
Integrated 
- 

Diagnostics 

I n  this series of articles, we are in- 
terested in the ability to diagnose 
failures as part of an overall main- 
tenance architecture. Testability is 
a means to that end. Its only pur- 
pose is to improve system mainte- 
nance and repair. Testability is a 
yardstick by which we measure our 
success in achieving design goals 
for various aspects of field mainte- 
nance. As we shall demonstrate, 
testability is not a single issue but 
comprises several issues involved 
in maintaining complex systems. 

In the first article of the series,' 
we presented an overview of the 
problem of analyzing testability 
and conducting diagnosis for com- 
plex systems. In our second arti- 
cle,* we described in detail the form 
of an information flow model, including 
test representations, conclusions, logi- 
cal interdependencies, groupings, and 
special logical constructs. Several 
 tool^^,^ incorporate this modeling ap- 
proach, and we will use the information 
flow model as the basis of discussion in 
this and future articles. We now de- 
scribe several measures that are useful 
in analyzing system testability. 
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of the missile launcher system, and 
Figure 2 on p. 42 is a matrix repre- 
sentation of the same system. Be- 
cause the representation is a bit 
matrix, we can replace any letter 
with a 1 and any empty area with a 
0. The letters represent the method 
by which the relationships between 
elements (indicated by the row and 
column) were derived: 

In part 3 of their series on integrated 

analyzing the testability of a system. Based on 

second article, the measures presented here 

feedback, the test set, and multiple failures. 

diagnostics, the authors present techniques for 

f :  first-order (or input) relation- 
ships 
h: higher order relationships 
derived by transitive closure 
I: higher order relationships 
derived by logical closure 
n: higher order relationships 
derived by incremental clo- 
sure 

Model representation With one exception (feedback analysis, 
A key element in the computation of which we will discuss later), it is not im- 

testability is the information flow mod- portant what the letter designation is, 
el, which represents the flow of diagnos- only that a relationship exists. 
tic information bv means of a network of 

the information flow model detailed in the 

idenhfy testability problems involving ambiguity, 

~~- ~ ~~~~~~~~~~~ ~ 

Terminology logical constructs. For illustration we 
use the case study of an antitank missile 
launcher, introduced in our previous 
article. Figure 1 is a dependency model 

Before we can describe the mathe- 
matics, we must define the terminology. 
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Figure 1. Dependency diagram of antitank missile launcher case study. 

In general, we use a lowercase letter to 
denote an individual member of a set 
and give the letter a subscript to indi- 
cate which member; thus, cI5 is the 15th 
member of the conclusion set. An up- 
percase letter denotes the entire set, 
and the cardinality symbol (for exam- 
ple, I X I )  indicates the number of set 
members. Several sets are of interest: 

including all the elements in F and I 
(E = F u  0. Note that the cardinality 
of E, I E I , cannot be computed as a 
sum of the cardinalities of F and I 
(IEl # IF1 + I l l )  because testable 
inputs belong to both F and I (that 
i s , F n I = I N T ) .  

w U: the set of elements in the model 
that have unique properties. There 
are two unique sets: U1 is the set of 
unique information sources, and 
UF is the set of unique fault isola- 
tion conclusions (U = U1 U UF). 
RU: the set of replaceable unit 

C: the set of fault isolation conclu- 
sions (not including inputs or No 
Fault). 
T: the set of tests that can be evalu- 
ated (not including testable in- groups in the model. 
puts). 
IN: the set of inputs to the system To define uniqueness, we must first 
being evaluated. There are two in- define two vectors: failure signature 
put sets: INU is the set of untestable (SF) and test signature (ST,). 
inputs, and 1°C is the set of testable A failure signature is a vector associ- 
inputs (IN = INU U INT). ated with a specific element in F that in- 
N F  the set containing the element dicates all the tests that depend on 6. 
No Fault and for which the cardinal- The vector corresponds to specific 
ity, INFI, i s l .  rows in the test-to-conclusion depen- 
1: the set of information sources, in- dency matrix. Thus, from row c3 in Fig- 
cluding the tests and testable in- ure2, 

F the set of fault isolation conclu- 

puts, and No Fault (F = C U IN U NF). 
E the set of elements in the model, 

puts (l = T U  INT). 
- ~l , l , l , l , l , l , l , l , l , l ,  1 

and from row cl1 in Figure 2, 

sions, including conclusions, in- SF,% = ~ , ~ , ~ , ~ , ~ > ~ , ~ , ~ , ~ , ~  (1) 

We call this vector a failure signature 
because if the tests corresponding to 
row entries in the test-to-conclusion de- 
pendency matrix were to fail, we would 
expect the element corresponding to 
that row to fail. That is, if c3 fails, 

and if cl1 fails, 

Tests may also have failure signa- 
tures. For example, 

- 0,0,0,1,0,0,0,0,0,0, 
SF,, = (0.0.1.1.1.1.1,0.0,0 

or 

Say that we allow the orientation of 
both dependency matrices to define an 
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Tests 

(a1 

Tests 

ordering on F and I. Then any element 
in F is a member of UF if the element is 
not preceded by another member hav- 
ing a failure signature equal to  that of 
the element: 

Under this formulation, the first oc- 
currence of any failure signature is 
unique, and subsequent occurrences 
are not unique. Nonunique elements 
may be associated with the unique ele- 
ment whose signature they match. We 
do  not consider the corresponding case 
for tests except when considering feed- 
back. 

A test signature is a vector associat- 
ed with a specific element in I. It is a 
mapping of a specific column in both 
matrices. Thus, from Figure 2, 

Any element in I is a member of U1 if 
the element is not preceded by another 
member having a failure signature equal 
to that of the element: 

i, E UI i f f  ST, + ST,, 
V k  E (O,j),ik,i,  E 1 (9) 

Under this formulation, the first occur- 
rence of any test signature is unique, 
and subsequent occurrences are not 
unique. Nonunique elements may be as- 
sociated with the unique element whose 
signature they match. 

The construction of matrix D will de- 
termine the order in which we evaluate 
the dependency structures and thus 
which member of a group of nonunique 
elements we declare to be unique. How- 
ever, the construction of the matrix 
does not affect the members of the 
group or the total number of unique de- 
pendency structures. Table l lists the 

Figure 2. Closed dependency matrices of case study system: test-to-test dependency ma- 

trix (a) and test-to-conclusion dependency matrix (b). 
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Table 1 .  Set memberships in the case stvdy. 
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set memberships as they apply to  the sures concern maintenance factors ob- 
case study. servable in the field and were previous- 

Groups are subsets of the set of ele- ly available only after a fault tree was 
ments that are not otherwise assigned developed. Because the information 
to  one of the labeled sets. They are flow model incorporates the required 
mapped in accordance with the second , system maintenance data, we can 
article of this series. Group types in- compute these measures without devel- 
clude test, replaceable unit, multiple- oping a fault tree. The following para- 
failure, ambiguity, redundant-test, and graphs examine measures that address 
feedback. ambiguity, feedback, the test set, and 

multiple failure. (Recall that our analy- 

Computing testability sis assumes a single failure.') 

Using the information flow model, we Ambiguity measures 
can compute values for a number of Ambiguity exists when the tests p r e  
measures associated with the ability to vided in the information flow model can- 
diagnose failures. Some of these mea- not distinguish between two or more 

conclusions. Given that a group may 
contain one or more elements, an ambi- 
guity group of cardinality 1 does not 
contribute to  an ambiguity problem. 
The ability to distinguish among conclu- 
sions in the conclusion set is related to 
the failure signature SF,. Ambiguous 
conclusions have identical failure signa- 
tures. Therefore, no combination of ex- 
isting tests can distinguish among 
ambiguous conclusions. 

Figure 3 on the next page shows two 
example ambiguity groups in the case 
study. Table 2 lists all the ambiguity 
groups in the case study. There are six 
ambiguity groups, each of which may or 
may not be significant (that is, require 
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Figure 3. Case study ambiguity analysis. 

design changes) for meeting mainte- 
nance requirements. We have derived a 
number of measures to  indicate the 
amount and type of ambiguity. 

Isolation level. IL is the ratio of the 
number of isolatable groups to the num- 
ber of isolatable elements. In our defini- 
tion of unique conclusions, we defined 
the first element of each ambiguity 
group as being unique. Thus, the num- 
ber of isolatable groups is I UF I ,  and 

The ideal value of IL would be 1 .OOOO. 
For the case study, IL = 16/26 = 0.6154. 
Roughly 62% of the conclusions avail- 
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able can be drawn uniquely, which may 
or may not be a problem. If isolation to 
the element level is the design goal, 
there are serious problems in this case 
study. But if isolation to  the group level 
is the goal, it may not be important that 
we achieve an isolation level of only 
61%. The next measure clarifies the dif- 
ference between the element level and 
the group level. 

Operational isolation. A system's o p  
erational isolation level (Ot[n]) is the 
percentage of observed faults that re- 
sult in isolation to  n or fewer replace- 
able units. To compute this measure, we 
must determine the number of replace- 
able units associated (ambiguous) with 
each conclusion in the model (a). For 
fault isolation conclusion 6, 

Table 2. Ambiguity groups in the case 
study. 

Group' Members 

1 c1 c2 

3 c11 c12 
4 ~ 1 3  No fault 

6 ~ 1 9  inul 

*Group data structure is in accordance 
with Sheppard and Simpson.2 

'Ambiguity resulting from feedback 

2" c7 c8 c9 c10 

5 c16 c17 c18 

~~ 

lRU/ 

Here I RU I represents the cardinality of 
the set of replaceable unit groups, and 
RUk is the kth replaceable unit group. As 
shown in Figure 1, we have 13 replace- 
able unit groups (eight are the shaded 
defined groups, and five are the un- 
grouped conclusions: int,, int,, inu,, inu,, 
and No Fault.) Table 3 provides the data 
necessary to compute a,. The operation- 
al isolation is 

1; a, 2 n,Vf ,  E K 
0; otherwise 

Here w, is a weighting factor associated 
with each fault isolation conclusion 
(usually the probability of occurrence), 
and K is a subset of F determined on the 
basis of the type of analysis being per- 
formed. A project office may specify op- 
erational isolation or something similar 
as part of the design criteria. The ideal 
value of OI[n] would be 1.0000 for every 
definition of operational isolation. Table 
4 shows variations of the operational 
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isolation measures for the case study. 
Which operational isolation value is 
used depends on several factors, includ- 
ing the wording of specifications. For ex- 
ample, the last column of Table 4 shows 
values that include failure rate weight- 
ing but exclude inputs and No Fault. 
Thus, failures of inputs are not the re- 
sponsibility of system testability, and 
nondetections (discussed in the next 
section) are not included in the calcula- 
tion (they may be penalized separately). 

Nondetection (ND). Of the six ambi- 
guity groups in the case study (listed in 
Table Z), the fourth is of interest for non- 
detections. The ambiguity between cI3 
and No Fault indicates that we cannot 
detect the failure of ~ 1 3  with the defined 
set of tests. Because no test depends on 
No Fault, SFNoFaon = (0, 0, ..., 0). Because 
any conclusion ambiguous with No Fault 
must have the same failure signature as 
No Fault, no tests in our test set detect a 
failure of c13. Thus, ~ 1 3  is a nondetection 
item. We obtain a measure of nondetec- 
tion by enumerating the occurrences of 
nondetections: 

TaMe 3. Replaceable unit ambiguity groups in the case study. 
-~ ~ ~ ~ ~~~~ ~ 

Failed Isolation Replaceable a, Failure 
element ambiguity unit groups (Equation 1 1) frequency' 

1 

int, 
in4 
C1 

c2 

c3 
c4 

c5 

c7 

C8 

c9 

Cl 0 

Cl I 

c12 

c6 

cl 3 

c14 

c15 

1 cl6 

cl 7 

cl 8 

cl 9 

c20 

c2 1 
inul 
;nu2 

No Fault 

int, 
in4 
c1 c2 
Cl c2 
c3 
c4 

c5 
c6 

c7 c8 c9 c10 

c7 c8 c9 c10 

c7 c8 c9 c10 

c7 c8 c9 cl 0 

Cl1 c12 

c11 c12 

c1 No Fault 

cl 4 

cl 5 

cl 6 c17 cl 8 ;nu2 
cl 6 c17 c18 jnU2 

cl6 cl7 c18 ;nu2 
c19 inul 

c20 

c2 1 
c19 inul 

c13 No Fault 
cl 6 c17 cl 8 ;nu2 

1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 

2 
1 
1 
3 
3 
3 
2 
1 
1 
2 
3 
2 

0.001 0 
0.001 0 
0.0005 
0.0005 
0.01 00 
0.01 00 
0.0100 
0.01 00 
0.0005 
0.0005 
0.0005 
0.0005 
0.0005 
0.0005 

0.0005 
0.01 00 
0.01 00 
0.0005 
0.0005 
0.0005 
0.0005 
0.01 00 
0.01 00 
0.001 0 
0.001 0 
0.9095" 

i 
1 

'Values taken from Sheppard and Simpson2 in units of failures per IO,ooO hours. 

"Analysis goal of operational performance check (expected frequency of occurrence). 

Table 4. Operational isolation values in the case study. 

Opemtional w; = uniform w; = uniform w; = failure w; = failure prob.' w; = failure prob.' w; = failure prob.' 
isolation K=F K=F-NF prob.'K=F K=F-NF K=F- IN K = F - IN - NF 

1 0.3846 0.4400 0.081 1 0.9061 0.0808 0.9364 
ow 0.8462 0.8400 0.9975 0.9724 1 .OOoo 1 .oOOo 
OU31 1 .oooo 1 .OoOo 1 .oOOo 1 .0000 1 .om0 1 .0000 

'Failure probability computed as hi = pi where P, is the failure probability of the ith conclusion and a , is  the failure Frequency of 

~ the ith conclusion. 
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The 1 in the numerator excludes the No 
Fault conclusion, which is only techni- 
cally a nondetection. 

The ideal value of ND would be 0.0000. 
For the case study, ND = (2 - 1)/26 = 

0.0385. 
In analyzing the impact of nondetec- 

tions on the other measures, note that 
they will result in ambiguity between 
two or more replaceable unit groups, 
assuming No Fault is treated as a sepa- 
rate replaceable unit group. The case 
study illustrates the effect of nondetec- 
tion on operational isolation. As shown 
in Table 4, when the probability of a con- 
clusion’s being drawn is 1/ I Fl , remov- 
ing the No Fault conclusion from the 
analysis set K only slightly affects the 
operational isolation. However, when a 
high probability of drawing the No Fault 
conclusion exists, a significant differ- 
ence in operational isolation values ex- 
ists. The exact form of operational 
isolation is critical when we check for 
specification compliance, and we 
should control the computation to meet 
the letter of the specification. 

Feedback measures 
Feedback in an information flow mod- 

el represents a logical circularity. Such 
circularities may result from physical 
feedback, information flow feedback, or 
modeling errors. When we analyze infor- 
mation flow models, topological circu- 
larities most often correlate to physical 
feedback loops. We can determine the 
topological circularities for the case 
study by examining Figure 2. From the 
matrix representation, r, is in feedback if 
and only if DfI # 0, and it ’_” in topologi- 
cal feedback if and only if D,, = “h” or “f.” 
For all other cases, D,, # 0 indicates the 
test is in logical feedback. Thus, t6, t7, ta, 
t9, and tI8 are in topological feedback, 
and t14, t15, tI6,  and t17 are in logical feed- 
back. Further, the feedback loop, or cir- 
cularity, has a unique failure signature. 
Therefore, any element in F having the 
same failure signature as a test in feed- 
back is a member of the same feedback 

Table 5. Circularity groups for the case study. 

Group* 

~ 
~ 

Failure signature ( S F  j Members 

1 ** 

2*** 

Group data structure is in accordance with Sheppard and Simpson 

** Circuloriv is topological feedh:k. 
‘ * * t13ha~thesamesigna~re,butD~313=O 

- ~~ ~~ 

loop as the test. In addition, any two 
tests in feedback having the same failure 
signature are members of the same feed- 
back loop. Table 5 shows the circularity 
groups detected in the case study. 
Group 1 corresponds to topological 
feedback, which is identified by the “h” 
in the diagonal cell of Dfor each of the 
member tests in the table. We can veri- 
fy the members of this feedback loop, in- 
cluding the conclusion elements, by 
carefully inspecting Figure 1. 

The following measures indicate the 
amount and type of circularity. Because 
of the close relationship between 
topological circularity and physical 
feedback, we have restricted these mea- 
sures to topological circularity. 

Test feedback dominance. TFD is the 
fraction of information sources involved 
in topological feedback. 

I l l  

1; D:, = 1; 

0; otherwise 
(14) 

where D’ is the dependency matrix fol- 
lowing transitive closure but before log- 
ical closure (see our previous article2 
for a complete discussion of the closure 
algorithms). 

The ideal value of TFD would be 
0.0000 (no feedback). For the case 
study, TFD = 5/20 = 0.2500. In other 
words, 25% of the information sources 
are tied up in feedback. In this case, only 
one feedback loop exists. 

Component feedback dominance. 
CFD is the fraction of conclusions in- 
volved in topological feedb 

0; otherwise 

ck: 

A 

(1 5)  

CFD is important because it is a measure 
of ambiguity caused by feedback. Recall 
that each failure signature is the same in 
a circularity; that is also the definition of 
ambiguity. 

The ideal value of CFD would be 
0.0000 (no feedback). For the case 
study, CFD = 4/26 = 0.1538. In other 
words, 15% of the conclusions are tied 
up in feedback. Again, only one feed- 
back loop exists. 

Feedback modifications. Although 
feedback is a testability problem, physi- 
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(1 7) III 
IF 

cal feedback often is necessary for the 
system to perform. It is important that 
changes made to a system to improve 
testability do not affect system perfor- For the case study, TL = 20/26 = 

mance. Several options are available to  0.7692. 
eliminate the effect of circularity that We derive theoretical limits of TL to 
results from physical feedback saturat- provide a basis for comparing the actu- 
ing the feedbackcircuit, conducting test al test set with an ideal set. These lim- 
measurement before feedback occurs, its, TLMAX and TLMIN, let us determine 
inserting feedback loop breaks that are how appropriately we have specified 
engaged only during a test cycle, and re- the test set. In other words, is the test 
packaging feedback loops into a single, set overspecified (overtesting), under- 
replaceable element. We can modify the ' specified (undertesting), or appropriate 
basic measures to reflect these options. for the system? 
For example, we modify the isolation 
level to ignore ambiguity resulting from 
feedback, as follows: 

TL=- 

Overtesting. We assign an upper lim- 
it to the test leverage by specifying one 
test for each conclusion. The absence of 
a failed-test outcome indicates No Fault, 
so under this extreme the number of 
tests would be IF1 - INFl or IF1 - 1. 
The maximum test leverage (TLMAX) 
would then be 

IUFI 

IF-Cti + L  
I F1 FMIL = 

(16) 
i=l 

where FMIL is the feedback-modified 

a test before we execute it, the most effi- 
cient partition results from a test that di- 
vides F into two equal subsets. 

The next test is most efficient if it 
again divides the feasible subset in half. 
This process, called the half-interval 
technique, is one method by which we 
can accomplish fault isolation. Real sys- 
tems can rarely follow half-interval fault 
isolation, but the half-interval case r e p  
resents the lowest number of tests for 
which we can accomplish diagnosis to  
the element level. Under this assump 
tion, conducting one test reduces the 
feasible set from I FI to I FI /2, conduct- 
ing two tests reduces the set to ( I  FI /2)/ 
2, and so on. Conducting n tests reduc- 
es the feasible set to I FI /2". Fault isola- 
tion results when I F I /2" = 1, so we want 
the minimum number of tests for fault 
isolation, n = log, I Fl . From this, we 
specify the lower bound of TL, or 
TLMIN: 

isolation level, 6 is as defined in Equa- 
tion 15, and Lis the number of feedback 

IF-1 
I F1 

TLMAX = ~ 

loops. The summation removes all ele- 
ments in feedback, and L adds back one If TL exceeds this value, the test set has 
element for each feedback loop. been overspecified. 

The ideal value of FMIL would be For the case study, TLMAX = (26 -l)/ 
1.0000. For the case study, FMIL = 16/(26 26 = 0.9615. Note that for extremely large 
- 4 +1) = 0.6957. The difference between systems, I FI - 1 E I FI , and TLMAXs 1.0: 
FMIL and IL indicates that we can 
achieve an 8% improvement in compe Test leverage modifications. We 
nent uniqueness by repackaging the i q k [  F] = modify TL to prevent some elements in 
feedback loop. the model from affecting the TL value. 

Undertesting. To determine the mini- For example, we compute input- 
Test set measures modified test leverage (IMTL) as 

To utilize an effective mix of test re- 
sources, we must consider several is- 

system, including test adequacy, suffi- 
ciency, consistency, and efficiency. The 
following measures provide insight into 
the usefulness of the test set in relation 
to  these issues. sets. The modeling approach considers back, as 

Any value of TL that is less than this val- 
ue indicates that the test set has been 
underspecified. 

For the case study, TLMIN = (log2 26)/ 
26 = 0.1808. 

0') 

mum amount of testing needed to  ac- 
complish a diagnosis, we consider some 
fault isolation theory. For single failures 

tions the set of fault isolation conclusions 
F into two subsets.' (This assumes bina- 
ry-outcome tests. Multipleoutcome tests 
may actually partition F into many s u b  

mostly binary-outcome tests.) The s u b  
sets include elements that are still feasi- 
ble after a test outcome and elements 

Because we do not know the outcome of 

lMTL - (2 1) 
III - (INTI 
IF1 - IINI sues related to  determining tests for a and binary (twcwalue) tests, a test parti- 

Further, we compute feedback-modified 
test leverage (FMTL), which excludes 
tests and conclusions involved in feed- 

I! 

FMTL = ,=I 
IF1 

111 - CPI + L 

Iq-pL + L  

Test leverage. TL measures the ro- 
bustness of the test set-that is, the rel- 

determine system health: 
ative capability of the test set to  that are not feasible after a test outcome. (22) 

I =I 
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where 5 is as defined in Equation 15. We 
can also modify TL for redundancy; this 
is discussed later. 

Test uniqueness. TU measures the 
degree to which the tests in the test set 
provide unique information: 

l"Il 
TU= /I( 
The ideal value of TU would be 1 .OOOO. 

For the case study, TU = 14/20 = 0.7000. 
Recall that the first occurrence of a 

configuration of (STJ is considered 
unique, so that each redundancy group 
is represented by one element in the set 
UI. 

Test redundancy. We identify test re- 
dundancy (TR) whenever two or more 
test signatures are identical-that is, 
whenever ST, = ST,. Redundancy sim- 
ply means that the evaluation of any 
member of the test redundancy group 
will provide the same information as the 
evaluation of any other member of that 
group. Figure 4 highlights two redun- 
dancy groups in the case study. Table 6 
lists all the redundancy groups, which 
are identical to the circularity groups 
(Table 5), as is generally the case. 

TR is the complement of test unique- 
ness. It is a measure of the percentage 
of tests that we can consider for elimi- 
nation due to redundancy: 

("11 
111 

TR= 1- TU= 1-- (24) 

The ideal value of TR would be 0.0000. 
For the case study, TR = 1 - 14/20 = 

0.3000. 

Redundancy modifications. Test re- 
dundancy may be desirable, and we can 
modify certain measures to ignore re- 
dundant tests. For example, the test le- 
verage may indicate that the test set is 
overspecified because of desirable re- 
dundant tests. A new measure, nonre- 

Figure 4. Case study redundancy analysis: test-to-test dependency matrix (a]; test-to-con- 

clusion dependency matrix (bj. 
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dundant test leverage (NRTL)? may be a 
more reasonable value to  compare with ~ ~ ~~ ~ ~~ ~~ ~ ~~ ~ ~ 

TLMAX: Group' Test signature (ST;)** 

Table 6. Redundancy groups for the case stydy. 

Members 

l"Il 
IF 

NRTL = - 

For the case study, NRTL = 14/26 = 

0.5385. 

Ekcess-test candidates. In assessing 
the value of the test set, one major ob- 
jective is to  minimize the number of 
tests required. Because each test must 
be specified, developed, documented, 
and validated, reducing the number can 
reduce costs significantly. Frequently, 
ad hoc methods of developing system 
diagnostics result in overtesting. A nat- 
ural question for an analyst to ask is 
which tests can be eliminated without 
creating additional ambiguities among 
the conclusions. These tests are excess- 
test candidates, which can be individu- 
ally eliminated if the analyst is satisfied 
with the svstem's sinqle-failure testabil- 

1 

2 

3 

tl 4 tl7 

tl5 tl6 

Group data structure is in accordance with Sheppard and Simpson.2 
** for ease of cross-reference, i denotes the transition point beheen the test-to-test and 

test-to-conclusion matrices (Figure 4a, b). 

- 
ity and does not anticipate false alarms 
(discussed later in this article). 

Using the matrix formulation, we iden- 
tify ambiguity when conclusions have 
equal failure signatures. In considering 
a test for excess-test candidacy, we 
want to  determine whether ambiguities 
will occur when that test is eliminated. 
If a new ambiguity is created, the test is 
not an excess-test candidate; if no new 
ambiguity is created, the test is a candi- 
date. The former situation is shown in 
Figure 5 for t2 and til. Neither test can be 
considered an excess-test candidate be- 
cause the elimination of either will cre- 
ate new ambiguity groups. 

Table 7 on the next page shows the re- 
sult of eliminating each test in the test 
set. Testable inputs are not usually con- 
sidered in the analysis, but they could 
be. If they are considered, both intl and 
int, are excess-test candidates. 

We define excess-test measures in 
terms of either conclusions or replace- F ; ~ ~ ~ ~  5. case sb+ excess-test ana/ys;s 
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able unit groups. The excess-test mea- 
sure for conclusions is 

where y ~ ,  is as defined in Equation 26 and 
RUA is replaceable unit ambiguity. The 
excess-test measure for conclusions in- 
cluding inputs is 

Id 2 VI 

SF, f SFk I11 

0; i f f  given T-{tl}, 

V't;,fk E UF(j  # k ) ,  (2s) XMIC = - (28) 

1; otherwise 
where y ~ !  is as defined in Equation 26. 
The excess-test measure for replaceable 
unit groups including inputs is 

The excess-test measure for replaceable 
unit groups is 

10; otherwise where 0, is as defined in Equation 27 

Table 7. Ambiguify groups created by eliminating individual tests. 
~~ ~~ ____ ~ _ _ _ _ _  _ _ _ ~ ~ ~  

Excess-test 
Test New isolation Replaceable candidate conclusion 

eliminated ambiguity unit groups replaceable unit groups 

tl 
t2 

f3 

t4 

t5 

t7 

t9 
4 0  

4 1 

4 2  

t6 

t8 

tl 3 

tl 4 

tl 5 

tl 6 

t17 

c5 c6 

c3 c4 

C18 c21 
None 
None 
None 
None 
None 

c4 c6 

c12 c14 

c14cl.5 

c15 c l 6  

c18 c l 9  
None 
None 
None 
None 

N 3  1113 

Tu1 m3 

m3 N 3  

None 
None 
None 
None 
None 

m 2  N 8  

m 6  N 6  

m 6  N 6  

N6 

NE m 8  
None 
None 
None 
None 

No/yes 
No 

No/yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

No/yes 
No/yes 

No 
No/yes 

Yes 
Yes 
Yes 
Yes 

tl 8 None None Yes 

~ 

~ (column 3) 
*Excess test candidate at either the conclusion level (column 2) or replaceable unit level 

The ideal value for XMC, XMR, XMIC, 
and XMIR would be 0.0000, without mul- 
tiple-failure or false-alarm consider- 
ations. For the case study, XMC = 0.5560, 
XMR = 0.8890, XMIC = 0.6000, and XMIR 
= 0.9000, indicating that we can make 
significant reductions in the test set. 

Excesstest analysis. The analysis we 
have just performed to determine which 
tests are excess-test candidates is not 
sufficient for recommending which tests 
we will actually eliminate. Clearly, the 
elimination of one test may affect our 
ability to  eliminate another. For exam- 
ple, in Figure 4, we can see that t14 and 
fI7 are redundant. But careful examina- 
tion of Figure 4b indicates that if we 
eliminate both t14 and t17, cI9 and c20 be- 
come ambiguous. For the analysis to  
recommend which tests to eliminate, it 
must first consider each test in terms of 
weighting criteria defined by the ana- 
lyst. We will address multiplecriteria 
analysis in detail in an article on fault 
isolation later in this series; here we give 
only an overview of the use of multiple 
criteria to  evaluate excess-test candi- 
dates. 

First, we compute desirability values 
for each test, based on the criteria and 
weights determined by the analyst. We 
then rank the tests in decreasing order 
of desirability of having the test per- 
formed. The idea is to  consider less de- 
sirable tests first for elimination. The 
desirability values may be based on 
multiple criteria, including (but not lim- 
ited to) the supplied weights. Finally, we 
examine the tests serially. We eliminate 
the first test. If that increases the ambi- 
guity of the system, we return the test to  
the model; otherwise, we update the 
model to  reflect the elimination of the 
test. Then we go on to  the next test, 
stopping the process when all tests 
have been considered. 

When we apply this process to  the 
case study, using the failure frequency 
data of Table 3 to  compute weighting 
values and limiting isolation to replace- 
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able unit groups, the analysis recom- quire the addition of sensors to the 
mends t3, t5, t6, t7, tS9 tg, til, t16, and t17 for built-in test equipment. 
elimination. Many of these tests are rec- Increasing test tolerances. We can 
ommended for elimination because avoid false alarms by making the 
they are redundant. For example, the al- test less sensitive to anomalous be- 
gorithm saves t18 from redundancy havior. Unfortunately, this may re- 
group 1, t14 from redundancy group 2, duce the test’s ability to detect real 
and t15 from redundancy group 3, there- failures. 
by recommending elimination of the 
rest (see Table 6 for the redundancy W Conducting repeat polling. In repeat 
groups). The algorithm eliminates ts be- polling, we try to avoid false alarms 
cause it is excess. The algorithm elimi- by executing a test repeatedly. 
nates tl1 and t3 because they cause no Each time the test is evaluated, the 
redundancy in replaceable unit groups test algorithm uses the results to 
and are therefore excess at the replace- confirm any previous executions. 
able unit level. However, the algorithm Repeat polling is intended to allow 
makes no recommendation about tl, t,, transient characteristics to work 
tI2, and t13-all of which are candidates their way through the system with- 
in Table 7-because the interactions of out triggering a failure indication. 
eliminations may preclude elimination Repeat polling requirements are 
of a specific test. usually written as, for example, 

“three or more indications within 
250 milliseconds.” As this solution 
also may lead to missed detections, 
a better approach is to recognize 
transient characteristics by means 
of the first solution, improved test 
science. 

False alarms. False alarms are usual- 
ly associated with built-in test, although 
they may occur in any type of diagnos- 
tic testing. As defined by military stan- 
dards, a false alarm is an indication of 
failure in a system where no failure 
 exist^.^ 

False alarms result from imperfect 
testing. The better we understand a pro- 
cess or technology, the more accurate 
the testing becomes. False alarms gen- 
erally become a problem when system 
complexity becomes great or the design 
pushes the state of the art. Because we 
cannot actually measure false alarms in 
the field,6s7 specifications should be 
based on cannot duplicate (CND) events 
instead of false alarms. We will address 
this issue in detail later in this series. 

The following are four viable soh- 
tions to false-alarm problems: 

W Crosscorrelating test information. 
We can correlate an anomalous in- 
dication with other testing to either 
confirm or deny the original infor- 
mation. The information flow mod- 
el can analyze this technique to 
assist in planning for false-alarm 
prosecution. 

False-alarm tolerance. False-alarm 
tolerance (FAT) is a measure of our abil- 
ity to perform test-to-test crosscheck- 
ing. The test-to-test matrix in Figure 2a 
is a complete map of the higher order 
interrelationships between the tests. 
Recall that this map is generated in clo- 
sure. FAT is the average percentage of 
tests in the test set that we can use as 
verifiers. For example, we can verify an 
anomalous outcome of tlC3, using t14, t15, 

tI6, and t17 (the values in ST,,s). False- 
alarm tolerance then is given by 

W Improving test science. We can avoid 
false alarms by sampling more of- 
ten, modeling in greater detail, and 
accounting for a greater number of 
variables. In the case of built-in test, 
these steps create an increased 
software requirement and may re- 

1; D;, = 1, i # J 

0; otherwise 

There is no ideal value for FAT, but a 
fully tested serial system will have aval- 
ue of 0.5000. For the case study, FAT = 

FAT typically decreases as systems 
become larger and excess tests are re- 
moved. We have found that real sys- 
tems with FAT values below 10% should 
be carefully analyzed. One way to main- 
tain a high false-alarm tolerance is to re- 
tain redundant and excess tests. Of 
course, merely having these tests avail- 
able is not sufficient; they must be used 
in the diagnostic strategy, which means 
that additional testing will be specified. 
We will address this point in a future ar- 
ticle in this series. 

183/380 = 0.4816. 

Multiple failure measures 
Multiple failure is both a testability 

and a diagnosis problem. As we will dis- 
cuss in future articles on diagnosis, the 
basic problem formulation is amenable 
to both single- and multiple-failure diag- 
nostic paradigms. However, there are 
two cases in which we must be careful 
to provide testability in a multiple- 
failure situation because diagnosis can- 
not solve the corresponding problems. 
The first case is hidden failures, the 
masking of symptoms that occurs in 
most systems. The second is false fail- 
ures, situations in which symptoms lead 
to wrong conclusions. 

Hidden failures. The failure of one el- 
ement may prevent the test set from de- 
termining that a multiple failure even 
exists. For example, if cll in Figure 2 
were to fail, the failure would be detect- 

is the failure signature of cll (SF,,,) dis- 
cussed earlier in this article. In addition, 

ed bytlo, t1l7t12, t13, t14,t1S7 t16, and t17. This 
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Table 8. Hidden failures in the case study. 

Potential Hidden Failures in a Multiple-Failure Situation Element 

c 21 

inu1 
inu 2 

NoFault 

b i a  cn cis inuaj 7& cm 
m c m  

none 
i s  ci7 ami  b lox cw 

is no symptom to separate this multiple 
failure from either of the single failures. 
Even this situation is not generally a 
problem. Repair of cI1 and subsequent 
testing will isolate c19. This is called peel- 
ing and is one of the rationales used in 
developing singlefailure isolation tech- 
niques. Peeling works well except where 
the hidden failure is the cause (some 
times referred to as a root cause) of the 
isolated failure. Then, the repair of c1 is 
ineffective because the failure in cI9 will 
again cause cll to fail, and subsequent 
diagnosis will again identify cI1. This sit- 
uation occurs whether we use single or 
multiple-failure diagnostic approaches. 

Table 8 lists all the hidden failures for 
each conclusion in the case study. Anal- 
ysis of this list will determine if root 
cause relationships exist. Through 
improved testability or  maintenance- 
manual directions to repair the combi- 
nation of components (that is, repair 
both cI1 and cl9), we can diagnose any 
failure in the second column that is a 
root cause of a failure in the correspond- 
ing row of the first column. If we do  not 
improve testability, diagnosis will fail to 
identify the complete problem. We ob- 
tain a measure of the size of the analy- 
sis set by computing the average 
percentage of failures that may be hid- 
den by any conclusion reached (HF): 

HF - ( = I  1=1 . 

{IUFI - 2)' ' 

0 1) 
1; 4 ,  t; E UF(i # j ) ,  

0; otherwise 
@,, = SF; cSF, I 

Here @[, is the actual existence of a 
hidden-failure relationship. Note that 
we count only unique elements in F. The 
2 in the denominator accounts for the 

if cI9 were to fail, it would be detected by 
114, t l 5 ,  tI6,  and f17. A joint failure of cI1 and 
cI9 would generally exhibit all the s y m p  

toms of each failure, which are just the 
symptoms of cI1 (that is, all the s y m p  
toms of cI9 are contained in c1 There 

fact that two elements have no hidden 
failures (No Fault and at least one other 
element). 
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For the case study, HF = 94/142 = 

0.4796. 
On average, about 48% of the reach- 

able conclusions are hidden from a giv- 
en failure. We can modify HF to exclude 
inputs; inputs generally hide a large 
number of other failures and are not 
subject to  root cause: 

where Qv is as defined in Equation 31 
and n is the number of inputs that do not 
belong to any ambiguity group of a size 
greater than 1 .  

For the case study, IMHF = 68/[(16 - 2 
- 2)*] = 0.4722. 

False failures. The second class of 
multiple failures that will render ineffec- 
tive both single- and multiple-conclu- 

sion diagnosis is the false failure. A false- 
failure indication occurs when the com- 
bined symptoms of two or more failures 
are identical to the symptoms present- 
ed by a single failure that is not a mem- 
ber of the failure set. We compute false 
failure by examining the union of failure 
signatures for a conclusion’s hidden fail- 
ures to  see if there is a match. Figure 6 
illustrates the process for pairs of fail- 
ures. We repeat this process for three 
failures, four failures, and so on. The 
only conclusion in the case study that 
has a potential false-failure problem is 
c6. The associated failure pairs are (c1, 
c5) and (cz, cs). Mathematically, the false- 
failure condition exists if the following 
equality holds: 

a measure that provides the extent to  
which false failures may be a problem: 

1; iff p i s  true 04) FF - . 

Here FF is the fraction of elements po- 
tentially falsely identified, and p is as 
defined in Equation 33. Two elements 
are removed for the No Fault and mini- 
mum-failure signature (other than No 
Fault) in the denominator. 

The ideal value of FF would be 0.0000. 
For the case study, FF = 1/24 = 0.0417. 
We can modify this measure to  exclude 
inputs: 

Id 

where p is a logical variable and r de- 
notes the null vector. We can compute 

where U ,  is as defined in Equation 34. 
The ideal value of IMFF would be 

- ,  
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0.0000. For the case study, IMFF = 1/20 = 

0.0500. 

T h e  mathematical formulation of diag- 
nostic information flow allows us to  
closely examine and assess the testabil- 
ity of complex systems. The analysis 
demonstrated in this article is an initial 
analysis because it only demonstrates 
where the deficiencies in the system are 
located. 

In developing any complex system, 
we can minimize maintenance costs if 
we identify testability problems and cor- 
rect them early in system design. After 
applying the testability assessment 
techniques, our next step is to  interpret 
the results and recommend design 
changes to improve system testability. 
Such improvements might include elim- 
inating or reorganizing existing tests, 
developing new tests (and maybe test 
points), repackaging components to im- 
prove operational isolation, locating 
feedback loops, implementing cross- 
checks for false alarms, and improving 
the observability of some failures to  
minimize the effects of root causes or 
false failures. 

We’ve explained how to identify the 
problem areas in a system design. We 
must point out, however, that the mea- 
sures defined are indicators of testabili- 
ty and have no predetermined 
thresholds for use in the analysis. Ana- 
lysts must use their own engineering 
judgment in the context of the problem 
being studied to determine what the in- 
dicators mean. We will demonstrate 
how to apply the testability analysis to  
redesigning the case study system in 
the next article in this series. @B 
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