
Integrated
-

Diagnostics

I n this series of articles, we are in-
terested in the ability to diagnose
failures as part of an overall main-
tenance architecture. Testability is
a means to that end. Its only pur-
pose is to improve system mainte-
nance and repair. Testability is a
yardstick by which we measure our
success in achieving design goals
for various aspects of field mainte-
nance. As we shall demonstrate,
testability is not a single issue but
comprises several issues involved
in maintaining complex systems.

In the first article of the series,'
we presented an overview of the
problem of analyzing testability
and conducting diagnosis for com-
plex systems. In our second arti-
cle,* we described in detail the form
of an information flow model, including
test representations, conclusions, logi-
cal interdependencies, groupings, and
special logical constructs. Several
 tool^^,^ incorporate this modeling ap-
proach, and we will use the information
flow model as the basis of discussion in
this and future articles. We now de-
scribe several measures that are useful
in analyzing system testability.

WllllM R. SIMPSON

JOHN W. SHEPPARD

Arinc Research Corp.

of the missile launcher system, and
Figure 2 on p. 42 is a matrix repre-
sentation of the same system. Be-
cause the representation is a bit
matrix, we can replace any letter
with a 1 and any empty area with a
0. The letters represent the method
by which the relationships between
elements (indicated by the row and
column) were derived:

In part 3 of their series on integrated

analyzing the testability of a system. Based on

second article, the measures presented here

feedback, the test set, and multiple failures.

diagnostics, the authors present techniques for

f : first-order (or input) relation-
ships
h: higher order relationships
derived by transitive closure
I: higher order relationships
derived by logical closure
n: higher order relationships
derived by incremental clo-
sure

Model representation With one exception (feedback analysis,
A key element in the computation of which we will discuss later), it is not im-

testability is the information flow mod- portant what the letter designation is,
el, which represents the flow of diagnos- only that a relationship exists.
tic information bv means of a network of

the information flow model detailed in the

idenhfy testability problems involving ambiguity,

~~- ~ ~~~~~~~~~~~ ~

Terminology logical constructs. For illustration we
use the case study of an antitank missile
launcher, introduced in our previous
article. Figure 1 is a dependency model

Before we can describe the mathe-
matics, we must define the terminology.

40 0740-747519210300-0040$03 00 1992 IEEE IEEE DESIGN & TEST OF COMPUTERS

Figure 1. Dependency diagram of antitank missile launcher case study.

In general, we use a lowercase letter to
denote an individual member of a set
and give the letter a subscript to indi-
cate which member; thus, cI5 is the 15th
member of the conclusion set. An up-
percase letter denotes the entire set,
and the cardinality symbol (for exam-
ple, I X I) indicates the number of set
members. Several sets are of interest:

including all the elements in F and I
(E = F u 0. Note that the cardinality
of E, I E I , cannot be computed as a
sum of the cardinalities of F and I
(IEl # IF1 + I l l) because testable
inputs belong to both F and I (that
i s , F n I = I N T) .

w U: the set of elements in the model
that have unique properties. There
are two unique sets: U1 is the set of
unique information sources, and
UF is the set of unique fault isola-
tion conclusions (U = U1 U UF).
RU: the set of replaceable unit

C: the set of fault isolation conclu-
sions (not including inputs or No
Fault).
T: the set of tests that can be evalu-
ated (not including testable in- groups in the model.
puts).
IN: the set of inputs to the system To define uniqueness, we must first
being evaluated. There are two in- define two vectors: failure signature
put sets: INU is the set of untestable (SF) and test signature (ST,).
inputs, and 1°C is the set of testable A failure signature is a vector associ-
inputs (IN = INU U INT). ated with a specific element in F that in-
N F the set containing the element dicates all the tests that depend on 6.
No Fault and for which the cardinal- The vector corresponds to specific
ity, INFI, i s l . rows in the test-to-conclusion depen-
1: the set of information sources, in- dency matrix. Thus, from row c3 in Fig-
cluding the tests and testable in- ure2,

F the set of fault isolation conclu-

puts, and No Fault (F = C U IN U NF).
E the set of elements in the model,

puts (l = T U INT).
- ~l , l , l , l , l , l , l , l , l , l , 1

and from row cl1 in Figure 2,

sions, including conclusions, in- SF,% = ~ , ~ , ~ , ~ , ~ > ~ , ~ , ~ , ~ , ~ (1)

We call this vector a failure signature
because if the tests corresponding to
row entries in the test-to-conclusion de-
pendency matrix were to fail, we would
expect the element corresponding to
that row to fail. That is, if c3 fails,

and if cl1 fails,

Tests may also have failure signa-
tures. For example,

- 0,0,0,1,0,0,0,0,0,0,
SF,, = (0.0.1.1.1.1.1,0.0,0

or

Say that we allow the orientation of
both dependency matrices to define an

MARCH 1992 41

S Y S T E M T E S T A B I L I T Y
~~ ~~~

~

Tests

(a1

Tests

ordering on F and I. Then any element
in F is a member of UF if the element is
not preceded by another member hav-
ing a failure signature equal to that of
the element:

Under this formulation, the first oc-
currence of any failure signature is
unique, and subsequent occurrences
are not unique. Nonunique elements
may be associated with the unique ele-
ment whose signature they match. We
do not consider the corresponding case
for tests except when considering feed-
back.

A test signature is a vector associat-
ed with a specific element in I. It is a
mapping of a specific column in both
matrices. Thus, from Figure 2,

Any element in I is a member of U1 if
the element is not preceded by another
member having a failure signature equal
to that of the element:

i, E UI i f f ST, + ST,,
V k E (O,j),ik,i, E 1 (9)

Under this formulation, the first occur-
rence of any test signature is unique,
and subsequent occurrences are not
unique. Nonunique elements may be as-
sociated with the unique element whose
signature they match.

The construction of matrix D will de-
termine the order in which we evaluate
the dependency structures and thus
which member of a group of nonunique
elements we declare to be unique. How-
ever, the construction of the matrix
does not affect the members of the
group or the total number of unique de-
pendency structures. Table l lists the

Figure 2. Closed dependency matrices of case study system: test-to-test dependency ma-

trix (a) and test-to-conclusion dependency matrix (b).

42 IEEE DESIGN & TEST OF COMPUTERS

Table 1 . Set memberships in the case stvdy.

e i c U

t l c1

t l CI

tr c4

t4 ca

ts C I

to c7

t I* c 11

t l lC l r
t I¶ c 1.

t 18 c 16

t 14 c 16
t 16 c IS

intl c m

intr c n

e i c U1

t l
tr
tr
t4
t a
to
t **
tlX
t LS
t ,I

t 14

t 16

intl
ints

F C T IN INU INT NF

[NI= 4

e i~ IP

FI = 2t

e iE F

I C (= 2

e iE C

INTI = 2

e i c IN?

NF(= 1

e ic NF Members ei E E ei E I
set I I ? i c UF

inu 1

inu a

int 1

int I

No Fault int 1

int I
C 1

C S

c4

CL

C .

C l

c I1

c 1s

c I4

c Ia

c 1.
c 1.
c r
c I1

int I

int I

inu I

inu I

int 1

int t
C 1

C ¶

CS

C4

C I

C .

c1
C .

C *

c le

c 11

c I¶

C la

c 14

c IL
c 1.

c IT

c 1.

c I*

C m

c I 1

inu 1

inu t
To FuuEl

tr
t l
ts
t4
tk
t *
t l
t .
t *
t I#

t 11

t IS
t IS

t 1.

t ia

t 1.
t I 1

t 18

int I
int I

tl
tr
ta
t4
tr
t .
t l
t *
t .
t IO
t 11

t I¶

t 1s

t I4

t ia

t 1.
t 11

t IS

CI

cs

Cl

c4

CL

C .

c1
C .

C *

c La
c I1

c I¶

c IS
c 14

c 1s

c I.

c 11

c 18

c 1*

C W

C l l

set memberships as they apply to the sures concern maintenance factors ob-
case study. servable in the field and were previous-

Groups are subsets of the set of ele- ly available only after a fault tree was
ments that are not otherwise assigned developed. Because the information
to one of the labeled sets. They are flow model incorporates the required
mapped in accordance with the second , system maintenance data, we can
article of this series. Group types in- compute these measures without devel-
clude test, replaceable unit, multiple- oping a fault tree. The following para-
failure, ambiguity, redundant-test, and graphs examine measures that address
feedback. ambiguity, feedback, the test set, and

multiple failure. (Recall that our analy-

Computing testability sis assumes a single failure.')

Using the information flow model, we Ambiguity measures
can compute values for a number of Ambiguity exists when the tests p r e
measures associated with the ability to vided in the information flow model can-
diagnose failures. Some of these mea- not distinguish between two or more

conclusions. Given that a group may
contain one or more elements, an ambi-
guity group of cardinality 1 does not
contribute to an ambiguity problem.
The ability to distinguish among conclu-
sions in the conclusion set is related to
the failure signature SF,. Ambiguous
conclusions have identical failure signa-
tures. Therefore, no combination of ex-
isting tests can distinguish among
ambiguous conclusions.

Figure 3 on the next page shows two
example ambiguity groups in the case
study. Table 2 lists all the ambiguity
groups in the case study. There are six
ambiguity groups, each of which may or
may not be significant (that is, require

MARCH 1992 43

S Y S T E M T E S T A B I L I T Y
~~ _ _ _ ~ ~

- N
0 7 N D -3 m ro r- m - + -

+!- +!N P +!e -2 -5 ," +m -- +!- +!- +!- +!- -- -- -- +- 5 E

Figure 3. Case study ambiguity analysis.

design changes) for meeting mainte-
nance requirements. We have derived a
number of measures to indicate the
amount and type of ambiguity.

Isolation level. IL is the ratio of the
number of isolatable groups to the num-
ber of isolatable elements. In our defini-
tion of unique conclusions, we defined
the first element of each ambiguity
group as being unique. Thus, the num-
ber of isolatable groups is I UF I , and

The ideal value of IL would be 1 .OOOO.
For the case study, IL = 16/26 = 0.6154.
Roughly 62% of the conclusions avail-

44

able can be drawn uniquely, which may
or may not be a problem. If isolation to
the element level is the design goal,
there are serious problems in this case
study. But if isolation to the group level
is the goal, it may not be important that
we achieve an isolation level of only
61%. The next measure clarifies the dif-
ference between the element level and
the group level.

Operational isolation. A system's o p
erational isolation level (Ot[n]) is the
percentage of observed faults that re-
sult in isolation to n or fewer replace-
able units. To compute this measure, we
must determine the number of replace-
able units associated (ambiguous) with
each conclusion in the model (a). For
fault isolation conclusion 6,

Table 2. Ambiguity groups in the case
study.

Group' Members

1 c1 c2

3 c11 c12
4 ~ 1 3 No fault

6 ~ 1 9 inul

*Group data structure is in accordance
with Sheppard and Simpson.2

'Ambiguity resulting from feedback

2" c7 c8 c9 c10

5 c16 c17 c18

~~

lRU/

Here I RU I represents the cardinality of
the set of replaceable unit groups, and
RUk is the kth replaceable unit group. As
shown in Figure 1, we have 13 replace-
able unit groups (eight are the shaded
defined groups, and five are the un-
grouped conclusions: int,, int,, inu,, inu,,
and No Fault.) Table 3 provides the data
necessary to compute a,. The operation-
al isolation is

1; a, 2 n,Vf , E K
0; otherwise

Here w, is a weighting factor associated
with each fault isolation conclusion
(usually the probability of occurrence),
and K is a subset of F determined on the
basis of the type of analysis being per-
formed. A project office may specify op-
erational isolation or something similar
as part of the design criteria. The ideal
value of OI[n] would be 1.0000 for every
definition of operational isolation. Table
4 shows variations of the operational

IEEE DESIGN & TEST OF COMPUTERS

isolation measures for the case study.
Which operational isolation value is
used depends on several factors, includ-
ing the wording of specifications. For ex-
ample, the last column of Table 4 shows
values that include failure rate weight-
ing but exclude inputs and No Fault.
Thus, failures of inputs are not the re-
sponsibility of system testability, and
nondetections (discussed in the next
section) are not included in the calcula-
tion (they may be penalized separately).

Nondetection (ND). Of the six ambi-
guity groups in the case study (listed in
Table Z), the fourth is of interest for non-
detections. The ambiguity between cI3
and No Fault indicates that we cannot
detect the failure of ~ 1 3 with the defined
set of tests. Because no test depends on
No Fault, SFNoFaon = (0, 0, ..., 0). Because
any conclusion ambiguous with No Fault
must have the same failure signature as
No Fault, no tests in our test set detect a
failure of c13. Thus, ~ 1 3 is a nondetection
item. We obtain a measure of nondetec-
tion by enumerating the occurrences of
nondetections:

TaMe 3. Replaceable unit ambiguity groups in the case study.
-~ ~ ~ ~ ~~~~ ~

Failed Isolation Replaceable a, Failure
element ambiguity unit groups (Equation 1 1) frequency'

1

int,
in4
C1

c2

c3
c4

c5

c7

C8

c9

Cl 0

Cl I

c12

c6

cl 3

c14

c15

1 cl6

cl 7

cl 8

cl 9

c20

c2 1
inul
;nu2

No Fault

int,
in4
c1 c2
Cl c2
c3
c4

c5
c6

c7 c8 c9 c10

c7 c8 c9 c10

c7 c8 c9 c10

c7 c8 c9 cl 0

Cl1 c12

c11 c12

c1 No Fault

cl 4

cl 5

cl 6 c17 cl 8 ;nu2
cl 6 c17 c18 jnU2

cl6 cl7 c18 ;nu2
c19 inul

c20

c2 1
c19 inul

c13 No Fault
cl 6 c17 cl 8 ;nu2

1
1
2
2
1
1
1
1
2
2
2
2
2
2

2
1
1
3
3
3
2
1
1
2
3
2

0.001 0
0.001 0
0.0005
0.0005
0.01 00
0.01 00
0.0100
0.01 00
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005

0.0005
0.01 00
0.01 00
0.0005
0.0005
0.0005
0.0005
0.01 00
0.01 00
0.001 0
0.001 0
0.9095"

i
1

'Values taken from Sheppard and Simpson2 in units of failures per IO,ooO hours.

"Analysis goal of operational performance check (expected frequency of occurrence).

Table 4. Operational isolation values in the case study.

Opemtional w; = uniform w; = uniform w; = failure w; = failure prob.' w; = failure prob.' w; = failure prob.'
isolation K=F K=F-NF prob.'K=F K=F-NF K=F- IN K = F - IN - NF

1 0.3846 0.4400 0.081 1 0.9061 0.0808 0.9364
ow 0.8462 0.8400 0.9975 0.9724 1 .OOoo 1 .oOOo
OU31 1 .oooo 1 .OoOo 1 .oOOo 1 .0000 1 .om0 1 .0000

'Failure probability computed as hi = pi where P, is the failure probability of the ith conclusion and a , is the failure Frequency of

~ the ith conclusion.

MARCH 1992 45

S Y S T E M T E S T A B I L I T Y
~~

The 1 in the numerator excludes the No
Fault conclusion, which is only techni-
cally a nondetection.

The ideal value of ND would be 0.0000.
For the case study, ND = (2 - 1)/26 =

0.0385.
In analyzing the impact of nondetec-

tions on the other measures, note that
they will result in ambiguity between
two or more replaceable unit groups,
assuming No Fault is treated as a sepa-
rate replaceable unit group. The case
study illustrates the effect of nondetec-
tion on operational isolation. As shown
in Table 4, when the probability of a con-
clusion’s being drawn is 1/ I Fl , remov-
ing the No Fault conclusion from the
analysis set K only slightly affects the
operational isolation. However, when a
high probability of drawing the No Fault
conclusion exists, a significant differ-
ence in operational isolation values ex-
ists. The exact form of operational
isolation is critical when we check for
specification compliance, and we
should control the computation to meet
the letter of the specification.

Feedback measures
Feedback in an information flow mod-

el represents a logical circularity. Such
circularities may result from physical
feedback, information flow feedback, or
modeling errors. When we analyze infor-
mation flow models, topological circu-
larities most often correlate to physical
feedback loops. We can determine the
topological circularities for the case
study by examining Figure 2. From the
matrix representation, r, is in feedback if
and only if DfI # 0, and it ’_” in topologi-
cal feedback if and only if D,, = “h” or “f.”
For all other cases, D,, # 0 indicates the
test is in logical feedback. Thus, t6, t7, ta,
t9, and tI8 are in topological feedback,
and t14, t15, tI6, and t17 are in logical feed-
back. Further, the feedback loop, or cir-
cularity, has a unique failure signature.
Therefore, any element in F having the
same failure signature as a test in feed-
back is a member of the same feedback

Table 5. Circularity groups for the case study.

Group*

~
~

Failure signature (S F j Members

1 **

2***

Group data structure is in accordance with Sheppard and Simpson

** Circuloriv is topological feedh:k.
‘ * * t13ha~thesamesigna~re,butD~313=O

- ~~ ~~

loop as the test. In addition, any two
tests in feedback having the same failure
signature are members of the same feed-
back loop. Table 5 shows the circularity
groups detected in the case study.
Group 1 corresponds to topological
feedback, which is identified by the “h”
in the diagonal cell of Dfor each of the
member tests in the table. We can veri-
fy the members of this feedback loop, in-
cluding the conclusion elements, by
carefully inspecting Figure 1.

The following measures indicate the
amount and type of circularity. Because
of the close relationship between
topological circularity and physical
feedback, we have restricted these mea-
sures to topological circularity.

Test feedback dominance. TFD is the
fraction of information sources involved
in topological feedback.

I l l

1; D:, = 1;

0; otherwise
(14)

where D’ is the dependency matrix fol-
lowing transitive closure but before log-
ical closure (see our previous article2
for a complete discussion of the closure
algorithms).

The ideal value of TFD would be
0.0000 (no feedback). For the case
study, TFD = 5/20 = 0.2500. In other
words, 25% of the information sources
are tied up in feedback. In this case, only
one feedback loop exists.

Component feedback dominance.
CFD is the fraction of conclusions in-
volved in topological feedb

0; otherwise

ck:

A

(1 5)

CFD is important because it is a measure
of ambiguity caused by feedback. Recall
that each failure signature is the same in
a circularity; that is also the definition of
ambiguity.

The ideal value of CFD would be
0.0000 (no feedback). For the case
study, CFD = 4/26 = 0.1538. In other
words, 15% of the conclusions are tied
up in feedback. Again, only one feed-
back loop exists.

Feedback modifications. Although
feedback is a testability problem, physi-

46 IEEE DESIGN & TEST OF COMPUTERS

(1 7) III
IF

cal feedback often is necessary for the
system to perform. It is important that
changes made to a system to improve
testability do not affect system perfor- For the case study, TL = 20/26 =

mance. Several options are available to 0.7692.
eliminate the effect of circularity that We derive theoretical limits of TL to
results from physical feedback saturat- provide a basis for comparing the actu-
ing the feedbackcircuit, conducting test al test set with an ideal set. These lim-
measurement before feedback occurs, its, TLMAX and TLMIN, let us determine
inserting feedback loop breaks that are how appropriately we have specified
engaged only during a test cycle, and re- the test set. In other words, is the test
packaging feedback loops into a single, set overspecified (overtesting), under-
replaceable element. We can modify the ' specified (undertesting), or appropriate
basic measures to reflect these options. for the system?
For example, we modify the isolation
level to ignore ambiguity resulting from
feedback, as follows:

TL=-

Overtesting. We assign an upper lim-
it to the test leverage by specifying one
test for each conclusion. The absence of
a failed-test outcome indicates No Fault,
so under this extreme the number of
tests would be IF1 - INFl or IF1 - 1.
The maximum test leverage (TLMAX)
would then be

IUFI

IF-Cti + L
I F1 FMIL =

(16)
i=l

where FMIL is the feedback-modified

a test before we execute it, the most effi-
cient partition results from a test that di-
vides F into two equal subsets.

The next test is most efficient if it
again divides the feasible subset in half.
This process, called the half-interval
technique, is one method by which we
can accomplish fault isolation. Real sys-
tems can rarely follow half-interval fault
isolation, but the half-interval case r e p
resents the lowest number of tests for
which we can accomplish diagnosis to
the element level. Under this assump
tion, conducting one test reduces the
feasible set from I FI to I FI /2, conduct-
ing two tests reduces the set to (I FI /2)/
2, and so on. Conducting n tests reduc-
es the feasible set to I FI /2". Fault isola-
tion results when I F I /2" = 1, so we want
the minimum number of tests for fault
isolation, n = log, I Fl . From this, we
specify the lower bound of TL, or
TLMIN:

isolation level, 6 is as defined in Equa-
tion 15, and Lis the number of feedback

IF-1
I F1

TLMAX = ~

loops. The summation removes all ele-
ments in feedback, and L adds back one If TL exceeds this value, the test set has
element for each feedback loop. been overspecified.

The ideal value of FMIL would be For the case study, TLMAX = (26 -l)/
1.0000. For the case study, FMIL = 16/(26 26 = 0.9615. Note that for extremely large
- 4 +1) = 0.6957. The difference between systems, I FI - 1 E I FI , and TLMAXs 1.0:
FMIL and IL indicates that we can
achieve an 8% improvement in compe Test leverage modifications. We
nent uniqueness by repackaging the i q k [F] = modify TL to prevent some elements in
feedback loop. the model from affecting the TL value.

Undertesting. To determine the mini- For example, we compute input-
Test set measures modified test leverage (IMTL) as

To utilize an effective mix of test re-
sources, we must consider several is-

system, including test adequacy, suffi-
ciency, consistency, and efficiency. The
following measures provide insight into
the usefulness of the test set in relation
to these issues. sets. The modeling approach considers back, as

Any value of TL that is less than this val-
ue indicates that the test set has been
underspecified.

For the case study, TLMIN = (log2 26)/
26 = 0.1808.

0')

mum amount of testing needed to ac-
complish a diagnosis, we consider some
fault isolation theory. For single failures

tions the set of fault isolation conclusions
F into two subsets.' (This assumes bina-
ry-outcome tests. Multipleoutcome tests
may actually partition F into many s u b

mostly binary-outcome tests.) The s u b
sets include elements that are still feasi-
ble after a test outcome and elements

Because we do not know the outcome of

lMTL - (2 1)
III - (INTI
IF1 - IINI sues related to determining tests for a and binary (twcwalue) tests, a test parti-

Further, we compute feedback-modified
test leverage (FMTL), which excludes
tests and conclusions involved in feed-

I!

FMTL = ,=I
IF1

111 - CPI + L

Iq-pL + L

Test leverage. TL measures the ro-
bustness of the test set-that is, the rel-

determine system health:
ative capability of the test set to that are not feasible after a test outcome. (22)

I =I

MARCH 1992 47

where 5 is as defined in Equation 15. We
can also modify TL for redundancy; this
is discussed later.

Test uniqueness. TU measures the
degree to which the tests in the test set
provide unique information:

l"Il
TU= /I(
The ideal value of TU would be 1 .OOOO.

For the case study, TU = 14/20 = 0.7000.
Recall that the first occurrence of a

configuration of (STJ is considered
unique, so that each redundancy group
is represented by one element in the set
UI.

Test redundancy. We identify test re-
dundancy (TR) whenever two or more
test signatures are identical-that is,
whenever ST, = ST,. Redundancy sim-
ply means that the evaluation of any
member of the test redundancy group
will provide the same information as the
evaluation of any other member of that
group. Figure 4 highlights two redun-
dancy groups in the case study. Table 6
lists all the redundancy groups, which
are identical to the circularity groups
(Table 5), as is generally the case.

TR is the complement of test unique-
ness. It is a measure of the percentage
of tests that we can consider for elimi-
nation due to redundancy:

("11
111

TR= 1- TU= 1-- (24)

The ideal value of TR would be 0.0000.
For the case study, TR = 1 - 14/20 =

0.3000.

Redundancy modifications. Test re-
dundancy may be desirable, and we can
modify certain measures to ignore re-
dundant tests. For example, the test le-
verage may indicate that the test set is
overspecified because of desirable re-
dundant tests. A new measure, nonre-

Figure 4. Case study redundancy analysis: test-to-test dependency matrix (a]; test-to-con-

clusion dependency matrix (bj.

48 IEEE DESIGN & TEST OF COMPUTERS

dundant test leverage (NRTL)? may be a
more reasonable value to compare with ~ ~ ~~ ~ ~~ ~~ ~ ~~ ~ ~

TLMAX: Group' Test signature (ST;)**

Table 6. Redundancy groups for the case stydy.

Members

l"Il
IF

NRTL = -

For the case study, NRTL = 14/26 =

0.5385.

Ekcess-test candidates. In assessing
the value of the test set, one major ob-
jective is to minimize the number of
tests required. Because each test must
be specified, developed, documented,
and validated, reducing the number can
reduce costs significantly. Frequently,
ad hoc methods of developing system
diagnostics result in overtesting. A nat-
ural question for an analyst to ask is
which tests can be eliminated without
creating additional ambiguities among
the conclusions. These tests are excess-
test candidates, which can be individu-
ally eliminated if the analyst is satisfied
with the svstem's sinqle-failure testabil-

1

2

3

tl 4 tl7

tl5 tl6

Group data structure is in accordance with Sheppard and Simpson.2
** for ease of cross-reference, i denotes the transition point beheen the test-to-test and

test-to-conclusion matrices (Figure 4a, b).

-
ity and does not anticipate false alarms
(discussed later in this article).

Using the matrix formulation, we iden-
tify ambiguity when conclusions have
equal failure signatures. In considering
a test for excess-test candidacy, we
want to determine whether ambiguities
will occur when that test is eliminated.
If a new ambiguity is created, the test is
not an excess-test candidate; if no new
ambiguity is created, the test is a candi-
date. The former situation is shown in
Figure 5 for t2 and til. Neither test can be
considered an excess-test candidate be-
cause the elimination of either will cre-
ate new ambiguity groups.

Table 7 on the next page shows the re-
sult of eliminating each test in the test
set. Testable inputs are not usually con-
sidered in the analysis, but they could
be. If they are considered, both intl and
int, are excess-test candidates.

We define excess-test measures in
terms of either conclusions or replace- F ; ~ ~ ~ ~ 5. case sb+ excess-test ana/ys;s

MARCH 1992 49

able unit groups. The excess-test mea-
sure for conclusions is

where y ~ , is as defined in Equation 26 and
RUA is replaceable unit ambiguity. The
excess-test measure for conclusions in-
cluding inputs is

Id 2 VI

SF, f SFk I11

0; i f f given T-{tl},

V't;,fk E UF(j # k) , (2s) XMIC = - (28)

1; otherwise
where y ~ ! is as defined in Equation 26.
The excess-test measure for replaceable
unit groups including inputs is

The excess-test measure for replaceable
unit groups is

10; otherwise where 0, is as defined in Equation 27

Table 7. Ambiguify groups created by eliminating individual tests.
~~ ~~ ____ ~ _ _ _ _ _ _ _ _ ~ ~ ~

Excess-test
Test New isolation Replaceable candidate conclusion

eliminated ambiguity unit groups replaceable unit groups

tl
t2

f3

t4

t5

t7

t9
4 0

4 1

4 2

t6

t8

tl 3

tl 4

tl 5

tl 6

t17

c5 c6

c3 c4

C18 c21
None
None
None
None
None

c4 c6

c12 c14

c14cl.5

c15 c l 6

c18 c l 9
None
None
None
None

N 3 1113

Tu1 m3

m3 N 3

None
None
None
None
None

m 2 N 8

m 6 N 6

m 6 N 6

N6

NE m 8
None
None
None
None

No/yes
No

No/yes
No
Yes
Yes
Yes
Yes
Yes

No/yes
No/yes

No
No/yes

Yes
Yes
Yes
Yes

tl 8 None None Yes

~

~ (column 3)
*Excess test candidate at either the conclusion level (column 2) or replaceable unit level

The ideal value for XMC, XMR, XMIC,
and XMIR would be 0.0000, without mul-
tiple-failure or false-alarm consider-
ations. For the case study, XMC = 0.5560,
XMR = 0.8890, XMIC = 0.6000, and XMIR
= 0.9000, indicating that we can make
significant reductions in the test set.

Excesstest analysis. The analysis we
have just performed to determine which
tests are excess-test candidates is not
sufficient for recommending which tests
we will actually eliminate. Clearly, the
elimination of one test may affect our
ability to eliminate another. For exam-
ple, in Figure 4, we can see that t14 and
fI7 are redundant. But careful examina-
tion of Figure 4b indicates that if we
eliminate both t14 and t17, cI9 and c20 be-
come ambiguous. For the analysis to
recommend which tests to eliminate, it
must first consider each test in terms of
weighting criteria defined by the ana-
lyst. We will address multiplecriteria
analysis in detail in an article on fault
isolation later in this series; here we give
only an overview of the use of multiple
criteria to evaluate excess-test candi-
dates.

First, we compute desirability values
for each test, based on the criteria and
weights determined by the analyst. We
then rank the tests in decreasing order
of desirability of having the test per-
formed. The idea is to consider less de-
sirable tests first for elimination. The
desirability values may be based on
multiple criteria, including (but not lim-
ited to) the supplied weights. Finally, we
examine the tests serially. We eliminate
the first test. If that increases the ambi-
guity of the system, we return the test to
the model; otherwise, we update the
model to reflect the elimination of the
test. Then we go on to the next test,
stopping the process when all tests
have been considered.

When we apply this process to the
case study, using the failure frequency
data of Table 3 to compute weighting
values and limiting isolation to replace-

50 IEEE DESIGN & TEST OF COMPUTERS

able unit groups, the analysis recom- quire the addition of sensors to the
mends t3, t5, t6, t7, tS9 tg, til, t16, and t17 for built-in test equipment.
elimination. Many of these tests are rec- Increasing test tolerances. We can
ommended for elimination because avoid false alarms by making the
they are redundant. For example, the al- test less sensitive to anomalous be-
gorithm saves t18 from redundancy havior. Unfortunately, this may re-
group 1, t14 from redundancy group 2, duce the test’s ability to detect real
and t15 from redundancy group 3, there- failures.
by recommending elimination of the
rest (see Table 6 for the redundancy W Conducting repeat polling. In repeat
groups). The algorithm eliminates ts be- polling, we try to avoid false alarms
cause it is excess. The algorithm elimi- by executing a test repeatedly.
nates tl1 and t3 because they cause no Each time the test is evaluated, the
redundancy in replaceable unit groups test algorithm uses the results to
and are therefore excess at the replace- confirm any previous executions.
able unit level. However, the algorithm Repeat polling is intended to allow
makes no recommendation about tl, t,, transient characteristics to work
tI2, and t13-all of which are candidates their way through the system with-
in Table 7-because the interactions of out triggering a failure indication.
eliminations may preclude elimination Repeat polling requirements are
of a specific test. usually written as, for example,

“three or more indications within
250 milliseconds.” As this solution
also may lead to missed detections,
a better approach is to recognize
transient characteristics by means
of the first solution, improved test
science.

False alarms. False alarms are usual-
ly associated with built-in test, although
they may occur in any type of diagnos-
tic testing. As defined by military stan-
dards, a false alarm is an indication of
failure in a system where no failure
 exist^.^

False alarms result from imperfect
testing. The better we understand a pro-
cess or technology, the more accurate
the testing becomes. False alarms gen-
erally become a problem when system
complexity becomes great or the design
pushes the state of the art. Because we
cannot actually measure false alarms in
the field,6s7 specifications should be
based on cannot duplicate (CND) events
instead of false alarms. We will address
this issue in detail later in this series.

The following are four viable soh-
tions to false-alarm problems:

W Crosscorrelating test information.
We can correlate an anomalous in-
dication with other testing to either
confirm or deny the original infor-
mation. The information flow mod-
el can analyze this technique to
assist in planning for false-alarm
prosecution.

False-alarm tolerance. False-alarm
tolerance (FAT) is a measure of our abil-
ity to perform test-to-test crosscheck-
ing. The test-to-test matrix in Figure 2a
is a complete map of the higher order
interrelationships between the tests.
Recall that this map is generated in clo-
sure. FAT is the average percentage of
tests in the test set that we can use as
verifiers. For example, we can verify an
anomalous outcome of tlC3, using t14, t15,

tI6, and t17 (the values in ST,,s). False-
alarm tolerance then is given by

W Improving test science. We can avoid
false alarms by sampling more of-
ten, modeling in greater detail, and
accounting for a greater number of
variables. In the case of built-in test,
these steps create an increased
software requirement and may re-

1; D;, = 1, i # J

0; otherwise

There is no ideal value for FAT, but a
fully tested serial system will have aval-
ue of 0.5000. For the case study, FAT =

FAT typically decreases as systems
become larger and excess tests are re-
moved. We have found that real sys-
tems with FAT values below 10% should
be carefully analyzed. One way to main-
tain a high false-alarm tolerance is to re-
tain redundant and excess tests. Of
course, merely having these tests avail-
able is not sufficient; they must be used
in the diagnostic strategy, which means
that additional testing will be specified.
We will address this point in a future ar-
ticle in this series.

183/380 = 0.4816.

Multiple failure measures
Multiple failure is both a testability

and a diagnosis problem. As we will dis-
cuss in future articles on diagnosis, the
basic problem formulation is amenable
to both single- and multiple-failure diag-
nostic paradigms. However, there are
two cases in which we must be careful
to provide testability in a multiple-
failure situation because diagnosis can-
not solve the corresponding problems.
The first case is hidden failures, the
masking of symptoms that occurs in
most systems. The second is false fail-
ures, situations in which symptoms lead
to wrong conclusions.

Hidden failures. The failure of one el-
ement may prevent the test set from de-
termining that a multiple failure even
exists. For example, if cll in Figure 2
were to fail, the failure would be detect-

is the failure signature of cll (SF,,,) dis-
cussed earlier in this article. In addition,

ed bytlo, t1l7t12, t13, t14,t1S7 t16, and t17. This

MARCH 1992 51

Table 8. Hidden failures in the case study.

Potential Hidden Failures in a Multiple-Failure Situation Element

c 21

inu1
inu 2

NoFault

b i a cn cis inuaj 7& cm
m c m

none
i s ci7 ami b lox cw

is no symptom to separate this multiple
failure from either of the single failures.
Even this situation is not generally a
problem. Repair of cI1 and subsequent
testing will isolate c19. This is called peel-
ing and is one of the rationales used in
developing singlefailure isolation tech-
niques. Peeling works well except where
the hidden failure is the cause (some
times referred to as a root cause) of the
isolated failure. Then, the repair of c1 is
ineffective because the failure in cI9 will
again cause cll to fail, and subsequent
diagnosis will again identify cI1. This sit-
uation occurs whether we use single or
multiple-failure diagnostic approaches.

Table 8 lists all the hidden failures for
each conclusion in the case study. Anal-
ysis of this list will determine if root
cause relationships exist. Through
improved testability or maintenance-
manual directions to repair the combi-
nation of components (that is, repair
both cI1 and cl9), we can diagnose any
failure in the second column that is a
root cause of a failure in the correspond-
ing row of the first column. If we do not
improve testability, diagnosis will fail to
identify the complete problem. We ob-
tain a measure of the size of the analy-
sis set by computing the average
percentage of failures that may be hid-
den by any conclusion reached (HF):

HF - (= I 1=1 .

{IUFI - 2)' '

0 1)
1; 4 , t; E UF(i # j) ,

0; otherwise
@,, = SF; cSF, I

Here @[, is the actual existence of a
hidden-failure relationship. Note that
we count only unique elements in F. The
2 in the denominator accounts for the

if cI9 were to fail, it would be detected by
114, t l 5 , tI6, and f17. A joint failure of cI1 and
cI9 would generally exhibit all the s y m p

toms of each failure, which are just the
symptoms of cI1 (that is, all the s y m p
toms of cI9 are contained in c1 There

fact that two elements have no hidden
failures (No Fault and at least one other
element).

52 IEEE DESIGN & TEST OF COMPUTERS

For the case study, HF = 94/142 =

0.4796.
On average, about 48% of the reach-

able conclusions are hidden from a giv-
en failure. We can modify HF to exclude
inputs; inputs generally hide a large
number of other failures and are not
subject to root cause:

where Qv is as defined in Equation 31
and n is the number of inputs that do not
belong to any ambiguity group of a size
greater than 1 .

For the case study, IMHF = 68/[(16 - 2
- 2)*] = 0.4722.

False failures. The second class of
multiple failures that will render ineffec-
tive both single- and multiple-conclu-

sion diagnosis is the false failure. A false-
failure indication occurs when the com-
bined symptoms of two or more failures
are identical to the symptoms present-
ed by a single failure that is not a mem-
ber of the failure set. We compute false
failure by examining the union of failure
signatures for a conclusion’s hidden fail-
ures to see if there is a match. Figure 6
illustrates the process for pairs of fail-
ures. We repeat this process for three
failures, four failures, and so on. The
only conclusion in the case study that
has a potential false-failure problem is
c6. The associated failure pairs are (c1,
c5) and (cz, cs). Mathematically, the false-
failure condition exists if the following
equality holds:

a measure that provides the extent to
which false failures may be a problem:

1; iff p i s true 04) FF - .

Here FF is the fraction of elements po-
tentially falsely identified, and p is as
defined in Equation 33. Two elements
are removed for the No Fault and mini-
mum-failure signature (other than No
Fault) in the denominator.

The ideal value of FF would be 0.0000.
For the case study, FF = 1/24 = 0.0417.
We can modify this measure to exclude
inputs:

Id

where p is a logical variable and r de-
notes the null vector. We can compute

where U , is as defined in Equation 34.
The ideal value of IMFF would be

- ,

53

S Y S T E M T E S T A B l l l T Y
~ ~~ ~~ ~

0.0000. For the case study, IMFF = 1/20 =

0.0500.

T h e mathematical formulation of diag-
nostic information flow allows us to
closely examine and assess the testabil-
ity of complex systems. The analysis
demonstrated in this article is an initial
analysis because it only demonstrates
where the deficiencies in the system are
located.

In developing any complex system,
we can minimize maintenance costs if
we identify testability problems and cor-
rect them early in system design. After
applying the testability assessment
techniques, our next step is to interpret
the results and recommend design
changes to improve system testability.
Such improvements might include elim-
inating or reorganizing existing tests,
developing new tests (and maybe test
points), repackaging components to im-
prove operational isolation, locating
feedback loops, implementing cross-
checks for false alarms, and improving
the observability of some failures to
minimize the effects of root causes or
false failures.

We’ve explained how to identify the
problem areas in a system design. We
must point out, however, that the mea-
sures defined are indicators of testabili-
ty and have no predetermined
thresholds for use in the analysis. Ana-
lysts must use their own engineering
judgment in the context of the problem
being studied to determine what the in-
dicators mean. We will demonstrate
how to apply the testability analysis to
redesigning the case study system in
the next article in this series. @B

References
1. W. Simpson and J. Sheppard, “System

Complexity and Integrated Diagnostics,”
IEEE Design & Test o f Computers, Vol. 8,
No. 3, Sept. 1991, pp. 16-30.

J. Sheppard and W. Simpson, “A Mathe-
matical Model for Integrated Diagnos-
tics,” IEEE Design & Test o f Computers,
Vol. 8, No. 4, Dec. 1991, pp. 12-25.
F. Johnson and R. Unkle, “The System
Testability and Maintenance Program
(STAMP): ATestability Assessment Tool
for Aerospace Systems,” Proc. A I M /
NASA Symp. on Maintainability o f Aerc-
space Systems, AIM, New York, 1989.
J. Sheppard and W. Simpson, “Incorpo-
rating Model-Based Reasoning in Inter-
active Maintenance Aids,” h o c . 42nd
Nat’l Aerospace and Electronics C o d ,
IEEE Press, New York, 1990, pp. 1238-
1242.
Definitions o f Terms for Test, Measure-
ment, and Diagnostic Equipment, MIL-
STD-l309B, Washington, D.C., May 1975.
W. Simpson et al., “Prediction and Anal-
ysis of Testability Attributes: Organiza-
tional-Level Testability Prediction,”
RADC-TR-85-268, Rome Air Develop-
ment Center, Griffis AFB, N.Y., Feb. 1986.
E. Gilreath, B. Kelley, and W. Simpson,
“Predictors of Organizational Level
Testability Attributes,” 15 1 1-02-24 179,
Arinc Research Corp., Annapolis, Md.,
Nov. 1986.

Direct questions or comments on this ar-
ticle to either author at Arinc Research
Corp., Advanced Research and Development
Group, 2551 Riva Rd., Anapolis, MD 21401.
Sheppard’s e-mail address is sheppard
@csjhu.edu.

John W. Sheppard is a senior research ana-
lyst in the Advanced Research and Develop-
ment Group at Arinc Research Corp. He is
also pursuing a PhD in computer science at
Johns Hopkins University. His research in-
terests include applying Al techniques to
fault diagnosis, machine learning, neural net-
works, and nonstandard logic. He has devel-
oped algorithms to diagnose system failures,
verify knowledge bases, and classify soft-
ware. He was also a principal developer of
Pointer, an intelligent, interactive mainte-
nance aid, and assisted in the development
of a prototype expert system that diagnoses
system failures and reconfigures the system
to keep functioning. He holds a BS from
Southern Methodist University and an MS
from Johns Hopkins University, both in com-
puter science.

William Simpson, a research fellow in the
Advanced Research and Development
Group at Arinc Research Corp., works with
testability and fault diagnosis. He helped de-
velop the System Testability and Mainte-
nance Program, which is based on an
information flow model. He was also a prin-
cipal developer of Pointer. He holds a BS
from Virginia Polytechnic Institute and State
University and an MS and a PhD in aerospace
engineering from Ohio State University.

54 IEEE DESIGN & TEST OF COMPUTERS

mailto:csjhu.edu

