list are the candidates
and all tests dependent on the negative-
inference test will fail. But i f the test
passes, no information is gained.

The third type of asymmetric test is the
fully asymmetric test. This test combines
the characteristics of the positive-infer-
ence test and the negative-inference test.
In fact, i t is actually a positive-inference
“subtest” and a negative-inference
“subtest” linked. I f the fully asymmetric

test passes, then the dependencies spec-
ified by the positive-inference subtest
are considered good elements and re-
moved from consideration. On the other
hand, if the fully asymmetric test fails,
then the dependencies specified by the
negative-inference subtest are consid-
ered the set of failure candidates,and all
other elements are removed from con-
si deration.

Related to the fully asymmetric test is
the cross-linked test. Cross-linkages
occur when the outcome of one test im-
plies the opposite outcome of another
test.For example, if the warning light de-
scribed earlier is on (the test fails), then
a press-to-test of the bulb circuit will
pass. The analyst can link any two tests,
ti and t2, in one of three ways:

1. The passing of ti implies that t2 fails.
2. The failing of ti implies that tz passes.
3. Both 1 and 2 are true.

The last test variant, a conditionaltest,
is a more general form of asymmetric
test. In a conditional test, a system state
or mode, such as user inputs, scale set-
tings,switches, or operational modes,de-
termines the list of dependencies. The
model represents conditional tests as

Figure 2. Logic diagram for the dependency graph in Figure I .

SEPTEMBER 1991 21

I N T E G R A T E D D I A G N O S T I C S

copies of some general test. Each cop
has a dependency list appropriate to it
condition. When the test is specified, thc
system is placed in the condition re
quired for that test. Of course, during di
agnosis, the technician may wish to con
trol or restrict the mode.

Diagnosing conclusions
In diagnosing a failure, the inferenci

system reports either a single conclu
sion or many conclusions. In single-cor;
clusion diagnosis, it reports a fault afte
identifying the first failure. It then identi
fies additional failures through subs€
quent repair and test. We can implemen
singleconclusion diagnosis in one o
two ways. Either the inference system re
ports a conclusion as soon as it cai
infer one, or inference on premises an(
intermediate conclusions continue
until i t has gathered all information. I1

the latter case, we impose additional ir
ference rules to limit the search space tc
yield a single conclusion. In multiple
conclusion diagnosis, on the other hand
the system tries to identify as man:
faults as possible.

The model permits both forms of diag
nosis.Tests are done until the inferenci
system knows all test outcomes eithe
through evaluation or inference.The sy:
tern then examines the set of conch
sions to determine which conclusions i

Table 1. Fint-order dependencies for the
network in Figure I .

~

Test Element Dependencies

tl inti, ci

t2 tl , c2

t3 t2, t4, c4

t4

t5 t4, C6

tl , t6, C3, C9

t6 t4, c7

tr t3, t5, t6, C5, C8

can actually draw.
Multiple-conclusion diagnosis results

quite naturally when the inference sys-
tem considers only direct inferences
from the dependencies in the model.
Single-conclusion diagnosis results
when the system eliminates conclusions
and tests that are unrelated to a discov-
ered failure indication.

In most cases, we assume single-con-
clusion diagnosis because the search
space is significantly smaller.The model
does permit a limited level of multiple-
conclusion diagnosis under the single-
conclusion assumption by mapping
multiple failures as singleconclusion el-
ements. In another article in this series,
we will describe the implications of the
singleconclusion assumption and the
methods used to relax it.

Representing logical constructs
Test-to-test dependencies provide the

framework for information flow through
the system with conclusions at the start
of various chains (or at the end i f we are
considering logic diagrams). To gener-
ate the dependency graph in Figure 1,
we begin with a functional representa-
tion of the system and construct a typi-
cal functional block diagram. Such a di-
agram is a directed graph in which
nodes define functions and edges d e
fine functional flow Functional tests pro-
vide information about whether the
functions are behaving as specified.
They also measure the system’s health at
a given point. Thus, any function that
feeds a functional test will affect the out-
come of that functional test.To represent
this relationship, we put tests in the ap-
propriate flow paths of the functional
block diagrams.

To interpret the corresponding logic
diagram (Figure 2) for this system, we
need to reverse the logic such that con-
clusions are drawn when the corre
sponding components function prop-
erly. Thus, a test premise that is “true”
corresponds to a passing test. By normal

inference, this truth value propagates
down the chain, asserting all down-
stream tests and conclusions as true
(functional). Thus, in the dependency
framework, the failure of a test depends
on all downstream elements of that test
in the logic diagram. In either formula-
tion, tests may depend on other tests or
on conclusions, but conclusions do not
depend on anything.That is, they are ter-
minal nodes. Thus, when a conclusion
fails,information about that failure flows
through the network to the tests on the

Tests
int,

tl

t 2

z? t3

I-“ t,

t5

t7

(4
Tests

inti

C1

CP

.s c4
g

3 - g c5
0

‘6

c7

C8

C9

No
Fault

inti t, t, t3 t, t, t, t7
(b)

Figure 3. Dependency mafrices for the sys-
tem represented in Figures I and 2. lest-io-
test dependency matrix (a) and
test-to-conclusion matrix (b). f = a first-order
dependency and h = a higher order depen-
dency.

22 IEEE DESION C TEST OF COMPUIERS

dependency chain.Table 1 shows the de-
pendencies for the network in Figures l
and 2.

We can store this network using tradi-
tional data structures for representing
graphs. We chose to represent test-to-test
dependencies as a bit-adjacency matrix
in which rows correspond to test feeds
and columns to test dependencies. The
test-to-conclusion dependencies are
also represented as a bit-adjacency ma-
trix. In this matrix, rows correspond to
tests fed by conclusions, while columns
correspond to tests that depend on con-
clusions.

Figure 3 shows the matrices corre-
sponding to the sample system. Figure
3a shows the test-to-test dependency
matrix,while Figure 3b shows the test-to-
conclusion dependency matrix.

This form of representation is limited.
Because of the way we have defined de-
pendency, the matrix orientation forces
a logical interpretation on the rows and
columns. We can say that i f a given con-
clusion is true (the corresponding com-
ponent has failed), then all tests fed by
that conclusion (the conclusion’s row)
are also true, unless we have asymmetr-
ies. This relationship is represented in
the following logical form:

where tesfi depends on conclusion,,and
n represents conjunction. This form is
also true if we know that a test has failed.
In this case,all tests fed by the failed test
must also fail.

given test, depends on test,.
The columns in the matrices provide

information about the possible cause of
a test failure. Thus, if a test passes, then
all elements in the corresponding col-
umn (both tests and conclusions) must
also pass.

given test, depends on test, and con-
clusionk.

We may, however,want to have the cor-
responding logical expressions with the
connectives reversed:

conclusion, 3 C test, (4)
/

test, 2 tes\ 0
J

7 test, 3 (E test]) v

1 (C 7 conclusionk) (6)
k

where C represents disjunction. We do
not address Equations 4 and 5 directly
but provide methods for using the con-
ditional test and for mapping special el-
ements into the matrix.

Equation 6 provides for including mul-
tiple conclusions in the model. We cre-
ate a special conclusion,called a failure
group, and make a test depend on that
group. The result is that the row corre-
sponding to this conclusion contains all
test feeds from the corresponding indi-
vidual conclusions as well as the test
that depends on the group. Thus, all
members of the group must fail for the
test to fail.

The following example illustrates how
to include a multiple failure in the
model.Assume three possible failures in
a computer:a burnt-out disk-drive motor,
a defective read/write head, and corrupt
disk media. The burn-out may or may
not have caused the read/write head to
crash into the disk media. If we simply
define a test that depends on the motor,
the read/write head,and the disk media,
then i f one of these three fails, the test
fails. On the other had, if we want a test
to fail only when all three faults exist,we
must specify a multiple failure group of

the three faults. We can then define a
test that depends on the group.

The result is the addition of a new
primitive conclusion to the model. The
new test depends only on the new con-
clusion rather than the members of the
group, and all tests that depend on the
elements of the group also depend on
the group. Figure 4 illustrates this idea.

Weighting factors
Our goal in generating a diagnostic

strategy is to minimize some set of re-
sources and still effectively isolate the
cause of the problem. Tests are often se-
lected on the basis of how much infor-
mation they provide, thus minimizing
the number of tests required. Frequently,
however, this approach is inadequate.
Selected tests may be extremely difficult
to perform or require a lot of time to
complete. Thus, we need a way to select
tests that considers avai I ab le resources
as well as the amount of information.
Our approach is to weight the test-infor-
mation yield according to several cost
or probability criteria.

A direct weight is applied directly to
the tests in the model.An increase in di-
rect weight makes the test less desirable.
An indirect weight, on the other hand, is
attributed only to tests in the model

Figure 4. M ultiple-failure group wih test de-
pendencies.

SEPTEMBER 1 99 1 23

I N T E G R A T E D D I A G N O S T I C S

through a calculation based on the con-
clusions in the model. In this weighting,
an increase in a value associated with a
conclusion will make all tests that de-
pend on that conclusion more desirable.
We apply indirect weights directly to the
conclusions and determine the corre-
sponding test weight by examining the
dependencies of the tests on the conclu-
sions.

For each test in the model, we assign
cost weights.A cost weight may indicate
any test factor such as time to test, cost
of resources, and skill-level require
ments. In general, we select weights to
be inversely proportional to the desir-
ability of doing the test from a cost per-
spective.These weights define the direct
weighting factor for the model.

We also assign weights to the conclu-
sions in the model We select them in a
way that makes them directly propor-
tional to the desirability of identifying
that conclusion. Some appropriate
weights include how often a component
fails and how critical a component is to
mission completion. These weights de-
fine the indirect weighting factor for the
model.

Related elements
In addition to the individual primitive

elements-tests and conclusions-
groups of tests and conclusions are im-
portant to our diagnostic model. A test
group includes tests that have some logi-
cal relationship. For example, tests may
require the same piece of equipment or
may be accessed in the same physical
location in the system. By grouping the
tests together, we can generate a diag-
nostic strategy that remains within a
group until we have all the required in-
formation. Once the test group has been
tested, the normal process of selecting
tests resumes.

Conclusions are grouped according to
types. The first type is called a repluce-
able unit group, which specifies a higher
level fault-isolation conclusion. Since

systems are frequently subdivided, the
replaceable unit group permits two lev-
els of detail in a single model.For exam-
ple, we can construct a model to the
component level but include grouping
at the SRU (shopreplaceable unit) level.

Alternatively, we can construct models
in which primitive conclusions are fail-
ure modes and groups correspond to
specific diagnoses that require system
repair. For example, a resistor may have
one of three failure modes. It may fail
open, be shorted,or be out of tolerance.

The model ullows
test groups to be
sequenced but

provides for
overrides to
uccom m odu te

different types of
test ordering.

We can combine these failure modes
into a replaceable unit group that corre-
sponds to a single resistor. I f one of the
three failures occurs, the failure will
identify the resistor group, and we can
replace the resistor.

Within the framework of an inference
system, the replaceable unit group de-
fines where test selection stops. Nor-
mally, the maintenance technician s e
lects and evaluates tests until the
inference system isolates a primitive ele-
ment or ambiguity group. When the test-
ability analyst groups the primitives as
replaceable units, test selection contin-
ues until the system isolates a group. We
no longer need to test down to the prim-
itive level. In addition, we can conduct

testing in stages in which the replace-
able unit group is isolated first.Once the
inference system identifies a group,it re-
ports it.After isolating the group, the sys-
tem continues selecting tests down to
the primitive level. When the primitive
conclusion is drawn, it too is reported.

The second type of conclusion group
within our model is the failure group.
The failure group is a group of conclu-
sions that we expect to fail simulta-
neously. Because we assume that only a
single conclusion will be drawn, we
specify multiple conclusions as a single
failure group. This permits a limited
form of testability analysis for multiple
failures and the isolation of faults from
multiple failures. During analyses, we
treat failure groups as primitive ele-
ments. We synthesize these new ele-
ments from the previous primitives that
are members of the group,thus handling
the failure group directly. In fact, if a test
depends on a multiple failure group, the
group is actually mapped as a primitive
element directly into the model.

Test-sequencing declarations
One of the goals in developing the di-

agnostic model is to derive a diagnostic
strategy that effectively and efficiently
uses a system’s testability. We want to be
able to identify all failures as they occur,
and we want to identify only the ele-
ments that have failed. In addition, we
want the process used to test a system to
be inexpensive in terms of any number
of cost criteria.

Our model provides the basis for a
method to develop such a strategy. Nev-
ertheless, at times we need to override
optimization to choose tests in an order
that makes sense.

For example, suppose a technician is
testing a card on an ATE test station.As-
sume that the ATE performs each test in
approximately the same time and with
the same reliability. Further assume that
all tests are automatic. Under this sce-
nario, we can use the model to select

lEE€ DESIGN C TEST OF COMPUTERS

~~ ~

tests to minimize the average number of
tests evaluated.

A technician typically tests a unit
under test,such as an electronic circuit,
after running a set of tests to determine
that it is safe to apply power to the UUT.
These tests are called safe-to-turn-on
tests. But these tests provide little diag-
nostic information. A selection ap-
proach based purely on theoretical in-
formation would not be likely to select
these tests unless absolutely necessary
Common sense, however, dictates that
these tests should be run first. Thus, the
model needs a mechanism for overrid-
ing the information-based choice and
choosing the group of safe-to-turn-on
tests.

Our model allows test groups to be se-
quenced. lf the technician selects the
option to sequence test groups, then
one or more test groups must be defined
in the model. The test choice algorithm
then selects the first test group, chooses
all needed tests from this group,chooses
the next test group, selects all needed
tests, and continues in this fashion until
i t has exhausted all the test groups. It
then considers any remaining (ungrou-
ped) tests for evaluation.

Using this approach, the analyst de-
fines a test group containing the safe-to-
turn-on tests and then invokes the test-
group-sequencing option. The algorithm
chooses the safe-to-turn-on tests first
and then the remaining tests in the
model.

At times, there is a need to order a set
of tests within a group. Tests for a se-
quential circuit, for example, may be
sensitive to the current state of the cir-
cuit (values in the flip-flops). Many test
programmers write tests to follow a se-
quence of states. lf a technician has to
test a portion of the circuit according to
a sequence, then the analyst must order
the corresponding tests to maintain the
appropriate system state throughout the
test process.This ordering is another op-
timization override that may be in-
cluded in the model.

Of course, ordering operations are not
limited to the sequencing options pre-
sented so far. Sheppard examined
Allen’s temporal calculus13 and devel-
oped a mapping of 18 temporal rela-
tions into the modeling framework.I4
He also developed an algorithm that ef-
ficiently chains temporal relations. With
this approach, modelers can specify
first-order temporal relations at the
same time they specify the first-order
model.

Additional order operators, such as
test overlapping and test inclusion, are
also possible because the algorithm ex-
amines potential time intervals in which
tests are performed. It also provides for
extensions to include concurrency
among test events as well as test prereq-
uisites to drive test selection.

Analyzing the model
Several types of analyses are possible

with an information-flow model, includ-
ing determining testability characteris-
tics, generating fault-isolation strategies,
and evaluating strategies generated by
other approaches. Figure 5 provides a

flow chart describing the complete
analysis process.The first step in analyz-
ing the model is to develop a higher
order representation through logical
chaining.

Logical chaining
Once we have developed an informa-

tion-flow model of a system, we prepro-
cess i t to determine higher order impli-
cations. Part 2 in this series of articles
will describe this preprocessing in more
detail.

Testability characteristics
After logical chaining,we are in a posi-

tion to assess system testability There
are many ways to measure a system’s
testability characteristics, both directly
and indirectlyThe first step is to identify
problem areas. Our model identifies
(among others)

ambiguous failures
undetected failures
information-flow feedback
operational isolation

r- A tl / \

1 1
Figure 5. Overview of testability and diagnostic analysis.

SEPTEMBER 1991 25

I N T E G R A T E D D I A G N O S T I C S

potential for hidden failures or false fail-

tolerance of false alarms
use of test resources

ures

Ambiguous failures. When the de-
fined set of tests cannot distinguish be-
tween two or more failure conclusions,
the failures are ambiguous.Our model is
concerned with two levels of ambiguity
The first is ambiguity between primitive
conclusions. For every conclusion, we
define a failure signature.The failure sig-
nature is the set of tests that we expect
to fail i f the conclusion is true. If two or
more conclusions have the same failure
signature, they are ambiguous. If this
condition exists, then regardless of the
testing level, the defined set of tests will
never distinguish between the two con-
clusions.This type of ambiguity is only a
potential deficiency in the system, how-
ever, because our concern may be at a
higher level.

The second level of ambiguity is ambi-
guity between two replaceable unit
groups. Group ambiguity arises when
two or more conclusions in the same
ambiguity group are members of two or
more replaceable unit groups. If testing
isolates the ambiguous conclusions, we
do not know which of the replaceable
unit groups to repair or replace.But i f an
ambiguity group is wholly contained in
one replaceable unit group, and we are
interested only in isolating the fault to
the replaceable unit group, then this am-
biguity is benign.

Clearly, we want to identify ambiguity
within the system. If analysis occurs
early enough in development, we may
be able to design additional tests to
break up the ambiguity If we are inter-
ested in testing only at the group level,
we may be able to repackage the com-
ponents of the system to contain any
ambiguity within a replaceable unit. In
this case,we do not need to define addi-
tional tests.

Undetected failures. We say a failure is
not detected if none of the tests fail
when the system has a fault. By examin-
ing the failure signatures of the conclu-
sions, we can identify cases in which
failures are not detected.If a conclusion
has a failure signature that has no tests,
then that conclusion is a case in which

We must improve
testability to either
trap the multiple

failures or
separate them

so that no false
failure occurs.

the failure is not detected. The model
has a special conclusion called No Fault.
The No Fault conclusion has no depen-
dent tests,so the condition in which fail-
ures are not detected will be ambiguous
with No Fault. Conditions in which fail-
ures are not detected frequently arise
when the set of tests at one level (say the
LRU level) detects a failure,and the unit
containing the failure is pulled for fur-
ther testing. Yet the tests defined at the
next level (say the SRU level) do not de-
tect the same failure. This leads to a
RTOK (retest okay) situation, thus indi-
cating a deficiency in the complete
maintenance system.

Information-flow feedback. When di-
agnostic information feeds back on it-
self to form a cycle, then all conclusions
directly related to tests in the cycle will
appear to be ambiguous. For example,
suppose we have three tests t,, $,and t3
and three conclusions cl,c2,and c3.Sup-

pose tl depends on c1 and t3; t, depends
on c2 and tl;and t3 depends on cg and t,.
After prechaining, each test depends on
the other two tests and all the conclu-
sions. Thus, i f c,, c2, or cg fails, the same
failure signatures will result.So the three
conclusions are ambiguous.

Generally, such circularities result
from poorly defined tests or errors in the
model. Sometimes the feedback loops
required for proper system performance
also lead to information-flow feedback.
We must be careful when breaking
these loops. We cannot permanently
break required loops for functionality,
and we must ensure that additional test
hardware or procedures do not degrade
the system performance.

Operational isolation. Operational
isolation is the percentage of fault-isola-
tion events that result in the ambiguity
of n or fewer replaceable units. Fre-
quently, design specifications include
the requirement that fault isolation be
to n or fewer replaceable units x percent
of the time. We arrive at measures for o p
erational isolation by considering the
sizes of the ambiguity groups and the
probabilities of isolating faults to partic-
ular ambiguity groups. These measures
have a direct impact on logistics sup-
port planning for the system analyzed.

Potential for hidden and false failures.
These two testability problems concern
how to isolate a fault when multiple fail-
ures occur. The first problem is to ana-
lyze the potential for hidden failures-
when the failure of one element masks
the failure of other elements-which is
a natural consequence in complex sys-
tems.

Masking can cause serious mainte
nance problems when one of the
masked items is a root-cause failure,
which results in a secondary failure of
another system component. If we can-
not isolate the root cause, we cannot ef-
fectively repair the system, since repair-
ing a secondary failure is futile. The

26 IEEE DE" &TEST OF COMPUTERS

secondary failure recurs when the sys-
tem is reinitialized with the same symp-
toms as before. We are then in a repair
circularity that will not return the system
to operational status.

If we find no root-cause relationship,
we can locate multiple failures and re-
pair the system by repeat isolation. If we
establish a root-cause relationship, we
need to improve the testability If we es-
tablish a tight root-cause relationship,
such as when failure of the secondary
element occurs if and only if a failure of
the root cause happens, then we can
handle the problem by annotating the
repair procedures to include repair of
both the root-cause and secondary fail-
ures. Without this tight relationship, we
need tests to separate the root-cause
from the secondary failure.

The second problem in analyzing mul-
tiple failures is the potential for false
failures. A false failure occurs when the
symptoms of two or more failures add
up to mimic the failure of an unrelated
element. Repairing the indicated failure
has no effect, and the system is not put
into an operational status. In other
words, we have not identified the faulty
components, and maintenance leaves
the system in the original failed state. We
must improve testability to either trap
the multiple failures or separate them so
that no false failure occurs.

Tolerance of false alarms. If we are
concerned about the test set itself, we
need to determine the tolerance of false
alarms. Some tests may indicate a prob-
lem when no problem exists because of
exceedingly tight test tolerances, inabil-
ity to fully measure the required param-
eters, or inadequate understanding of
the mechanisms and dependencies in-
volved in taking test measurements.
When field false alarms manifest them-
selves, two principal actions are taken:
opening the test tolerances, which at-
tacks the first problem but often at the
expense of missed detections, and re-
peat testing, which is designed to allow

transients to die down before the final
evaluation. Repeat testing often takes
the form of “n occurrences of anoma-
lous behavior within y milliseconds for
a bad test outcome.”

Another action, often overlooked, is a
common~ense check of the form “if test
tu indicates an anomalous reading then

Don ’t elim inu te

tests solely
because they are

excess or
redun dun t.

Insteud, examine
the totul impuct on
muin tenunce.

test tb should reflect that problem also.”
This action requires some understand-
ing of the system. The false-alarm toler-
ance, which we compute by examining
the test-to-test dependencies, provides a
measure of the system’s ability to verify
previous test outcomes. If this ability to
verify previous test outcomes is suffi-
cient,we may invoke consistency check-
ing in the isolation strategies when false
alarms are a problem. When it is insuffi-
cient we may wish to add extra tests to
provide a margin for field false alarms.

Use of test resources. When analyzing
a system in the design phase, we may
still need to develop the tests through
detailed test specifications. These test
specifications are normally put together
in a test requirements document, which
is often a costly and time-consuming
process. Before actually writing the ele
ments of the TRD, we may want to ascer-
tain which tests are contributing to fault

isolation and which are not. Some tests
under development may not contribute
anything to fault isolation and can
therefore be eliminated. Moreover, we
may need additional tests because of
ambiguity within the system, inadequate
operational isolation, or frequently oc-
curring false alarms.

We can identify some of these prob-
lems during design, but others, such as
false-alarm tolerance, may require the
system to be operational.

#en considering tests for elimina-
tion, we need to identify two types of
tests. An excess test provides the same
diagnostic information as some combi-
nation of other tests. A redundant test,
which is a special form of excess test,
provides the same diagnostic informa-
tion as some other single test. In infor-
mation-flow feedback, we found that all
conclusions in the feedback loop are
ambiguous. Thus, all tests in the feed-
back loop are redundant because all of
them examine the entire feedback loop.

We must be careful in eliminating re-
dundant or excess tests from the model
and thus from the diagnostic system.
The elimination of excess tests will most
likely reduce the tolerance to false
alarms. If false alarms are a concern, ex-
cess tests may provide invaluable assis-
tance in minimizing inappropriate ac-
tion when a false alarm occurs; however,
including excess tests may reach a point
of diminishing returns in providing the
necessary c ross-c he cks .

Another concern in removing these
tests is that each test may have a differ-
ent cost. For example, test tu and test tb
may be redundant, but t, may be inex-
pensive to perform and somewhat unre
liable while tb is highly reliable but diffi-
cult to perform. We could choose either
t, or tb, depending on the available re-
sources and how critical each was to
mission completion.

Finally, removing excess tests may in-
crease the problems with isolating faults
when there are multiple failures.The po-
tential for false failures may increase be-

SEPTEMBER 1991 27

I N T E G R A T E D D I A G N O S T I C S

cause tests no longer exist to differenti-
ate the sympt0ms.A good strategy is not
to eliminate tests solely because they
are excess or redundant, but to analyze
the total impact on maintenance.

Developing diagnostic
strategies

The purpose of any testability analysis
is to provide the system with adequate
diagnostics. After the analyses just d e
scribed, defining a diagnostic strategy is
the next logical step.

Mathematically, fault isolation is a set
partition problem. Let C = (c,, c2, ..., cn)
represent the set of components. After
the j th test, a fault-isolation strategy par-
titions C into two classes:

F J = (c{, ci, ..., CA)

which is the set of components that are
still failure candidates after the j th test
(feasible set),and

which is the set of components found to
be good after thejth test (infeasibleset).
By this structure,a strategy will have iso-
lated the failure when F’ consists of a
single element or a component ambigu-
ity group that cannot be divided.

Test results impart information. Any di-
agnostic strategy must consider the type,
amount, and quality of such informa-
tion. In our model, we assume that what
the test indicates (good or bad) actually
reflects the state of the UUT. If we know
all the dependencies in a system,we can
calculate the information content of
each test. When a test is performed, the
set of dependencies allows us to draw
conclusions about a subset of compo-
nents.

At any point in a sequence of tests,we
can compute the set of remaining fail-
ure candidates. The algorithm we have
developed looks at the information con-

tent to minimize the average number of
tests required to isolate a fault over the
set of potential failure candidates. This
adaptive approach embodies several ar-
tificial intelligence algorithms, including
inference and pattern recognition.

Let D represent the full set of depen-
dency relationships between compo-
nents and test points as a matrix. sk is a
sequence of k tests, (t,,r, ,..., t,+).Fk is the
feasible failure candidate set associ-
ated with Sk. An information measure
I,” for each unperformed test r, is a func-
tion of the dependency relationship and
the remaining candidate failure class,
say, 1: = f(D, F”>.

We obtain Sk,which is based on an un-
known current outcome, by optimizing
at each decision point. That is, we take
the next test in the sequence as the test
that maximizes 1; for the conditions im-
posed by each previous test outcome.
The sequence ends when we have
enough information to isolate the fault.

Although this algorithm uses the
greedy heuristic, it is based on a higher
order representation and has been pro-
viding performance near the theoretical
optimum. The algorithm also allows for
weighting by individual resource fac-
tors.

Evaluating diagnostic
strategies

An added benefit of our information-
modeling approach is that we can evalu-
ate existing diagnostic strategies in the
form of fault trees.Rather than using the
testchoice algorithm described earlier,
we use the tests specified in the fault
tree and compute the corresponding in-
ferences with the model and the infer-
ence system.Using the inference system,
we can directly compute the following
information:

actual isolationsforeachpath in the tree
including conflicts or resulting ambigu-
ity groups

average cost and expected cost for the
strategy based on supplied data on test
cost
average time and expected time for the
strategy based on supplied data on test
time
a detailed analysis of test cost,test time,
and failure frequency for each branch in
the tree

If we do not have a model and assume
that the available strategy is correct, we
can use paths in the fault tree to deter-
mine failure attributes of the system.
These attributes can provide an initial
model. However, we are still developing
this analysis technique.

Interactive diagnosis
We can also develop fault-isolation

strategies in a dynamic environment, as
information is obtained during testing.
This type of strategy,called adaptive test-
ing, is sensitive to the context of the
problem. Interactive maintenance aids,
automatic test equipment, and embed-
ded maintenance systems are tools for
adaptive testing.

Interactive maintenance aids
Interactive maintenance aids are usu-

ally either electronic manuals, intelli-
gent maintenance aids, or semiauto-
matic maintenance aids. Their cap-
ability is limited to how well we can
electronically manipulate the diagnos-
tic process using today’s computing
technology Portable diagnostic aids
may be strictly electronic manuals or in-
telligent maintenance assistants, while
large computer systems could use large-
scale simulation to guide diagnosis. Our
focus is the environment of the small
computer.

Technical information devices are ma-
chine representations of technical man-
uals in the form of electronic manuals
that use static fault-isolation strategies.

28 I111 DESIGN & TEST OF COMPUlERS

These strategies display test procedures
in proper order for fault isolation by fol-
lowing the fault tree and “turning the
manual’s pages” for the technician.
When the fault is isolated, they present
repair procedures. These devices have
minimal machine requirements but pro-
vide little in terms of flexibility, training,
or logistics support.They are also unable
to learn from repeated application^.'^

Intelligent maintenance aids are com-
puter programs with extensive knowl-
edge of the UUT.These devices have the
potential for considerable flexibility be-
cause they can compute the next main-
tenance action using the known infor-
mation and the problem context.
Obtaining the desired level of flexibility,
however, takes some effort unless we
have done compatible testability model-
ing of the system. Intelligent mainte-
nance devices tie a model to an elec-
tronic manual’s database to form an
interactive, contextsensitive mainte-
nance aid.The model-based approaches

described here are useful in exploiting
the flexibility of these devices.I6

Semiautomatic maintenance aids art
intelligent maintenance assistants tha
can query other databases for answer!
to test questions (such as embeddec
BIT) or can execute and interpret tests
They are connected to the system being
analyzed for downloading informatior
or measuring through stimulus-responsc
testing. Fault isolation in semiautomatic
maintenance aids is similar to that in in
telligent maintenance aids except tha
semiautomatic aids can answer many o
their own questions.

Automatic test equipment
With only a small extension, the semi

automatic maintenance aid can be
come intelligent ATE. ATE systems an
developed for second- and third-leve
maintenance and typically consist of ar
instrument suite, an interface tes
adapter,a computer,a test executive,anc

Tabie 2. Results of applying information-/low modeling to integrated diagnostics.

system Customer Results

Air pressurization Intemotional
system Fuel Cell

AN/MSQ- 1 03C EW/RSTA/USA
Teampack

Mk 84 60/400 Hz Static Navsea/USN

UH-60A Stability ATL/USA
Augmentation System

ALQ-131 Podded ASD/USAF
EW System

ALQ- 1 84 Podded AFLC/USAF
Ew System

8-2 Bomber DFT Program USAF/Northrop

Improved unique isolation by 100%

Reduced required testin by 87%
and developed a portaile
maintenance aid

Reduced required testin by 70%
and developed a portabge
maintenance aid

Reduced mean time to isolate fault
by 90%; reduced maintenance
complexity by 70%

Reduced mean time to isolate fault
by 75%

Reduced false-alarm rate by 90%;
developed software test procedures
for unit under test

Improved specification compliance
at the shop-replaceable-unit level
by 80%

a test program set. The TPS, which d e
fines how to diagnose a piece of equip
ment, is usually developed using static,
predefined fault trees. But because the
static fault tree has limited flexibilitywe
generally require a limited amount of in-
telligence.

Intelligent ATE considers known infor-
mation such as BIT readings, operator
complaints, and logistical history. It also
adapts to changing conditions during
maintenance and provides sufficient
flexibility for the technician to work
around deficiencies in test equipment
or other factors. An example of intelli-
gent ATE that Arinc has developed is a
system that uses a Racal-Dana VXI auto-
matic test unit to diagnose faults in
power supplies on the AV-8B (Harrier)
aircraft.I7

Embedded diagnostics
The most significant application of the

model-based approach has yet to be r e
alized. Many complex system architec-
tures have evolved to the point of hav-
ing on-board processors, on-board
measurement devices, bulk memory,
and data buses for information transfer.
One such architecture for avionics sys-
tems includes all of these elements and
some reconfiguration capabilitpI8
These hardware developments, together
with the modeling approaches de-
scribed in this article, make possible an
embedded diagnostic system that can
examine its own maintainability and
testability. The system then diagnoses
possible failures and reconfigures itself
to complete mission requirement^.'^

W e have covered some of the basics
in information-theoretic approaches to
integrated diagnostics. We have de-
scribed how to create a mathematical
structure that is both hierarchical and
technology independent. This structure,
however, is not a global solution to diag-

SEPTEMBER 1991 29

I N T E G R A T E D D I A G N O S T I C S

nosis because it discards much of the
detail about a particular test’s worth-
detail that is needed to develop a reli-
able and complete diagnostic system.

Our modeling approach uses informa-
tion as the medium of exchange and in-
formation fusion as the inference pro-
cess. It handles imprecise testing by
reasoning under uncertainty and has
been used for the analysis of testability
and fault diagnosis,diagnostic strategies,
and maintenance aids.

We have applied this approach to
more than 200 systems and have repeat-
edly demonstrated the effectiveness of
information modeling in improving field
performance. Table 2 lists a few of our
successes. The results in the table are
consistent with the results we have
achieved overall. Improvements have
been significant in most cases and occa-
sionally spectacular.

References
1. M. Garey, “Optimal Binary Identification

Procedures,” 1 Applied Mathematics,Vol.
23, No.2,Sept. 1972,pp. 173-1 86.

2. L. Hyafil and R. Rivest, “Constructing Op-
timal Binary Decision Trees in NP-Com-
plete,” Information Processing Letters,
Vol.5,No.l,May1976,pp.15-17.

3. B. Moret, “Decision Trees a n d Diagrams,”
Computing Surveys, Vol. 14, No. 4, Dec.

4. K.Pattipati and M.Alexandridis,’Applica-
tions of Heuristic Search and Informa-
tion Theory in Sequential Fault Diagno-
sis,” IEEE Trans. Systems, Man, and
Cybernetics, July/Aug. 1990, pp. 872-887.

5. G. Cross, “Third Generation MATE-
Today’s Solution,” Proc. Automatic Test
Conf.,lEEE Press,New York, 1987,pp.289-
292.

6. C. Espisito et al., “US ArmylIFTE Techni-
cal and Management Overview,” Proc.
IEEE Automatic Test Conf , IEEE Press,
New York, 1986, pp. 3 19-322.

7. M. Najaran, “CASS Revisited-A Case for
Supportability,” Proc.lEEEAuiomatic Test
Conf,lEEE Press,New York, 1986,pp.323-
327.

8,WKeiner,’A Navy Approach to Integrated
Diagnostics,” Proc. IEEE Automatic Test
Conf , IEEE Press,New York, 1990,pp.443-
450.

1982, pp. 593-623.

9. Testability Program for Electronic Sys-
tems and Equipment, MILSTD-2165,
Naval Electronic Systems Command
(ELEX-811 l),Washington,DC, 1985.

10. J.Sheppard a n d WSimpson,“Integrated
Maintenance-A Hierarchical A p
preach:' Proc. IEEE Automatic Test Conf ,
IEEE Press,New York, 1990,pp.477-483.

11.A. Mosely, “Why a n Air Force Centralized
Integrated Diagnostics Office?” Proc.
IEEE Automatic Test Con f , IEEE Press,
New York, 1990,pp.373-376.

12. W. Simpson a n d B. Kelley, “Mathematical
Formulation of Fault Isolation,” STAMP
tech. note 330.1, Arinc Research Corp.,
Annapolis, Md., 1986.

13. J. Allen, “Maintaining Knowledge About
Temporal Intervals,”Comm. ACM,Vo1.26,

14. J. Sheppard, ‘Applying Propositional Cal-
culus to Temporal Reasoning,” AI tech.
no te 1301,Arinc Research Corp.,Annap-
olis,Md., 1989.

15. W Simpson, ‘Active Testability Analysis
a n d Interactive Fault Isolation Using
STAMP’ Proc. IEEE Automatic Test Coni?,
IEEEPress,NewYork,1987,pp.105-111.

16. J. Sheppard a n d W.Simpson, “Incorporat-
ing Model-Based Reasoning in Interac-
tive Maintenance Aids,” Proc. Nat’l Aero-
space Electronics Conf , IEEE Press, New
York, 1990,pp. 1238-1242.

17.W.Simpson and J.Sheppard,“Developing
Intelligent Automatic Test Equipment,”
Proc. Nat’l Aerospace Electronics Coni?,
IEEE Press, New York, 1991, pp. 1206-
1213.

18. JIA WG Advanced Avionics Architectures
587-01 (CAB 14, Joint Integrated Avion-
ics Working Group,Dayton,Ohio, 1989.

19. E.Esker, W.Simpson, and J.Sheppard, ‘An
Embedded Maintenance Subsystem,”
Proc. IEEE Automatic Test C o d , IEEE
Press, New York, 1990, pp. 33 1-336.

NO. ll,N0~.1983.pp.832-843.

Direct questions o r comments o n this article
to either author at Arinc Research Corp., Ad-
vanced Research and Development Group,
2551 Riva Rd., Annapolis, MD 21401;
Sheppardk e-mail address is s h e p p a r d a
cs.jhu.edu.

William R. Simpson is a research fellow in
the Advanced Research and Development
Group at Arinc Research Corp., where h e is
involved in testability and fault diagnosis.He
helped develop the System Testability a n d
Maintenance Program, which is based on a n
information-flow model. He was also a prin-
cipal developer of Pointer, a n intelligent, in-
teractive maintenance aid. He holds a BS
from Virginia Polytechnic Institute a n d State
University and a n MS and a PhD in aero-
space engineering from Ohio State Univer-
sity

John W. Sheppard is a senior research ana-
lyst in the Advanced Research a n d Develop-
ment Group at Arinc Research Corp.. He is
also pursuing a PhD in computer science at
Johns Hopkins University. His research areas
include applying AI techniques to fault diag-
nosis, machine learning, neural networks,
and nonstandard logic.He has developed al-
gorithms to diagnose system failures, verify
knowledge bases, a n d classify software. He
was also a principal developer of Pointer
and assisted in the development of a proto-
type expert system that diagnoses system
failures and reconfigures the system to keep
functioning. He holds a BS from Southern
Methodist University and a n MS from The
Johns Hopkins University-both in com-
puter science.

30

_ _ _ ~

IEEE DESIGN & TEST OF COMPUTERS

http://cs.jhu.edu

