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ble, or degraded) of an  item to be  deter- 1 
mined and the isolation of faultswithin the 
item to be performedinatimelyandefficient 
manner."8 

Testability isa  design concept by which 
we gauge oursuccess in achieving design 
goals for field maintenance. It comprises 

1 several issues concerned with the various 

A Maihematical 
Model for Integrated 

system model provides a structure for an- 
alyzing testability and  diagnosis, which 
we will discuss in future articles in this 
series. 

Diagnostics 

S i n c e  its introduction in the 1980s, 
testability analysis has emerged as a 
significant engineering discipline. 
Previously, such analysis began only 
after systems were fielded, and  the 
results often exhibited poor field 
ma in ta inab i l i t~ .~ ,~  Buyers and  users 
of complexsystemsare now demand- 
ing more precise analysis of field 
maintainability during the design 
phase of these systems. In response 
to such demands,  a number of com- 
panies and  universities have devel- 
oped  approaches to address the is- 
sue of field maintainability. Many of 
these approaches use model-based 
reasoning to provide design for test- 
ability analysis and  d i a g n o ~ i s . ~ . ~  

System testability means the ability 
to test asystem. In thisseriesof articles, 
we concentrate on our ability to diag- 
nose failures as part of an overall inte- 
grated maintenance architecture. We 
agree with the definition of testability 
" ... as a design characteristic which 
allows the status (operable, inopera- 

- 

-4 
i 
I 

JOHN W. SHEPPARD 

W l l l l A M  R. SIMPSON 

Arinc Research Corp. I 

I I 

aspects of maintaining complex sys- 
tems. To address several testability 
issues mathematically, we  developed 
the information flow model. 

In the first article' of this series, we  
provided an  overview of the problem 
of analyzing testability and  conduct- 
ing diagnosis for complex systems. 
We now expand on  the form of the 
information flow model that was in- 
troduced in the first article and has 
been used successfully in several 
types of took.9,'" 

The majorelementsof the informa- 
tion-flow model include graph-based 
a n d  logic-based representations,  
groupings, and  multiple-conclusion 
mappings. To assist modeling, our 
information flow model enables an  
analyst tospecify asimplified form of 
the system model, which the testabil- 
ity software later compiles to facili- 
tate analysis of system testability. Com- 
piling the  model  requires three 
algorithms for determining higher or- 
der relationships. This form of the 
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We will use a hypothetical antitank mis- 
sile launcher to illustrate the concepts 
and computations described in these arti- 
cles. Tables 1 and  2 provide test and  fail- 
ure mode  data for the case study. We 
derived the case study from an  actual 
missilesystem, modifying it extensively to 
illustrate certain mathematical principles. 
Asa result, although the data represent an  
actual problem, the system may deviate 
significantly from what may b e  encoun- 
tered in a real missile system. 

The hypothetical missile launcher con- 
sists of a tripod, a gunner's optical sight; a 
launch tube; a traversing unit to which the 
tripod, launch tube, and  optical sight at- 
tach; and  an  electronic guidance comput- 
er. The missile contains two solid-propel- 
lant motors. The launch motor ejects the 
missile from the launch tube and is burned 
out by the time the missile has left the 
tube. Only after the missile has flown sev- 
eral meters does  the flight motor ignite, so 
no  protection is required for the gunner. 

After the missile leaves the launch tube, 
a light source in the tail comes on  so the 
optical sensor on  the launcher can  track 
the missile along its flight path. The light 
source is sufficiently strong to allow auto- 
matic guidance to the maximum range of 
the missile under all conditions in which 
the missile is visible to the gunner. 

Information flow 
model 

The structure of the information flow 
model facilitates our ability to formulate 
testability measures. An information flow 
model has two primitive elements: tests 
and fault-isolation conclusions. Tests in- 
clude any source of information that can  
b e  used to determine the health of a sys- 
tem. 

Fault-isolation conclusions include fail- 

Table 1. Tests in the case study. 

Available tests Label' Time** Skill level+ 

Fire command signal int, 1 .oo E2 
Reticle position tracker in t2 1 .oo E3 
One-two fidelity signal tl 2.00 E3 
Readiness output signal t2 2.20 E3 
Boundary parameter signal t3 2.40 E5 
Summary safe/arm signal t4 1.50 E4 
Combined fidelity signal t5 1.30 E4 

Error signal t6 3.00 E3 

Course correction signal t7 1 .oo E5 
Command corrector signal t8 2.00 E3 

Track signal tl0 0.60 E6 

Power ready signal tl 1 0.1 0 E7 
Power ready/enable signal tl2 0.90 E2 
Bounded error signal tl 3 1.20 E3 
Launcher enable signal tl4 1.60 E4 
Launch track generator signal tl 5 1.50 E2 
Launch track evaluation signal tl 6 2.00 E3 

Launcher ready signal tl 7 1.50 E3 
Stabilized loop signal output tl 8 0.30 E3 

Command response signal t9 0.50 €4 

* int corresponds to a testable input, including both the test and 

** Units are not significant as long as they are consistent. 
t Skill level corresponds to enlisted rank in the US milita 

conclusion element, and t corresponds to a test. 

assume a linear correspondence between rank and skiylevel. 
services. We 

failure indication. The information ob- 
tained may b e  a consequence of the sys- 
tem operation or  a response to a test stim- 
ulus .  Thus ,  w e  inc lude  obse rvab le  
symptomsof failure processesin the infor- 
mation flow model as tests. Doing this 
allows us to analyze situations that in- 
volve information sources other than for- 
mally defined tests. The purpose of our 
model, of course, is to combine these 
information sources (tests) to derive con- 
clusions about the system being diag- 
nosed. 

The basic representation of the infor- 
ures of functionality, specific nonhard- 
ware failures (such as bus timing), specif- 
ic multiple failures, and the absence of a 

mation flow model includes both a de- 
pendency representation and  a logical 
representation of the system being ana- 

lyzed. In addition, the information-flow 
model includes the definition of groupsof 
logically related tests and  conclusions. In 
this representation, w e  define logical val- 
ues for tests and  fault-isolation conclu- 
sions. Specifically, if a test fails, it is true; if 
a test passes, i t  is false. An asserted conclu- 
sion is true; a conclusion eliminated from 
consideration is false. 

Test information 
The procedures in the maintenance 

manual for the antitank missile launcher 
provide detailed stimulus and  response 
data for each of the tests. The following 
represents the information obtained from 
the maintenance procedures: 
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Table 2. Conclusions in the case study. 

Failed element Label’ Rate*’ Redaceable unit t 
Fire command signal 

Reticle position tracker 

Command override 

Override enable 

Sight activation function 

Safe/arm determination 

Launcher ready evaluator 

Boundary check 

Parameter fidelity 

Parameter fidelity backup 

Error evaluator 

Error corrector 

Command signal evaluator 

Response generator 

Target tracker 

Command to track comparator 

Guidance output 

Launcher power supply (battery) 

Launcher power enable 

Launcher power signal conditioner 

Cross-check override 

Error signal boundary check 

Launcher full ready function 

Launch command function 

Fire ready activation function 

intl 

int2 

inu1 
inup 

C1 

c2 

c3 

c4 

c5 

c6 

c7 

c8 

c9 

Cl  0 

c11 

c12 

c13 

c14 

c15 

c16 

cl 7 

c18 

cl 9 

c20 

c2 1 

10 
10 
10 
5 
5 

100 
100 
100 
100 

5 
5 
5 
5 
5 
5 
5 

100 
100 
5 
5 
5 
5 

100 
100 

0 
0 
0 

Assembly 1 (ru1) 

Assembly 2 (ru2) 

Assembly 1 (Tu,) 

Assembly 3 (ru3 

Assembly 3 (rug) 

Assembly 3 (rug) 

Assembly 4 (ru4) 

Assembly 4 (rud) 

Assembly 5 (rug) 

Assembly 5 (rug) 

Assembly 5 (rus) 

Assembly 6 (rug) 

Assembly 6 (rug) 

Assembly 6 (rug) 

Assembly 6 (rug) 

Assembly 7 (ru7) 

Assembly 7 (ru7) 

Assembly 8 (rug) 

Assembly 8 (rug) 

Assembly 8 (rug) 

Assembly 2 (Tu*) 

’ int corresponds to a testable input, includin both the test and conclu- 
sion element, inu corresponds to an untestaXle input, and c corresponds 
to a conclusion. 

**  Units are not significant as long as they are consistent. 
t Replaceable units are designated in accordance with fhe definition of 

groups given in the section “Representing group constructs.” The system 
inputs are not listed as members of replaceable unit groups, although 
they could be. 

One-two fidelity signal (fJ This sig- 
nal examines both the safe/arm de- 
termination (c2) and the sight activa- 
tion function (c l ) .  If either element is 
faulty or improper, this signal detects 
the problem. In addition, a faulty fire 
command signal (inf,) or a faulty 
boundary parameter signal (t3) ad- 

versely affects the one-two fidelitysi! 
nal. This signal also detects failure c 
theparameterfidelitybackup unit ( c i  
Bounded errorsignal (tI3). Before th 
launch circuitry issues final launc 
and guidance instructions, i t  perforrr 
a final evaluation of all signals. Th 
bounded error signal examines th 

signals produced by the  launcher 
power signal conditioner (c16), the 
cross-check override (cI7).  the error 
signal boundary check (cl*), and the 
override enable (inuz). The bounded 
error signal also cross-checks the sta- 
bilized loop signal output ( t 1 8 ) ,  the 
power ready/enable signal (t lz) ,  and 
the summary safe/arm signal (f4). If 
any of these unitshasfailed, the bound- 
ed error signal indicates a failure. 

Directed graph 
In usinga directed graph to model infor- 

mation flow, the primitive elements (that 
IS, tests and conclusions) are the vertices, 
md dependency relationships between 
[he primitive elements are the edges. More 
formally, let the set of vertices V equal 
IuF,  whereIrepresentsthesetofinfoma- 
tion sources (tests), and F represents the 
set of fault-isolation conclusions. Let the 
set of edges E equal the set of firjt-order 
dependency relationships between the 
vertices in V. By first order, we mean the 
direct relationships between vertices wi th- 
out forwardorbackward chaining (that is, 
theset of paths of length equal to 1 from a 
test back to a test or conclusion). Let 
D = (V, E) be an adjacency matrix that 
represents the dependency graph of the 
system being analyzed. 

We can determine higher order depen- 
dency relationships (designated by 2)- 
that is, the set of paths of length greater 
than or equal to I-for each test by using 
several algorithms. These algorithms pro- 
vide information equivalent to that pro- 
vided by traditional forward- and back- 
ward-chaining algorithms in a rule-based 
inference system. Let D= (v, E) represent 
the higher order dependency graph of the 
system being analyzed. 

We store both the first-order and the 
higher order dependency graphs as bit- 
adjacency matrices, where each cell in the 
matrixusesonlyonebitofmemory.Thebit 
matrix representation is compact and re- 
quires only e(n2) bits forstorage. Here, n is 
the number of elements in the matrix, cor- 
responding to the sum of the testable ele- 

DECEMBER 1 99 1 27 



I N T E G R A T E D  D I A G N O S T I C S  

ments and the conclusion elements plus 1 
(for a special conclusion referred to as No 
Fault). A testable input comprises two ele- 
ments (test and  conclusion) under this 
formulation. Weseparate testsand conclu- 
sions in the dependency matrix tosimplify 
several calculations and  analyses. 

Recall that I represents the set of infor- 
mation sources, which also includes test- 
able inputs. And F represents the set of 
fault-isolation conclusions, which also in- 
cludes testable and  untestable inputs, 
multiple failures included in the depen- 
dency graph, and  No Fault. (An input is 
any signal coming in from outside the 
system; a testable input isan input that w e  
can  independently test.) The top half of 
the dependency matrix represents the test- 
to-test dependency relationships and  is of 
size I I I * I I I. (Given a set X, IXI represents 
the cardinality of X, that is, the number of 
members of set X.) The bottom half of the 
dependency matrix represents the test-to- 
conclusion dependency relationships and  
is of size I I I * I F I. 

On the basis of the test descriptions of 
the casestudy, we  can  determine the first- 
order test dependencies for tl and  t13 as 
follows: 

Figure 1 is a dependency diagram for 
the missile launcher. Figure 2 shows all 
the first-order dependencies (indicated 
by "f") mapped into a matrix representa- 
tion. By definition, no  test has a depen- 
dency on  No Fault, allowing us  to make 
the closed-world assumption. In this type 
of model development, we  generally mark 
columns of the matrix to represent test 
dependency lists, as shown in Figure 2. 

Representing logical 
constructs 

The matrix orientation forces a logical 
interpretation of the information in the 
rows and  columns. We can  say that if a 

given conclusion is true, all the tests that 
depend on  the conclusion are also true. In 
other words, the tests that depend on  the 
conclusion (represented by row elements) 
will detect the failure. This is also true in 
the event that we  know that a test has a 
failed outcome. In this case, all tests that 
depend on  the failed test must also fail. In 
addition, the columns of the dependency 
matrix provide information concerning 
the possible cause of a failure. If a test 
passes, all the elements in the correspond- 
ing column (both tests and  conclusions) 
must also pass. 

The graphical form of representation is 
limited. That is, we may want the logical 
constructs given in Equations 1 through 3 
(which correspond to Equations4 through 
6 in part ll): 

conclusioni 3 Etest , ,  
I 

where representsdisjunction, given that 
tesfi depends o n  conclusion; ; 

test 2 test ], 

J 

given that test, depends on  test,; and  

test, 

(31 
given that test, depends on  tesfi, conclu- 
sionk. 

The matrix formulation does not direct- 
ly handle Equations 1 through 3. Equa- 
tions l and  2 result when a fault mightlead 
to the failure of one  or more tests and  the 
failure of a test might lead to the failure of 
one  or  more other tests. We call the set of 
tests that may fail a test-disjunct set. Equa- 
tion 3 provides for the inclusion of multi- 
ple conclusions in the model. We derived 
the basic formulation to limit the combi- 
natorial growth of the search space. How- 
ever, i t  is important to include the logical 
relationships because they are  a part of 
real systems. Because the matrix repre- 

sentation does not directly support these 
three constructs, w e  add  special elements 
to the model to overcome the limitation. 

To incorporate the test-disjunct sets of 
Equations 1 and 2, w e  create a separate 
test element that is the logical OR of the 
matrix columns corresponding to the in- 
dividual tests within the test-disjunct set: 

D; = 2 Dj, 
V't,E7; 

where Di represents the ith column of the 
higher order dependency graph, $is a test 
that belongs to the test-disjunct set, and 7; 
is the set of tests in the ith test-disjunct set 
to be  represented in the matrix. 

For the case study, Equation 1 c o r r e  
sponds to mappinga constructsuch as the 
following. If ~ 1 7  fails, eithertl 0rtl3 or  both 
will have a bad test outcome. This logic is 
handled by an  additional element tl-or-t13, 
in the matrix form that depends on tl,  t13, 
and  cI7.  

Equation 2 corresponds to mapping a 
construct such as this. If tg has a bad  test 
outcome, either tl or  tl3 or  both will have 
a bad test outcome. This logic is handled 
by an  additional element t1-or-t13, in the 
matrix form that depends on  tl,  tI3, and tg. 

I f  both constructs are present, the com- 
pound representation of tl-or-tI3, depend- 
ing on  t l ,  t13, tg, and ~ 1 7 ,  will suffice. 

To incorporate the construct given by 
Equation 3, w e  create a separate conclu- 
sion that is the logical And of the matrix 
rows corresponding to the individual con- 
clusions within a multiple conclusion 
group. We discuss this mapping in detail 
in Part 1 of this series.' 

Representing group constructs 
A group is a collection of similar ele 

ments that all have a common aspect 
significant to diagnosis. For example, a 
test group may have a collection of tests 
that all require the same equipment. A 
replaceable unit group contains all of the 
conclusions indicative of a failure in one  
piece of hardware. 

The basic construct used to represent a 
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group within this formulation is the set. 
Groups, which are represented outside 
the matrix, affect several analyses of test- 
ability and are represented using charac- 
teristic vectors. In particular, 

(5) 

Here, ($1 is the ith element of the charac- 
teristic vector for thejth group of type S 

corresponding to the ith conclusion in the 
model. We may interpret an element as- 
signed a value of 0 in either one of two 
ways 

That element is considered to be a 

Figure 1. Dependency diagram for the case study 
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Figure 2. First-order dependency matrices for the case study: 
Test-to-test dependency matrix [a) and test-to-conclusion de- 
pendency matrix (b). f = a first-order dependency. 

3 
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group whose only member is that 
element 

H That element is not a member of any 
group of this type 

The appropriate interpretation is based 
on the group type. This formulation uses 
several group types. One is a replaceable 
unit group (a group of fault-isolation con- 
clusions to be treated asasingle isolatable 
element). Another is a testgroup (a group 
of logically related tests to be performed 
together), and a third is a failure group (a 
group of fault-isolation conclusions to be 
treated as a conclusion only when all of its 
members are true). These groups, which 
the analyst provides, represent examples 
of several types of groups handled by this 
formulation. The analyses we describe in 
this series of articles identify several addi- 
tional groups, including ambiguitygroups, 
redundant test groups, feedback groups, 
and hidden-failure groups. For the case 
study, the following groups may be as- 
signed (see Figure 1): 

H Replaceable unit group. For example, 
replaceable unit group rul comprises 
cl  and cy. 

H Test group. An example is t4, f lo ,  and 
tll-a group of tests that require an 
oscilloscope. 

H Failure group. An example failure 
group consists of c1 and c5) which are 
expected to fail at the same time. 

Processing a model 
We consider the information flow mod- 

el to be the knowledge base of thesystem 
to be analyzed and evaluated. An analyst 
prepares a simplified information flow 
model that consists of first-order depen- 
dencies, group specifications, and other 
information specific to the system being 
analyzed. We call the process of convert- 
ing the simplified information flow model 
into a form suitable for analysis knowledge- 
base compilation. 

Compilation is performed in several 
steps to determine all the implications of 

a test. The first such analysis is based on 
the fransitivityof logical implication. When 
A implies B and B implies C, then A im- 
plies C. This is the transitive property. The 
process of mapping these implications in 
a graph representation is called transitive 
closure. 

Because the graph representation cap- 
tures the system topology, we can make a 
number of calculations before proceed- 
ing further, including feedback analysis 
and consistency crosschecking of the 
manner in which conditional elements 
are handled. 

The intemal inference rules are cross- 
checked for additional implications in a 
process called logical closure. When logi- 
cal closure provides a new implication, i t  
must again be checked for transitivity ef- 
fects-a process called incremental clo- 
sure. When processing is complete, the 
total implications available from each 
outcome of each test are available in the 
matrix representation. Compiling a knowl- 
edge base includes performing transitive 
closure, feedback analysis, conditional 
crosschecking, logical closure, and in- 
cremental closure. 

The processof developing information- 
flow models includes specifying the prim- 
itive elements of the model, determining 
the dependency relationships between the 
primitive elements, characterizing the 
types of tests, providing appropriate 
weighting criteria for fault isolation, and 
specifying appropriate groupings and test 
sequences.' The most important step in 
modeling is determining the dependen- 
cies. To simplify this process, the analyst 
enters first-order dependencies for each 
test in the model. We determine a higher 
order dependency, on the other hand, by 
applying the transitive property to the first- 
order dependencies in the flow graph. 

The analyst determines the fitst-order 
dependencies for each test in the model. 
The analyst traces the information flow 
back from the test until another test or an 
input is encountered or no other elements 
are encountered. The testability analysis 
considers all conclusions on the resulting 

path as dependencies, as well as the test or 
input that lies on the path. Because multi- 
ple paths may feed a test, the analysis must 
also consider all paths flowing to the test. 

Required process steps 
Once the analyst develops an informa- 

tion flow model of asystem, the testability 
software preprocesses the model to deter- 
mine the higher order dependencies. 

Transitive closure!. The first step in 
preprocessing is to compute the transitive 
closure of the dependencies in the model. 
Several algorithms exist for this computa- 
tion." For our implementation, we select- 
ed Warshall's algorithm for bit matrices 
because the system stores the dependen- 
cy information in a binary matrix. Our 
matrix has two portions corresponding to 
test-to-test relationships and test-tocon- 
clusion relationships. We modified the 
algorithm slightly to complete the closure 
in the test-to-conclusion portion of the 
matrix (see Figure 3). Because we have a 
bit matrix, we can achieve a great deal of 
machine efficiency by storing several bits 
in a word of memory and then applying 
logical operations to the words instead of 
the bits. 

Feedback analysis. Following transi- 
tive closure, a feedback analysis is per- 
formed to identify topological circulari- 
ties in the model. Such circularities may 
result from physical feedback, informa- 
tion-flow feedback, or modeling error. 
There may be additional circularities fol- 
lowing logical closure; these circularities 
are identified asadditional test redundan- 
cies. The software identifies topological 
circularity for a test ti if and only if ti 
depends on itself. 

To assigneach testto itsfeedbackgroup, 
let D represent a dependency matrix fol- 
lowing transitive closure but before logi- 
cal closure, and let D:' and D;. be vectors 
such that 

(the ith-column vector of D ) , (6) 
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Figure 3. Algorithm for computing transitive closure. 

qFb,='  

D,J = [ D . l ~ j )  

(the jth-row vector 

' j ;  (kn = 1) A 

( o ! ~ ~ ~ ; m i n { o < j 5 l ~ l } ) ; ~ )  

[ T I  < i  5 IT( + IC[ 
0; otherwise 

.of D), 0 

Gm,=< 

and Fb, denotes the feedback loop desig- 
nated by the index of the first member of 
the group. Thus, 

'j;(ijh = l ) A  

(a!=fi:;min{Ocj<i}; ) (8) 
i 5 IT1 

0; otherwise 

member of any topological feedback loop. 
Every test with a value ofj  belongs to the 
same feedback loop. Many values ofjmay 
not be assigned. We can then determine 
conclusion participation in feedback by 

Conditional crosschecking. We d e  
fineaconditional testto beatest forwhich 
the list of dependencies isconditioned by 
some state or mode of the system. Our 
implementation of the conditional test is 
currently limited to a set of mutually ex- 
clusive conditional states. Thus, condition- 
al testsmaydepend onlyon noncondition- 
al tests, conclusions, inputs, default 
conditional tests, and conditional tests of 
the same type. We define a default condi- 
tional test for all tests with conditionals to 
be the conditional test utilization in the 
absence of explicitly specified condition- 
al information. 

Given two teststxand ty, and given condi- 
tionals A and B such that A is associated 
with tx and B is associated with ty, suppose 
that ty conditioned on B depends on tx 
conditioned on A. When the knowledge 
base iscompiled, the following rulesapply: 

Rule I .  I f  conditional A is the same as 
conditional B, then the dependency is 
acceptable. 

w Rule 2. If conditional A is not the same 
as conditional B, and conditional B is 
not the default conditional forty, then 
the dependency is not acceptable b e  
causea nondefault conditional test may 
depend only on another test of the 
same condition or on a default condi- 
tional test. 

w Rule 3. If conditional A is not the same 
as conditional B, and conditional B is 
both the default conditional forty and 
the default conditional for tx, then the 
dependency is not acceptable because 
the mutually exclusive assumption 
would limit ty conditioned on B to d e  
pend on tx conditioned on B. 

w Rule 4. I f  conditional A is not the same 
as conditional B, and conditional B is 
the default conditional forty, then the 
dependency is acceptable. 

The system considersviolations of Rules 
2 and 3 as cross-conditionals. The analyst 
can evaluate some of these rules while 
creating the model. However, transitive 
closure maycauseviolationsoftheserules 
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ship exists as described here, the algo- 
rithm inserts a new dependency into the 
test-to-test portion of the dependency 
matrix. The process of logical closure, 
shown in Figure 4, is tied to incremental 
closure. 

Incremental closure. When we add a 
dependencythrough logical closure, new 
higher order dependencies may exist. 
These new dependencies do not affect 
the test-to-conclusion portion of the ma- 
trix, so we need to “close” the new bit only 
in the test-to-test portion of the matrix. (In 
the event a new bit is added in the test-to- 

to appear that could not readily be identi- 
fied during input. In addition, logical clo- 
sure may result with the occurrence of 
crossconditionals. However, these cross- 
conditionals are logical artifacts of the 
model and need not be eliminated. As a 
result, the software performs conditional 
crosschecking between transitive and log- 
ical closure. 

’ ready for the remaining analyses. If we do 
not know the test-to-test relationships but 
do know the higher order test-toconclu- 
sion relationships, then logical closure 

~ will bring the full relationship map back. 
We call this type of model development 
attribute mapping.‘ 

Processing input data 
Figure 6 on page 34 shows the results of 

applying the five majorsteps in compiling 
the knowledge base. 

Transitive closure. Bits added to the 
matrix as the result of transitive clo- 

, 

Logical closure. The next step in com- 
piling the knowledge base is to examine 
the matrix for additional inferences that 
may be drawn. These additional inferences 
are based on a closed-world assumption 
expressed for diagnosis as follows: 

m If a test with an unknown outcome 
depends on all of the unknown ele- 
ments in the model, then that test 
must have a failed outcome. 
I f  a test with an unknown outcome 
depends only on elements known to 
have passed, then that test must have 
a passed outcome. 

The closed-world assumption is permis- 
sible because of the existence of the spe- 
cial primitive element called No Fault, 
upon which no test depends. This ele- 
ment prevents a test from being declared 
bad under these inference rules as long as 
the No Fault conclusion is still a consider- 
ation. 

We refer to the identification of depen- 
dencies through these rules as logical clo- 
sure. Mathematically, logical closure can 
be represented as follows: Given two tests, 
t, and t,,, let A* be the set of conclusions 
onwhicht,depends(c,andc,,) andB* be 
the set of conclusions on which ty de- 
pends(c,).lfB* isasubsetofA*, thenwe 
can infer that t ,  depends on tv. For exam- 
ple, suppose we have the following de- 
pendencies in our model: 

t, depends on c, 
t, depends on cb 
t, depends on c 

Input: Matrix[ 1 ..row,l ..col] 

corresponding to /TI*/ 

procedure LOG-CLOSE (Matrix, row, col) 
begin 

for i := row downto col +I do 

if (Matrix [k,i] = 0) then 

endif 

if (Matrix [k, i] <> Matrix [j,i]) then 

flag := 1; /*no relationship exists*/ 

endif; 
end for; 

endfor; 
end; 

If  we assume that all other dependen- ~ Figure 4. Algorithm for computing logical closure. 
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w Feedback analysis. Feedback is indi- 
cated whenever a n  “h” appears  in a 
diagonal cell of the higher order de- 
pendency matrix. (We will address 
the feedbackanalysisof the case study 
in the next article in this series.) 

w Conditional cross-checking. The case 
study contains no  conditional tests. 

w Logical closure. Bits added  to the 
matrix as the result of logical closure 
are  indicated by an  “I.” 

w Incremental closure. Bits added  to the 

Capitalizing on logical closure 

The process of creating models can  be  
complicated and  time-consuming. There- 
fore, w e  concentrated much of our re- 
search on  approaches to simplifying the 
modeling task. We found that the algo- 
rithm for logical closure provides an  ex- 
cellent opportunity for such simplifica- 
tion. The literature describes two analyses 
that can  assist the modeling process 

w the failure mode ,  effects, and  critical- 

Figure 5. Algorithm for computing incremental closure. 
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A FMECA describes the symptoms asso- 
ciated with each failure mode  of a system 
and estimates the impact of the failure 
mode  on mission success, safety, system 
performance, maintainability, and  main- 
tenance requirements. A fault dictionary 
is a table, indexed by faults, containing 
lists of failures that may have caused a 
listed symptom. 

We call the symptoms associated with a 
fault the attributes of the fault. If we  associ- 
ate a failed test (or a set of failed tests) with 
each symptom, when a fault may have 
caused a particularsymptom to appear, the 
test associated with the symptom depends 
o n  the fault. (In part I , ]  we  say that a test 
depends on testsand conclusions that may 
cause that test to fail.) Because the test 
associated with the symptom depends on  
the fault, w e  can  use the FMECA and the 
fault dictionaty to determine the set of 
dependencies between the tests and  the 
failure modes of the system the analyst is 
modeling. The complete set of conclu- 
sion-to-test attributes is called the attribute 
map, and  the complete set of test-to-con- 
clusion dependencies for a system is a 
consequence of the attribute map. Given 
a n  attribute map of the system, logical 
closure can  determine test-to-test depen- 
dencies, thus completing the higher order 
model. 

One approach to generating the attribute 
map involves creating a simulation model 
of thesystem to b e  analyzed. We can devel- 
o p  the simulation model using any of the 
standard simulation tools (for example, 
PSPICE). Once the model is complete and 
running, we  can enter tests into the model 
as observation points or  probe points. (We 
should define testsso they can be  executed 
without reliance on previousstates. We call 
a test defined in this way an encapsulated 
rest. We will addressencapsulated tests in a 
future article.) Then we construct the at- 
tribute model in the following steps: 

1. Run the simulation model without 
failures and  record the measure- 
ments at  each of the simulated test 
points. The measurements represent 
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-P. 
Tests 

0 - N 0 YI U) h a-- -- -- -5 -* -YI -- ,* -5 +?? +- +!- -- +- +- +- -- +- +!- .E . & 

Figure 6. Closed dependency matrices for the case study: Test-to-test dependency matrix (a) and test-to-conclusion depen- 
dency matrix (b). h = a bit resulting from transitive closure, I = a bit resulting from logical closure, and n = a bit resulting 
from incremental closure. 

nominal readings for each test. 
2. Specify a nominal range for each  of 

the tests, using the simulation of the 
nominal case.  

3. Independently insert a failure for 
each  component  into the simula- 
tion model according to each  ap- 
propriate component  failure mode. 

4. Run the simulations for each  of the 
failure modes  a n d  record the mea- 
surements a t  each  of the simulated 
test points. The measurements rep- 
resent the attributes of the particu- 
lar failure mode .  

5. If the values of a test measurement 
are  beyond the corresponding nom- 
inal range, enter the failure mode  as 
a dependency  of that test. 

Once we have completed all these steps, 
the attribute map determines the com- 
plete list of test-toconclusion dependen- 
cies. We complete the model by perform- 
ing logical closure on the attribute map. 

Modeling h e  case study 

For the system shown in Figure 1, we  can 
obtain an  attribute map by using a FMECA, 
a fault dictionaty, or a simulation of the 
system, or by exhaustively tracing the d e  
pendency chart. (Some levels of learning 
may b e  able to recover flaws in this map- 
ping process. We will discuss machine 
learning as i t  applies to this problem in a 
future article in this series.) For example, 
if cql fails, then f4, t13, tI4, t 15 ,  t16, and t17 will 
detect the failure. 

Figure 7 on  the next page shows the 
dependency matrix for the complete at- 
tribute map forthissystem. Bitsderived by 
attribute mapping are indicated by a n  
“m.” Under this model-building approach, 
transitive closure is not appropriate b e  
cause no  test-to-test dependencies exist. 
As a result, topological feedback analysis 
and  conditional cross-checking analysis 
are also inappropriate. 

Figure 8 shows the logically closed ma- 

trix of Figure 7. This closed matrix con- 
tains thesame bit representationshown in 
Figure 6. The major difference is where 
the bits come from. In Figure 8, logical 
bits, as derived from the algorithm in Fig- 
ure 4, are  then incrementally closed using 
the procedure shown in Figure 5. Which 
bits have an  “I” and which have an  “n” 
depends on  the order of calculation. For 
example, numbering the tests or  compo- 
nents differently affects the source of the 
higher order bits but not the final higher 
order representation. 

Test paradigms 
Several test paradigms may b e  used in 

modeling a system such as the antitank 
missilelauncher. In addition tosymmetric test 
paradigms, combinations of test paradigms 
arealso possible,such asspecial, condition- 
al, crwlinked, and asymmetric. 

Symmetric test paradigm. To this 
point w e  have assumed that the tests in 
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int, 
int, 

C1 
C Z  
c3 
c4 

c i  1 

c i  2 
c13 

c i  5 

c17 
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c19 
c20 

cz1 
i nu l  
inu, 

No Fault 

c14 

c i 6  

Figure 7. Attribute-mapped dependency matrix for the case study. Only the test-to- 
conclusion dependency matrix is shown because the test-to-test dependency matrix 
is  empty. m = a bit derived by attribute mapping. 

our model are symmetric. We define a 
symmetric test as a test that provides com- 
plementary information given a pass out- 
come and  a fail outcome.' Symmetry can  
beshown graphically, asin FigureSon the 
next page. Note that the elements that can  
be  determined to b e  good following a 
passed test (Figure 9a) are the same ele- 
ments still under consideration following 
a failed test (Figure 9b). The bits entered 
into the dependency matrix are  shown in 
Figure 2. In general, tests may not always 
b e  symmetric. 

Special test paradigm. The special 
test is a subset of other test paradigms and  
includes only fault-isolation conclusions 
in its dependency list. The term special 
fesf applies to the familiar form of special 
testing where a test is devised to examine 
a specific function or piece of hardware. 
Although a special test is set u p  without 
test-to-test dependencies, logical closure 
may create these dependencies in the 
higher order representation. Under the 

Tests 

Figure 8. logically closed attribute-mapped dependency matrix for the case study: Test-to-test dependency matrix (a) and 
test-to-conclusion dependency matrix (bl. 
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Also passes __ 

Also passes 

(4 

Unknown __ 

command 

Good 

Candidate 

Assume 
passes 

Assume 
fails 

Unknown Candidate 

M 
Figure 9. Dependency graph for a symmetric test: Information gained from a passed 
test (a] and information gained from a failed test (b]. In (b] downstream tests will fail, 
and downstream components will be masked. 

M 

Fire 
command 

signal 
int, Site activation function c, 

! 

M 
Figure 10. Dependency graph for a conditional test: Polarized filter off sight (a] and 
polarized filter on sight (bj. 
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matrix formulation, every test in an  at- 
tribute-mapped model can  b e  said to b e  a 
special test. Special tests may, in general, 
have the properties of any of the other test 
paradigms. 

Conditional test paradigm. One al- 
ternative to thesymmetric test paradigm is 
the conditional test paradigm. Figure 10 
shows an  example dependency graph. 
The example test has two conditions rep- 
resented as two mutually exclusive de- 
pendency graphs. In representing a con- 
ditional test in the matrix, we  create one  
test image for each condition. Forthe case 
study, we  would have two columns and 
two rows for test “One-two fidelity signal,” 
each having different dependencies. A 
conditional test may have the properties 
of any of the other test paradigms. 

Cross-linked test paradigm. The basic 
inference mechanismsassociated with the 
standard symmetric test limit inference to 
the Same truth value as the test outcome. 
For example, if f l  passes, we  can  conclude 
that all tests that feed tl in the higher order 
dependency matrix (Figure 6 or Figure 8) 
pass (that is, t2, t3, int,, and inf2). On the 
otherhand, i f f l  fails, then wecan  conclude 
that all the tests that tl feeds will also fail 

The basic dependency  formulation 
lacksa mechanism by which we can  infer 
cross-linked outcomes. For example, if f l  
passes, we  may infer that t l l  fails. Cross- 
linkages of this type may b e  represented 
outside the matrix as a trigger for the infer- 
ence  engine and  the test choice process to 
be  discussed in later articles. Figure 11 
illustrates the dependency representation. 
The two tests in the figure are represented 
as normal symmetric tests in the depen- 
dency  matrix, a n d  the cross-linkage 
(shown as a dashed line) is stored outside 
the matrix. Cross-linked tests may, in gen- 
eral, have the properties of any of the 
other test paradigms. 

(that is, f4, f13, [I47 t15, t16, and t d .  

Asymmetric test paradigm. The asym- 
metric test paradigm considers tests in 
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which the inferences drawn from an out- 
come are  not complementary. For exam- 
ple, Figure 12showsthedependencygraph 
for a test where a pass outcome (Figure 
12a) resultsinalistof inferencesasshown, 
but a fail outcome (Figure 12b) provides 
no  information at  all. It is possible for the 
asymmetric test to provide an  alternative, 
noncomplementary set of inferences rath- 
er  than suppressing all inferences for one  
of the outcomes. We represent a n  asym- 
metric test as two test images in the depen- 
dency ma t r ix -one  image for inferences 
drawn when the test passes, and  one  for 
inferences drawn when the test fails. These 
two images are directly linked, and  the 
direct linkage isstored outside the matrix. 

T h e  modeling technique developed for 
the analysis of testability and the diagno- 
sisof complex electronicsystems has been 
used in a much wider framework. Simp- 
son and  BaileyI4 describe its use in a non- 
cooperative identification problem. Here, 
information sources are sensor readings 
obtained from multiple sensor types, and  
conclusions are  related to identification 
of the target aircraft type. 

McNamara'j describes the use of the 
modeling technique in a layered reserva- 
tion-access token-passing scheme. Shep- 
pardI6 describes the modeling approach 
as it applies to knowledge-base verifica- 
tion and validation. The modeling ap- 
proach has also been used in electronic 
warfare signal sorting,I7 medical diagno- 
sis,Isand avionicsconfiguration c ~ n t r o l . ' ~  

An information flow model for integrat- 
e d  diagnostics includes topological, logi- 
cal, andset  membership features. Compil- 
ing s u c h  a mode l  provides  all t he  
information normally found in backward 
and  fotwardchainingascomputedin rule- 
based systems. The information flow mod- 
el allows us to conduct a number of anal- 
yses of the testability of the system and  to 
explore various diagnostic techniques for 
constructing fault trees and providing a n  
interactive diagnosis capability. 

Also 

Also 

passes __ 

Good 

passes 

Assume 
passes 

Fail 

Figure I I .  Dependency graph for a cross-linked test. 

Assume 
passes 

Also passes Good 

fal 

7 7 

fbl 

Figure 12. Dependency graph for an asymmetric test: Information gained from t l  
passing (a) and information gained from t l  failing (bl. 
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Subsequent articles will derive a frame- 
work for testability analyses using this 
model and  provide algorithms for choos- 
ing tests for fault trees, intelligent mainte- 
nance aids, automatic test equipment, or 
embedded diagnostics. 
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