
I N T E G R A T E D D I A G N O S T I C S

ble, or degraded) of an item to be deter- 1
mined and the isolation of faultswithin the
item to be performedinatimelyandefficient
manner."8

Testability isa design concept by which
we gauge oursuccess in achieving design
goals for field maintenance. It comprises

1 several issues concerned with the various

A Maihematical
Model for Integrated

system model provides a structure for an-
alyzing testability and diagnosis, which
we will discuss in future articles in this
series.

Diagnostics

S i n c e its introduction in the 1980s,
testability analysis has emerged as a
significant engineering discipline.
Previously, such analysis began only
after systems were fielded, and the
results often exhibited poor field
ma in ta inab i l i t~ .~ ,~ Buyers and users
of complexsystemsare now demand-
ing more precise analysis of field
maintainability during the design
phase of these systems. In response
to such demands, a number of com-
panies and universities have devel-
oped approaches to address the is-
sue of field maintainability. Many of
these approaches use model-based
reasoning to provide design for test-
ability analysis and d i a g n o ~ i s . ~ . ~

System testability means the ability
to test asystem. In thisseriesof articles,
we concentrate on our ability to diag-
nose failures as part of an overall inte-
grated maintenance architecture. We
agree with the definition of testability
" ... as a design characteristic which
allows the status (operable, inopera-

-

-4
i
I

JOHN W. SHEPPARD

W l l l l A M R. SIMPSON

Arinc Research Corp. I

I I

aspects of maintaining complex sys-
tems. To address several testability
issues mathematically, we developed
the information flow model.

In the first article' of this series, we
provided an overview of the problem
of analyzing testability and conduct-
ing diagnosis for complex systems.
We now expand on the form of the
information flow model that was in-
troduced in the first article and has
been used successfully in several
types of took.9,'"

The majorelementsof the informa-
tion-flow model include graph-based
a n d logic-based representations,
groupings, and multiple-conclusion
mappings. To assist modeling, our
information flow model enables an
analyst tospecify asimplified form of
the system model, which the testabil-
ity software later compiles to facili-
tate analysis of system testability. Com-
piling the model requires three
algorithms for determining higher or-
der relationships. This form of the

DECEMBER 199 1 0740-7475191/0012-0025$01.00 0 1991 IEEE 25

I N T E G R A T E D D I A G N O S T I C S

We will use a hypothetical antitank mis-
sile launcher to illustrate the concepts
and computations described in these arti-
cles. Tables 1 and 2 provide test and fail-
ure mode data for the case study. We
derived the case study from an actual
missilesystem, modifying it extensively to
illustrate certain mathematical principles.
Asa result, although the data represent an
actual problem, the system may deviate
significantly from what may b e encoun-
tered in a real missile system.

The hypothetical missile launcher con-
sists of a tripod, a gunner's optical sight; a
launch tube; a traversing unit to which the
tripod, launch tube, and optical sight at-
tach; and an electronic guidance comput-
er. The missile contains two solid-propel-
lant motors. The launch motor ejects the
missile from the launch tube and is burned
out by the time the missile has left the
tube. Only after the missile has flown sev-
eral meters does the flight motor ignite, so
no protection is required for the gunner.

After the missile leaves the launch tube,
a light source in the tail comes on so the
optical sensor on the launcher can track
the missile along its flight path. The light
source is sufficiently strong to allow auto-
matic guidance to the maximum range of
the missile under all conditions in which
the missile is visible to the gunner.

Information flow
model

The structure of the information flow
model facilitates our ability to formulate
testability measures. An information flow
model has two primitive elements: tests
and fault-isolation conclusions. Tests in-
clude any source of information that can
b e used to determine the health of a sys-
tem.

Fault-isolation conclusions include fail-

Table 1. Tests in the case study.

Available tests Label' Time** Skill level+

Fire command signal int, 1 .oo E2
Reticle position tracker in t2 1 .oo E3
One-two fidelity signal tl 2.00 E3
Readiness output signal t2 2.20 E3
Boundary parameter signal t3 2.40 E5
Summary safe/arm signal t4 1.50 E4
Combined fidelity signal t5 1.30 E4

Error signal t6 3.00 E3

Course correction signal t7 1 .oo E5
Command corrector signal t8 2.00 E3

Track signal tl0 0.60 E6

Power ready signal tl 1 0.1 0 E7
Power ready/enable signal tl2 0.90 E2
Bounded error signal tl 3 1.20 E3
Launcher enable signal tl4 1.60 E4
Launch track generator signal tl 5 1.50 E2
Launch track evaluation signal tl 6 2.00 E3

Launcher ready signal tl 7 1.50 E3
Stabilized loop signal output tl 8 0.30 E3

Command response signal t9 0.50 €4

* int corresponds to a testable input, including both the test and

** Units are not significant as long as they are consistent.
t Skill level corresponds to enlisted rank in the US milita

conclusion element, and t corresponds to a test.

assume a linear correspondence between rank and skiylevel.
services. We

failure indication. The information ob-
tained may b e a consequence of the sys-
tem operation or a response to a test stim-
ulus . Thus , w e inc lude obse rvab le
symptomsof failure processesin the infor-
mation flow model as tests. Doing this
allows us to analyze situations that in-
volve information sources other than for-
mally defined tests. The purpose of our
model, of course, is to combine these
information sources (tests) to derive con-
clusions about the system being diag-
nosed.

The basic representation of the infor-
ures of functionality, specific nonhard-
ware failures (such as bus timing), specif-
ic multiple failures, and the absence of a

mation flow model includes both a de-
pendency representation and a logical
representation of the system being ana-

lyzed. In addition, the information-flow
model includes the definition of groupsof
logically related tests and conclusions. In
this representation, w e define logical val-
ues for tests and fault-isolation conclu-
sions. Specifically, if a test fails, it is true; if
a test passes, i t is false. An asserted conclu-
sion is true; a conclusion eliminated from
consideration is false.

Test information
The procedures in the maintenance

manual for the antitank missile launcher
provide detailed stimulus and response
data for each of the tests. The following
represents the information obtained from
the maintenance procedures:

26 IEEE DESIGN & TEST OF COMPUTERS

Table 2. Conclusions in the case study.

Failed element Label’ Rate*’ Redaceable unit t
Fire command signal

Reticle position tracker

Command override

Override enable

Sight activation function

Safe/arm determination

Launcher ready evaluator

Boundary check

Parameter fidelity

Parameter fidelity backup

Error evaluator

Error corrector

Command signal evaluator

Response generator

Target tracker

Command to track comparator

Guidance output

Launcher power supply (battery)

Launcher power enable

Launcher power signal conditioner

Cross-check override

Error signal boundary check

Launcher full ready function

Launch command function

Fire ready activation function

intl

int2

inu1
inup

C1

c2

c3

c4

c5

c6

c7

c8

c9

Cl 0

c11

c12

c13

c14

c15

c16

cl 7

c18

cl 9

c20

c2 1

10
10
10
5
5

100
100
100
100

5
5
5
5
5
5
5

100
100
5
5
5
5

100
100

0
0
0

Assembly 1 (ru1)

Assembly 2 (ru2)

Assembly 1 (Tu,)

Assembly 3 (ru3

Assembly 3 (rug)

Assembly 3 (rug)

Assembly 4 (ru4)

Assembly 4 (rud)

Assembly 5 (rug)

Assembly 5 (rug)

Assembly 5 (rus)

Assembly 6 (rug)

Assembly 6 (rug)

Assembly 6 (rug)

Assembly 6 (rug)

Assembly 7 (ru7)

Assembly 7 (ru7)

Assembly 8 (rug)

Assembly 8 (rug)

Assembly 8 (rug)

Assembly 2 (Tu*)

’ int corresponds to a testable input, includin both the test and conclu-
sion element, inu corresponds to an untestaXle input, and c corresponds
to a conclusion.

** Units are not significant as long as they are consistent.
t Replaceable units are designated in accordance with fhe definition of

groups given in the section “Representing group constructs.” The system
inputs are not listed as members of replaceable unit groups, although
they could be.

One-two fidelity signal (fJ This sig-
nal examines both the safe/arm de-
termination (c2) and the sight activa-
tion function (c l) . If either element is
faulty or improper, this signal detects
the problem. In addition, a faulty fire
command signal (inf,) or a faulty
boundary parameter signal (t3) ad-

versely affects the one-two fidelitysi!
nal. This signal also detects failure c
theparameterfidelitybackup unit (c i
Bounded errorsignal (tI3). Before th
launch circuitry issues final launc
and guidance instructions, i t perforrr
a final evaluation of all signals. Th
bounded error signal examines th

signals produced by the launcher
power signal conditioner (c16), the
cross-check override (cI7). the error
signal boundary check (cl*), and the
override enable (inuz). The bounded
error signal also cross-checks the sta-
bilized loop signal output (t 1 8) , the
power ready/enable signal (t lz) , and
the summary safe/arm signal (f4). If
any of these unitshasfailed, the bound-
ed error signal indicates a failure.

Directed graph
In usinga directed graph to model infor-

mation flow, the primitive elements (that
IS, tests and conclusions) are the vertices,
md dependency relationships between
[he primitive elements are the edges. More
formally, let the set of vertices V equal
IuF, whereIrepresentsthesetofinfoma-
tion sources (tests), and F represents the
set of fault-isolation conclusions. Let the
set of edges E equal the set of firjt-order
dependency relationships between the
vertices in V. By first order, we mean the
direct relationships between vertices wi th-
out forwardorbackward chaining (that is,
theset of paths of length equal to 1 from a
test back to a test or conclusion). Let
D = (V, E) be an adjacency matrix that
represents the dependency graph of the
system being analyzed.

We can determine higher order depen-
dency relationships (designated by 2)-
that is, the set of paths of length greater
than or equal to I-for each test by using
several algorithms. These algorithms pro-
vide information equivalent to that pro-
vided by traditional forward- and back-
ward-chaining algorithms in a rule-based
inference system. Let D= (v, E) represent
the higher order dependency graph of the
system being analyzed.

We store both the first-order and the
higher order dependency graphs as bit-
adjacency matrices, where each cell in the
matrixusesonlyonebitofmemory.Thebit
matrix representation is compact and re-
quires only e(n2) bits forstorage. Here, n is
the number of elements in the matrix, cor-
responding to the sum of the testable ele-

DECEMBER 1 99 1 27

I N T E G R A T E D D I A G N O S T I C S

ments and the conclusion elements plus 1
(for a special conclusion referred to as No
Fault). A testable input comprises two ele-
ments (test and conclusion) under this
formulation. Weseparate testsand conclu-
sions in the dependency matrix tosimplify
several calculations and analyses.

Recall that I represents the set of infor-
mation sources, which also includes test-
able inputs. And F represents the set of
fault-isolation conclusions, which also in-
cludes testable and untestable inputs,
multiple failures included in the depen-
dency graph, and No Fault. (An input is
any signal coming in from outside the
system; a testable input isan input that w e
can independently test.) The top half of
the dependency matrix represents the test-
to-test dependency relationships and is of
size I I I * I I I. (Given a set X, IXI represents
the cardinality of X, that is, the number of
members of set X.) The bottom half of the
dependency matrix represents the test-to-
conclusion dependency relationships and
is of size I I I * I F I.

On the basis of the test descriptions of
the casestudy, we can determine the first-
order test dependencies for tl and t13 as
follows:

Figure 1 is a dependency diagram for
the missile launcher. Figure 2 shows all
the first-order dependencies (indicated
by "f") mapped into a matrix representa-
tion. By definition, no test has a depen-
dency on No Fault, allowing us to make
the closed-world assumption. In this type
of model development, we generally mark
columns of the matrix to represent test
dependency lists, as shown in Figure 2.

Representing logical
constructs

The matrix orientation forces a logical
interpretation of the information in the
rows and columns. We can say that if a

given conclusion is true, all the tests that
depend on the conclusion are also true. In
other words, the tests that depend on the
conclusion (represented by row elements)
will detect the failure. This is also true in
the event that we know that a test has a
failed outcome. In this case, all tests that
depend on the failed test must also fail. In
addition, the columns of the dependency
matrix provide information concerning
the possible cause of a failure. If a test
passes, all the elements in the correspond-
ing column (both tests and conclusions)
must also pass.

The graphical form of representation is
limited. That is, we may want the logical
constructs given in Equations 1 through 3
(which correspond to Equations4 through
6 in part ll):

conclusioni 3 Etest , ,
I

where representsdisjunction, given that
tesfi depends o n conclusion; ;

test 2 test],

J

given that test, depends on test,; and

test,

(31
given that test, depends on tesfi, conclu-
sionk.

The matrix formulation does not direct-
ly handle Equations 1 through 3. Equa-
tions l and 2 result when a fault mightlead
to the failure of one or more tests and the
failure of a test might lead to the failure of
one or more other tests. We call the set of
tests that may fail a test-disjunct set. Equa-
tion 3 provides for the inclusion of multi-
ple conclusions in the model. We derived
the basic formulation to limit the combi-
natorial growth of the search space. How-
ever, i t is important to include the logical
relationships because they are a part of
real systems. Because the matrix repre-

sentation does not directly support these
three constructs, w e add special elements
to the model to overcome the limitation.

To incorporate the test-disjunct sets of
Equations 1 and 2, w e create a separate
test element that is the logical OR of the
matrix columns corresponding to the in-
dividual tests within the test-disjunct set:

D; = 2 Dj,
V't,E7;

where Di represents the ith column of the
higher order dependency graph, $is a test
that belongs to the test-disjunct set, and 7;
is the set of tests in the ith test-disjunct set
to be represented in the matrix.

For the case study, Equation 1 c o r r e
sponds to mappinga constructsuch as the
following. If ~ 1 7 fails, eithertl 0rtl3 or both
will have a bad test outcome. This logic is
handled by an additional element tl-or-t13,
in the matrix form that depends on tl, t13,
and cI7.

Equation 2 corresponds to mapping a
construct such as this. If tg has a bad test
outcome, either tl or tl3 or both will have
a bad test outcome. This logic is handled
by an additional element t1-or-t13, in the
matrix form that depends on tl, tI3, and tg.

I f both constructs are present, the com-
pound representation of tl-or-tI3, depend-
ing on t l , t13, tg, and ~ 1 7 , will suffice.

To incorporate the construct given by
Equation 3, w e create a separate conclu-
sion that is the logical And of the matrix
rows corresponding to the individual con-
clusions within a multiple conclusion
group. We discuss this mapping in detail
in Part 1 of this series.'

Representing group constructs
A group is a collection of similar ele

ments that all have a common aspect
significant to diagnosis. For example, a
test group may have a collection of tests
that all require the same equipment. A
replaceable unit group contains all of the
conclusions indicative of a failure in one
piece of hardware.

The basic construct used to represent a

28 IEEE DESIGN & TEST OF COMPUTERS

group within this formulation is the set.
Groups, which are represented outside
the matrix, affect several analyses of test-
ability and are represented using charac-
teristic vectors. In particular,

(5)

Here, ($1 is the ith element of the charac-
teristic vector for thejth group of type S

corresponding to the ith conclusion in the
model. We may interpret an element as-
signed a value of 0 in either one of two
ways

That element is considered to be a

Figure 1. Dependency diagram for the case study

Tests

ti
t 2
t3
t4
t5

t7
t8

E tg

ti 1
ti,

t6

E t i 0

t15
6

ti 8
inti

(a) Int2

Figure 2. First-order dependency matrices for the case study:
Test-to-test dependency matrix [a) and test-to-conclusion de-
pendency matrix (b). f = a first-order dependency.

3

DECEMBER 1 99 1 29

I N T E G R A T E D D I A G N O S T I C S

group whose only member is that
element

H That element is not a member of any
group of this type

The appropriate interpretation is based
on the group type. This formulation uses
several group types. One is a replaceable
unit group (a group of fault-isolation con-
clusions to be treated asasingle isolatable
element). Another is a testgroup (a group
of logically related tests to be performed
together), and a third is a failure group (a
group of fault-isolation conclusions to be
treated as a conclusion only when all of its
members are true). These groups, which
the analyst provides, represent examples
of several types of groups handled by this
formulation. The analyses we describe in
this series of articles identify several addi-
tional groups, including ambiguitygroups,
redundant test groups, feedback groups,
and hidden-failure groups. For the case
study, the following groups may be as-
signed (see Figure 1):

H Replaceable unit group. For example,
replaceable unit group rul comprises
cl and cy.

H Test group. An example is t4, f lo , and
tll-a group of tests that require an
oscilloscope.

H Failure group. An example failure
group consists of c1 and c5) which are
expected to fail at the same time.

Processing a model
We consider the information flow mod-

el to be the knowledge base of thesystem
to be analyzed and evaluated. An analyst
prepares a simplified information flow
model that consists of first-order depen-
dencies, group specifications, and other
information specific to the system being
analyzed. We call the process of convert-
ing the simplified information flow model
into a form suitable for analysis knowledge-
base compilation.

Compilation is performed in several
steps to determine all the implications of

a test. The first such analysis is based on
the fransitivityof logical implication. When
A implies B and B implies C, then A im-
plies C. This is the transitive property. The
process of mapping these implications in
a graph representation is called transitive
closure.

Because the graph representation cap-
tures the system topology, we can make a
number of calculations before proceed-
ing further, including feedback analysis
and consistency crosschecking of the
manner in which conditional elements
are handled.

The intemal inference rules are cross-
checked for additional implications in a
process called logical closure. When logi-
cal closure provides a new implication, i t
must again be checked for transitivity ef-
fects-a process called incremental clo-
sure. When processing is complete, the
total implications available from each
outcome of each test are available in the
matrix representation. Compiling a knowl-
edge base includes performing transitive
closure, feedback analysis, conditional
crosschecking, logical closure, and in-
cremental closure.

The processof developing information-
flow models includes specifying the prim-
itive elements of the model, determining
the dependency relationships between the
primitive elements, characterizing the
types of tests, providing appropriate
weighting criteria for fault isolation, and
specifying appropriate groupings and test
sequences.' The most important step in
modeling is determining the dependen-
cies. To simplify this process, the analyst
enters first-order dependencies for each
test in the model. We determine a higher
order dependency, on the other hand, by
applying the transitive property to the first-
order dependencies in the flow graph.

The analyst determines the fitst-order
dependencies for each test in the model.
The analyst traces the information flow
back from the test until another test or an
input is encountered or no other elements
are encountered. The testability analysis
considers all conclusions on the resulting

path as dependencies, as well as the test or
input that lies on the path. Because multi-
ple paths may feed a test, the analysis must
also consider all paths flowing to the test.

Required process steps
Once the analyst develops an informa-

tion flow model of asystem, the testability
software preprocesses the model to deter-
mine the higher order dependencies.

Transitive closure!. The first step in
preprocessing is to compute the transitive
closure of the dependencies in the model.
Several algorithms exist for this computa-
tion." For our implementation, we select-
ed Warshall's algorithm for bit matrices
because the system stores the dependen-
cy information in a binary matrix. Our
matrix has two portions corresponding to
test-to-test relationships and test-tocon-
clusion relationships. We modified the
algorithm slightly to complete the closure
in the test-to-conclusion portion of the
matrix (see Figure 3). Because we have a
bit matrix, we can achieve a great deal of
machine efficiency by storing several bits
in a word of memory and then applying
logical operations to the words instead of
the bits.

Feedback analysis. Following transi-
tive closure, a feedback analysis is per-
formed to identify topological circulari-
ties in the model. Such circularities may
result from physical feedback, informa-
tion-flow feedback, or modeling error.
There may be additional circularities fol-
lowing logical closure; these circularities
are identified asadditional test redundan-
cies. The software identifies topological
circularity for a test ti if and only if ti
depends on itself.

To assigneach testto itsfeedbackgroup,
let D represent a dependency matrix fol-
lowing transitive closure but before logi-
cal closure, and let D:' and D;. be vectors
such that

(the ith-column vector of D) , (6)

30 IEEE DESIGN & TEST OF COMPUTERS

Figure 3. Algorithm for computing transitive closure.

qFb,='

D,J = [D . l ~ j)

(the jth-row vector

' j ; (kn = 1) A

(o ! ~ ~ ~ ; m i n { o < j 5 l ~ l }) ; ~)

[T I < i 5 IT(+ IC[
0; otherwise

.of D), 0

Gm,=<

and Fb, denotes the feedback loop desig-
nated by the index of the first member of
the group. Thus,

'j;(ijh = l) A

(a!=fi:;min{Ocj<i};) (8)
i 5 IT1

0; otherwise

member of any topological feedback loop.
Every test with a value ofj belongs to the
same feedback loop. Many values ofjmay
not be assigned. We can then determine
conclusion participation in feedback by

Conditional crosschecking. We d e
fineaconditional testto beatest forwhich
the list of dependencies isconditioned by
some state or mode of the system. Our
implementation of the conditional test is
currently limited to a set of mutually ex-
clusive conditional states. Thus, condition-
al testsmaydepend onlyon noncondition-
al tests, conclusions, inputs, default
conditional tests, and conditional tests of
the same type. We define a default condi-
tional test for all tests with conditionals to
be the conditional test utilization in the
absence of explicitly specified condition-
al information.

Given two teststxand ty, and given condi-
tionals A and B such that A is associated
with tx and B is associated with ty, suppose
that ty conditioned on B depends on tx
conditioned on A. When the knowledge
base iscompiled, the following rulesapply:

Rule I . I f conditional A is the same as
conditional B, then the dependency is
acceptable.

w Rule 2. If conditional A is not the same
as conditional B, and conditional B is
not the default conditional forty, then
the dependency is not acceptable b e
causea nondefault conditional test may
depend only on another test of the
same condition or on a default condi-
tional test.

w Rule 3. If conditional A is not the same
as conditional B, and conditional B is
both the default conditional forty and
the default conditional for tx, then the
dependency is not acceptable because
the mutually exclusive assumption
would limit ty conditioned on B to d e
pend on tx conditioned on B.

w Rule 4. I f conditional A is not the same
as conditional B, and conditional B is
the default conditional forty, then the
dependency is acceptable.

The system considersviolations of Rules
2 and 3 as cross-conditionals. The analyst
can evaluate some of these rules while
creating the model. However, transitive
closure maycauseviolationsoftheserules

DECEMBER 1991 31

I N T E G R A T E D D I A G N O S T I C S
~. -

ship exists as described here, the algo-
rithm inserts a new dependency into the
test-to-test portion of the dependency
matrix. The process of logical closure,
shown in Figure 4, is tied to incremental
closure.

Incremental closure. When we add a
dependencythrough logical closure, new
higher order dependencies may exist.
These new dependencies do not affect
the test-to-conclusion portion of the ma-
trix, so we need to “close” the new bit only
in the test-to-test portion of the matrix. (In
the event a new bit is added in the test-to-

to appear that could not readily be identi-
fied during input. In addition, logical clo-
sure may result with the occurrence of
crossconditionals. However, these cross-
conditionals are logical artifacts of the
model and need not be eliminated. As a
result, the software performs conditional
crosschecking between transitive and log-
ical closure.

’ ready for the remaining analyses. If we do
not know the test-to-test relationships but
do know the higher order test-toconclu-
sion relationships, then logical closure

~ will bring the full relationship map back.
We call this type of model development
attribute mapping.‘

Processing input data
Figure 6 on page 34 shows the results of

applying the five majorsteps in compiling
the knowledge base.

Transitive closure. Bits added to the
matrix as the result of transitive clo-

,

Logical closure. The next step in com-
piling the knowledge base is to examine
the matrix for additional inferences that
may be drawn. These additional inferences
are based on a closed-world assumption
expressed for diagnosis as follows:

m If a test with an unknown outcome
depends on all of the unknown ele-
ments in the model, then that test
must have a failed outcome.
I f a test with an unknown outcome
depends only on elements known to
have passed, then that test must have
a passed outcome.

The closed-world assumption is permis-
sible because of the existence of the spe-
cial primitive element called No Fault,
upon which no test depends. This ele-
ment prevents a test from being declared
bad under these inference rules as long as
the No Fault conclusion is still a consider-
ation.

We refer to the identification of depen-
dencies through these rules as logical clo-
sure. Mathematically, logical closure can
be represented as follows: Given two tests,
t, and t,,, let A* be the set of conclusions
onwhicht,depends(c,andc,,) andB* be
the set of conclusions on which ty de-
pends(c,).lfB* isasubsetofA*, thenwe
can infer that t , depends on tv. For exam-
ple, suppose we have the following de-
pendencies in our model:

t, depends on c,
t, depends on cb
t, depends on c

Input: Matrix[1 ..row,l ..col]

corresponding to /TI*/

procedure LOG-CLOSE (Matrix, row, col)
begin

for i := row downto col +I do

if (Matrix [k,i] = 0) then

endif

if (Matrix [k, i] <> Matrix [j,i]) then

flag := 1; /*no relationship exists*/

endif;
end for;

endfor;
end;

If we assume that all other dependen- ~ Figure 4. Algorithm for computing logical closure.

32 IEEE DESIGN & TEST OF COMPUTERS

w Feedback analysis. Feedback is indi-
cated whenever a n “h” appears in a
diagonal cell of the higher order de-
pendency matrix. (We will address
the feedbackanalysisof the case study
in the next article in this series.)

w Conditional cross-checking. The case
study contains no conditional tests.

w Logical closure. Bits added to the
matrix as the result of logical closure
are indicated by an “I.”

w Incremental closure. Bits added to the

Capitalizing on logical closure

The process of creating models can be
complicated and time-consuming. There-
fore, w e concentrated much of our re-
search on approaches to simplifying the
modeling task. We found that the algo-
rithm for logical closure provides an ex-
cellent opportunity for such simplifica-
tion. The literature describes two analyses
that can assist the modeling process

w the failure mode , effects, and critical-

Figure 5. Algorithm for computing incremental closure.

DECEMBER 1 99 1

A FMECA describes the symptoms asso-
ciated with each failure mode of a system
and estimates the impact of the failure
mode on mission success, safety, system
performance, maintainability, and main-
tenance requirements. A fault dictionary
is a table, indexed by faults, containing
lists of failures that may have caused a
listed symptom.

We call the symptoms associated with a
fault the attributes of the fault. If we associ-
ate a failed test (or a set of failed tests) with
each symptom, when a fault may have
caused a particularsymptom to appear, the
test associated with the symptom depends
o n the fault. (In part I ,] we say that a test
depends on testsand conclusions that may
cause that test to fail.) Because the test
associated with the symptom depends on
the fault, w e can use the FMECA and the
fault dictionaty to determine the set of
dependencies between the tests and the
failure modes of the system the analyst is
modeling. The complete set of conclu-
sion-to-test attributes is called the attribute
map, and the complete set of test-to-con-
clusion dependencies for a system is a
consequence of the attribute map. Given
a n attribute map of the system, logical
closure can determine test-to-test depen-
dencies, thus completing the higher order
model.

One approach to generating the attribute
map involves creating a simulation model
of thesystem to b e analyzed. We can devel-
o p the simulation model using any of the
standard simulation tools (for example,
PSPICE). Once the model is complete and
running, we can enter tests into the model
as observation points or probe points. (We
should define testsso they can be executed
without reliance on previousstates. We call
a test defined in this way an encapsulated
rest. We will addressencapsulated tests in a
future article.) Then we construct the at-
tribute model in the following steps:

1. Run the simulation model without
failures and record the measure-
ments at each of the simulated test
points. The measurements represent

33

I N T E G R A T E D D I A G N O S T I C S

-P.
Tests

0 - N 0 YI U) h a-- -- -- -5 -* -YI -- ,* -5 +?? +- +!- -- +- +- +- -- +- +!- .E . &

Figure 6. Closed dependency matrices for the case study: Test-to-test dependency matrix (a) and test-to-conclusion depen-
dency matrix (b). h = a bit resulting from transitive closure, I = a bit resulting from logical closure, and n = a bit resulting
from incremental closure.

nominal readings for each test.
2. Specify a nominal range for each of

the tests, using the simulation of the
nominal case.

3. Independently insert a failure for
each component into the simula-
tion model according to each ap-
propriate component failure mode.

4. Run the simulations for each of the
failure modes a n d record the mea-
surements a t each of the simulated
test points. The measurements rep-
resent the attributes of the particu-
lar failure mode .

5. If the values of a test measurement
are beyond the corresponding nom-
inal range, enter the failure mode as
a dependency of that test.

Once we have completed all these steps,
the attribute map determines the com-
plete list of test-toconclusion dependen-
cies. We complete the model by perform-
ing logical closure on the attribute map.

Modeling h e case study

For the system shown in Figure 1, we can
obtain an attribute map by using a FMECA,
a fault dictionaty, or a simulation of the
system, or by exhaustively tracing the d e
pendency chart. (Some levels of learning
may b e able to recover flaws in this map-
ping process. We will discuss machine
learning as i t applies to this problem in a
future article in this series.) For example,
if cql fails, then f4, t13, tI4, t 15 , t16, and t17 will
detect the failure.

Figure 7 on the next page shows the
dependency matrix for the complete at-
tribute map forthissystem. Bitsderived by
attribute mapping are indicated by a n
“m.” Under this model-building approach,
transitive closure is not appropriate b e
cause no test-to-test dependencies exist.
As a result, topological feedback analysis
and conditional cross-checking analysis
are also inappropriate.

Figure 8 shows the logically closed ma-

trix of Figure 7. This closed matrix con-
tains thesame bit representationshown in
Figure 6. The major difference is where
the bits come from. In Figure 8, logical
bits, as derived from the algorithm in Fig-
ure 4, are then incrementally closed using
the procedure shown in Figure 5. Which
bits have an “I” and which have an “n”
depends on the order of calculation. For
example, numbering the tests or compo-
nents differently affects the source of the
higher order bits but not the final higher
order representation.

Test paradigms
Several test paradigms may b e used in

modeling a system such as the antitank
missilelauncher. In addition tosymmetric test
paradigms, combinations of test paradigms
arealso possible,such asspecial, condition-
al, crwlinked, and asymmetric.

Symmetric test paradigm. To this
point w e have assumed that the tests in

34 IEEE DESIGN C TEST OF COMPUTERS

int,
int,

C1
C Z
c3
c4

c i 1

c i 2
c13

c i 5

c17

C18
c19
c20

cz1
i nu l
inu,

No Fault

c14

c i 6

Figure 7. Attribute-mapped dependency matrix for the case study. Only the test-to-
conclusion dependency matrix is shown because the test-to-test dependency matrix
is empty. m = a bit derived by attribute mapping.

our model are symmetric. We define a
symmetric test as a test that provides com-
plementary information given a pass out-
come and a fail outcome.' Symmetry can
beshown graphically, asin FigureSon the
next page. Note that the elements that can
be determined to b e good following a
passed test (Figure 9a) are the same ele-
ments still under consideration following
a failed test (Figure 9b). The bits entered
into the dependency matrix are shown in
Figure 2. In general, tests may not always
b e symmetric.

Special test paradigm. The special
test is a subset of other test paradigms and
includes only fault-isolation conclusions
in its dependency list. The term special
fesf applies to the familiar form of special
testing where a test is devised to examine
a specific function or piece of hardware.
Although a special test is set u p without
test-to-test dependencies, logical closure
may create these dependencies in the
higher order representation. Under the

Tests

Figure 8. logically closed attribute-mapped dependency matrix for the case study: Test-to-test dependency matrix (a) and
test-to-conclusion dependency matrix (bl.

DECEMBER 1 99 1 35

I N T E G R A T E D D I A G N O S T I C S

Also passes __

Also passes

(4

Unknown __

command

Good

Candidate

Assume
passes

Assume
fails

Unknown Candidate

M
Figure 9. Dependency graph for a symmetric test: Information gained from a passed
test (a] and information gained from a failed test (b]. In (b] downstream tests will fail,
and downstream components will be masked.

M

Fire
command

signal
int, Site activation function c,

!

M
Figure 10. Dependency graph for a conditional test: Polarized filter off sight (a] and
polarized filter on sight (bj.

36

matrix formulation, every test in an at-
tribute-mapped model can b e said to b e a
special test. Special tests may, in general,
have the properties of any of the other test
paradigms.

Conditional test paradigm. One al-
ternative to thesymmetric test paradigm is
the conditional test paradigm. Figure 10
shows an example dependency graph.
The example test has two conditions rep-
resented as two mutually exclusive de-
pendency graphs. In representing a con-
ditional test in the matrix, we create one
test image for each condition. Forthe case
study, we would have two columns and
two rows for test “One-two fidelity signal,”
each having different dependencies. A
conditional test may have the properties
of any of the other test paradigms.

Cross-linked test paradigm. The basic
inference mechanismsassociated with the
standard symmetric test limit inference to
the Same truth value as the test outcome.
For example, if f l passes, we can conclude
that all tests that feed tl in the higher order
dependency matrix (Figure 6 or Figure 8)
pass (that is, t2, t3, int,, and inf2). On the
otherhand, i f f l fails, then wecan conclude
that all the tests that tl feeds will also fail

The basic dependency formulation
lacksa mechanism by which we can infer
cross-linked outcomes. For example, if f l
passes, we may infer that t l l fails. Cross-
linkages of this type may b e represented
outside the matrix as a trigger for the infer-
ence engine and the test choice process to
be discussed in later articles. Figure 11
illustrates the dependency representation.
The two tests in the figure are represented
as normal symmetric tests in the depen-
dency matrix, a n d the cross-linkage
(shown as a dashed line) is stored outside
the matrix. Cross-linked tests may, in gen-
eral, have the properties of any of the
other test paradigms.

(that is, f4, f13, [I47 t15, t16, and t d .

Asymmetric test paradigm. The asym-
metric test paradigm considers tests in

IEEE DESIGN & TEST OF COMPUTERS

which the inferences drawn from an out-
come are not complementary. For exam-
ple, Figure 12showsthedependencygraph
for a test where a pass outcome (Figure
12a) resultsinalistof inferencesasshown,
but a fail outcome (Figure 12b) provides
no information at all. It is possible for the
asymmetric test to provide an alternative,
noncomplementary set of inferences rath-
er than suppressing all inferences for one
of the outcomes. We represent a n asym-
metric test as two test images in the depen-
dency ma t r ix -one image for inferences
drawn when the test passes, and one for
inferences drawn when the test fails. These
two images are directly linked, and the
direct linkage isstored outside the matrix.

T h e modeling technique developed for
the analysis of testability and the diagno-
sisof complex electronicsystems has been
used in a much wider framework. Simp-
son and BaileyI4 describe its use in a non-
cooperative identification problem. Here,
information sources are sensor readings
obtained from multiple sensor types, and
conclusions are related to identification
of the target aircraft type.

McNamara'j describes the use of the
modeling technique in a layered reserva-
tion-access token-passing scheme. Shep-
pardI6 describes the modeling approach
as it applies to knowledge-base verifica-
tion and validation. The modeling ap-
proach has also been used in electronic
warfare signal sorting,I7 medical diagno-
sis,Isand avionicsconfiguration c ~ n t r o l . ' ~

An information flow model for integrat-
e d diagnostics includes topological, logi-
cal, andset membership features. Compil-
ing s u c h a mode l provides all t he
information normally found in backward
and fotwardchainingascomputedin rule-
based systems. The information flow mod-
el allows us to conduct a number of anal-
yses of the testability of the system and to
explore various diagnostic techniques for
constructing fault trees and providing a n
interactive diagnosis capability.

Also

Also

passes __

Good

passes

Assume
passes

Fail

Figure I I . Dependency graph for a cross-linked test.

Assume
passes

Also passes Good

fal

7 7

fbl

Figure 12. Dependency graph for an asymmetric test: Information gained from t l
passing (a) and information gained from t l failing (bl.

DECEMBER 199 1 37

I N T E G R A T E D D I A G N O S T I C S

Subsequent articles will derive a frame-
work for testability analyses using this
model and provide algorithms for choos-
ing tests for fault trees, intelligent mainte-
nance aids, automatic test equipment, or
embedded diagnostics.

References

1. W. Simpson and J. Sheppard, “System
Complexity and Integrated Diagnostics,”
IEEE Design & Test o f Computers, Vol. 8,
No. 3, Sept. 1991, pp. 16-30.

2. M. Labit et al., “Special Report on Opera-
tional Suitability (OS) Verification Study
Focus on Maintainability,” tech. report.
1751-01-02-2395, Arinc Research Corp.,
Annapolis, Md., 1981.

3. ”Avionics Maintenance Conf. (AMC) Re-
port-San Diego, 1987,” tech. report 87-
087/MOF-34, Aeronautical Radio, Inc.,
Annapolis, Md., 1987.

4. R. DePaul, Jr., “Logic Modeling as a Tool
for Testability,” Autotestcon 85 Con[
Record, IEEE Press, New York, 1985, pp.

5. R. Cantone and P. Caserta, “Evaluating
the Economical Impact of Expert Fault
Diagnosis Systems: The I-CAT Experi-
ence,” Proc. Third IEEElnt’lSymp. Intelli-
gent Control, IEEE ComputerSociety Press,
Los Alamitos, Calif., 1988.

6. J. Franco, “Experiences Gained Using
the Navy’s IDSS Weapon System Testabil-
ity Analyzer,”Autotestcon 88 ConL Record,
IEEE Press, New York, 1988, pp. 129-132.

7. K. Pattipati, “START: System Testability
and Research Tool,” Autotestcon 90 Con[
Record, IEEE Press, New York, 1990, pp.
395402.

8. Testability Program for Electronic Systems
andEquipment, MIL-STD2I 65, Naval Elec-
tronics Systems Command (ELEX-81 1 I) ,
Washington, DC, 1985.

9. F. Johnson and R. Unkle, “The System
Testability and Maintenance Program
(STAMP): A Testability Assessment Tool
for Aerospace Systems,”Proc. AIAA/NASA
Symp. on the Maintainability ofAerospace
Systems, AIAA, New York, 1989.

10. J. Sheppard and W. Simpson, “lncorpo-
rating Model-Based Reasoning in Inter-
active Maintenance Aids,” Proc. 42nd
NalionalAerospace and Electronics Conk,
IEEE Press, New York, 1990, pp. 1238-
1242.

203-207.

11. A. Aho, J. Hopcroft, and J. Ullman, The
Design and Analysis o f Computer Algo-
rithms, Addison-Wesley, Reading, Mass.,

12. Procedures forPerforminga Failure Mode,
Effects, and Criticality Analysis, MILSTD-
1629A, Naval AviationSystemsCommand
(NAVAIR5112), Washington, DC, 1988.

13. J. Pennell, L. Haynes, and J. Salasin, “A
Proposed Architecture for Integrated Di-
agnosis,” Autolestcon 88 Con[Record,
IEEE Press, New York, 1988.

14. W. Simpson and J. Bailey, “The ARINC
Noncooperative All-Source Target Iden-
tification (NASTI) Program,” Tri-Seruice
Combat Identification System ConL I Na-
val Air Develoment Center, Warminster,
Pa., 1984.

15. B. McNamara, “AI Concepts in Mux Bus
Control: Layered Reservation Access,”
IEEE/AIAA 6th Digital Avionics Systems
C o d , IEEE Press, New York, 1984.

1974, pp. 199-206.

John W. Sheppard is a senior research ana-
lyst in the Advanced Research and Develop-
ment Group at Arinc Research Corp. He is
also pursuing a PhD in computer science at
Johns Hopkins University. His research areas
include applying AI techniques to fault diag-
nosis, machine learning, neural networks, and
nonstandard logic. He has developed algo-
rithms to diagnose system failures, verify
knowledge bases, and classify software. He
was also a principal developer of Pointer, an
intelligent, interactive maintenance aid, and
assisted in the development of a prototype
expert system that diagnoses system failures
and reconfigures the system to keep function-
ing. He holds a BS from Southern Methodist
University and an MS from Johns Hopkins
University-both in computer science.

16. J. Sheppard, “An Approach to Verifying
Expert System Rule Bases,” presented at
IEEElnt’l ConL Systems, Man, and Cyber-
netics, 1989; contact J. Sheppard, Arinc
Research Corp., Annapolis, Md.

17. W. Simpson and B. McNamara, “The
ARINC Research Signal Evaluation for
Emitter Recognition (SEER) Program,”
Joint Western-Mountain Region Tech.
Symp., Assoc. of Old Crows, Warner Rob-
ins, Ga., 1985.

18. W. Simpson et al., “An Artificial Intelli-
gence Approach to Developing Medical
Protocols,” Proc. Fifth World Congress
Medicallnformatics, Elsevier Science Pub-
lishers, Amsterdam, 1986, pp. 776-780.

19. S . Baily and B. Kelley, “Aeronautical Sys-
tems Workbench: AConcept,” Eighth Ann.
IEEE/AESS Dayton Chapter Symp. Avion-
ics in Conceptual System Planning, IEEE
CS Press, 1986.

William Simpson is a research fellow in the
Advanced Research and Development Group
at Arinc Research Corp., where he is involved
in testability and fault diagnosis. He helped
develop the System Testability and Mainte-
nance Program, which is based on an infor-
mation-flow model. He was also a principal
developer of Pointer. He holds a BS from
Virginia Polytechnic Institute and State Uni-
versity and an MS and a PhD in aerospace
engineering from Ohio State University.

Direct questions or comments on this arti-
:le to either author at Arinc Research Corp.,
4dvanced Research and Development Group,
2551 Riva Rd., Annapolis, MD 21401; Shepp-
srd’s e-mail address is sheppard@cs.jhu.edu.

38 IEEE DESIGN & TEST OF COMPUTERS

mailto:sheppard@cs.jhu.edu

