Applying Testability Analysis
for Integrated Diagnostics

AN IMPORTANT STEP in the inte-
grated diagnostic process is devel-
oping requirements and gathering
resources to test a system. In the
third article in this series,! we de-
scribed a number of measures that
evaluate system testability at a spe-
cific time during system design. In
this article, we demonstrate how to
use these measures to improve test-
ability as part of an iterative design
process. Our objective is to mini-
mize ambiguity in replaceable unit
groups (defined as a group of fault
isolation conclusions treated as one
isolatable element), while also min-
imizing the amount of testing and
the number of tests.

We assume that the system is de-
signed to perform a specific job and
that the next iteration in the design
process will improve system test-

i

ability from a maintenance perspective. | cle.? Figure 1 is a dependency diagram |

Any changes made to improve testabili-
ty should not alter system performance
during normal operational modes.
Throughout our discussion, we refer
to the case study of an antitank missile
launcher introduced in our second arti-
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In part 4 of their series, the authors
discuss a key element in the
integrated diagnosfic process:
applying the testability measures
described in part 3 to improve
system design and thus improve
system festability. The authors also
explore alternative approaches fo
improving system testability and
describe additional applications of
testability analysis.

thought to an integral part of the de-

sign process. Designers now empha-
| size field maintainability early in the
life cycle, to maximize downstream
ability to test the system and diag-
nose faults, and to minimize the like-
lihood of retest OK (RTOK) and
cannot duplicate (CND) events.>*
Recall that a RTOK event occurs
when a unit thought to be not func-
tioning nominally at one level of
| maintenance is replaced and then
‘ found to be functioning nominally
| atthenextlevel. ACND event occurs
when a fault indication is not repeat-
able at the same level of mainte-
nance. We perform diagnostic
testing for two basic reasons: to veri-
fy that the system is operational and
behaves nominally, and to localize a
fault to a degree consistent with the

—

for the case study. Tables 1 and 2 list the
tests and conclusions in the case study.

Motivation for improving testability

In recent years, the idea of system test-
ability has changed from a mere after-

0740-7475/92/0900-0065$03.00 © 1992 |EEE

level of repair.
In addition to improving testability,
we want to provide a method of

| performing testability analysis and diag-
" nosis in an integrated diagnostic frame-

work.>® This framework requires a
structured process in which diagnostic
data are available at all maintenance
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Legend

[] =Conclusion

O =Test

=Testable input =Replaceable unit group

> =System input or output

21 conclusions + 4 inputs + No fault = 26 18

2 8 replaceable unit groups + 4 inputs + No fault = 13 8

Figure 1. Dependency diagram of antitank missile launcher case study.

Table 1. Tests in the case study.

-
Available tests Label*
Fire command signal inty
Reticle position tracker inty
One-two fidelity signal h
Readiness output signal oo
Boundary parameter signal hoo
Summary safe/arm signal by
Combined fidelity signal ts
Error signal to |
Course correction signal t7
Command corrector signal 5
Command response signal |
Track signal ho
Power reody signal 1
Power ready/enable signal ta
Bounded error signal t3
Launcher enable signal ta
Launch track generator signal  f5
Launch track evaluation signal  t4
Launcher ready signal t7
Stabilized loop signal output hs
* int corresponds fo a festable input, in-

cluding both the test and conclusion
element, and't corresponds fo a fest.
66

levels and complete system diagnosis is

- accomplished in a centralized, hierar-

chical manner. In the second article of
this series, we proposed a technology-

| independent, hierarchical mathemati-
i cal model of such a framework.

i Review of the model

We are interested in measuring the
flow of diagnostic information through a
system. This measuring process is prima-

5 . rily inference-based; that is, for each test
in the model, we ask what we learn from

a pass or a fail test outcome. In charac-
terizing the model, we described sever-
al test variants that have the effect of

! modifying the inference process. For

example, the asymmetric test allows in-

| ference to be suppressed for either a
* pass or a fail outcome.

The two primitive elements in the in-
formation flow model are the test and
the fault isolation conclusion. Because
we are interested in the logic of the diag-
nostic system, tests are not required to
take on any particular form; rather, tests
are simply information carriers. Thus,
we allow a test to be a stimulus-response

pair, a BIT (built-in test) indication, or a ‘

simple observation (such as a scorched
area around a pin). Again, because of
the logical basis, fault isolation conclu-
sions correspond to the set of possible
conclusions that we can draw using the
current set of tests. Therefore, in a single
model, conclusions may be failures in
functionality, the identification of a box,
an electronic component, or a compo-
nent failure mode. Note that our defini-
tion does not limit a conclusion to an
implemented function. Nor does it limit
a conclusion to a failure mode. The
model leaves the mapping between the
conclusion and a system element at the
disposal of the modeler.

One advantage of the information
flow model is that we can readily repre-
sent it in a form that facilitates analysis—
in particular, an adjacency matrix
corresponding to a graph of the model’s
topology. Figure 2 (on page 68) is an ad-
jacency matrix representation of the
case study. Each occupied matrix cell
represents a relationship between two
elements in the model, and the value in
the cell indicates how that relationship
was developed. When we represent the
model in matrix form, we can manipu-
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late the matrix to determine testability
characteristics and to develop efficient
fault isolation strategies.

Review of the analyses

The information flow model allows us
to identify several characteristics of sys-
tem testability, such as conclusion ambi-
guity and test redundancy. Conclusion
ambiguity occurs when the current set
of tests cannot distinguish among two or
more conclusions. This situation is dis-
tinct from the desire to draw two or
more conclusions, which is called the
multiple-conclusion problem (to be ad-
dressed in a future article). Test redun-
dancy occurs when two or more tests
provide identical logical information
about the system.

A redundant test is a form of excess
test. A test is considered excess when
some combination of other tests provides
the same information it does. We are in-
terested in identifying excess tests be-
cause they allow us to make engineering
trade-offs to obtain the best combination
of tests for the stated testing objectives.

Tools and methods for analyzing sys-
tem testability often incorporate the as-
sumption that only one failure will occur
at any time. This assumption permits us
to greatly reduce the search space.” Nev-
ertheless, system designers need to
know the problems that may result from
the presence of multiple failures. The
information flow model enables the an-
alyst to predict two difficult multiple-
failure problems: the root cause failure
and the false failure. Any fault may hide
an additional failure from detection. A
root cause failure occurs when one of
these hidden failures is the cause of an
isolated fault. Repair of the isolated fault
alone is not effective because the root
cause will make the repaired unit fail
again. In addition, it is possible for two
or more faults to produce symptoms
identical to some other fault in the sys-
tem. In that case, repair of the isolated
fault is ineffective because the fault was
not truly a fault in the first place.

SEPTEMBER 1992

Table 2. Conclusions in the case study.

Fault isolation conclusion

Label*

Rate** Replaceable unit*
Fire command signal inh 10 0 }
Reticle position tracker int, 10 0 ]
Command override inu 10 0 1
Override enable inuy 10 0 ‘
Sight activation function o 5 ruy '
Safe/arm determination I 5 rup
Launcher ready evaluator c 100 ru
Boundary check 4 100 rus
Parameter fidelity cs 100 rus |
Parameter fidelity backup % 100 rus ‘
Error evaluator ¢ 5 ruy
Error corrector g 5 ruy !
Command signal evaluator Co 5 rus
Response generator o 5 rus
Target fracker o 5 rus
Command to track comparator 12 5 rug |
Guidance output a3 5 rug ‘
Launcher power supply (battery) 4 100 rug J
Launcher power enable s 100 rug !
Launcher power signal conditioner e 5 ru; 1
Cross-check override ay 5 ruy
Error signal boundary check Cig 5 rug
Launcher full ready function e 5 rug i
Launch command function 0 100 rug |
Fire ready activation function oy 100 ru;
No fault found No Fault 9,095 0

* int corresponds to a testable input, including both the test and conclusion element; inu

corresponds to an unlestable input; and ¢ corresponds to a conclusion.
** Units are not significant as long as they are consistent.
t System inputs are not listed as members of replaceable unit groups, although they could be.

S—

Our analyses permit the engineer to
assess both a system’s inherent testability
(that is, the maximally achievable test-
ability) and its achieved testability (test-
ability resulting from the defined set of
tests). The information flow model fol-
lows the flow of diagnostic information

through the system and represents the

logical relationships between tests and
conclusions used in diagnosis. The mod-
el's composition is intimately tied to infor-
mation provided by tests. Thus, modeling
system connectivity provides information

on inherent testability; modeling informa-
tion provided by actual tests yields an
analysis of achieved testability.

Interpreting the testability measures
In our last article we discussed mea-
sures that evaluate the testability of a sys-
temn. These measures are derived from
the information flow model and there-
fore are actually measures of the model.
Specifically, we developed measures
associated with ambiguity, feedback,
the test set, and muiltiple failures. We in-
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tended the measures to indicate system
testability, not to set firm thresholds or
standards by which to determine if a sys-
tem has good or bad testability. Rather,
one must interpret the measures in the
context of a specific system and its set of
requirements.

In the earlier article we presented al-
gorithms for computing the testability

* measures, and we gave ideal values and

values for the case study. Now we will
review three of the measures—opera-
tional isolation, test redundancy, and
excess tests—so that we can make deci-
sions about the testability of the case
study and formulate recommendations

i forimproving system testability.

Operational Isolation. Operational
isolation (Ol[n]) indicates potential
RTOK problems due to high ambiguity
in a fielded system. Operational isola-
tion is the percentage of time the test set
will fault-isolate to n or fewer replace-
able unit groups.

We compute operational-isolation
variations based on information about
the system and on the subset of conclu-

© sions to be considered. We will consid-

er four such variations. The first, Ol,,
assumes a uniform failure rate for all the
individual components that make up

© the replaceable unit groups and consid-

ers all fault isolation conclusions. The
second, Ol,,, assumes individual failure
rates for all the components and also
considers all fault isolation conclusions.
0Ol,, corresponds to an expected percent-
age of the time that fault isolation will be
at n or fewer replaceable unit groups.
The third and fourth variations are both
weighted, but one (O};,) ignores system
inputs, and the other (Ol ignores sys-

' tem inputs in combination with No
" Fault. These two variations give us the

options of considering the system inde-
pendent of incoming information and
when a failure has been detected.
Figure 3 presents operational isola-
tion values for the case study. We can

. immediately see that the system has a
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problem with ambiguity. Because none
of the operational isolation measures in-
dicate the ability to fault-isolate to single
replaceable unit groups 100% of the
time, the system clearly exhibits ambigu-
ity between at least two replaceable unit
groups. In fact, for both the weighted
and the unweighted Ols, ambiguity ex-

ists between three replaceable unit

groups. Note, however, that excluding
inputs reduces ambiguity to two re-
placeable unit groups at most. There-
fore, a major contributor to ambiguity is
our inability to directly observe the sys-
tem inputs.

When we compare Ol;, and Ol for
one replaceable unit group, we see that
asecond contributor to ambiguity is our
inability to detect some failure. Further
analysis of the system reveals that we
cannot detect the failure of ¢,3 with the
current set of tests. This, in fact, is the
only nondetection. Because cy3 is not
detected, it will be ambiguous with No
Fault. Furthermore, the extreme differ-
ence between the two values is a result
of the fact that the failure rate of No Fault
(that is, the probability that No Fault will
be concluded) is extremely high—
0.9095 (Table 2). Thus, we have deter-
mined that additional testability is
necessary to detect a previously unde-
tectable failure.

We used this analysis to evaluate the .

testability of the air pressurization system
foran 11-MW fuel cell power plant8 The
system-level analysis determined that
only 33% of the system could be unique-
ly isolated during system start-up and 60%
during its operational mode. We devel-
oped additional tests that increased oper-
ational isolation to 75% during start-up
and 75% during operation.

Excesstest measures. Not only
may a system have ambiguity problems
(and therefore operational-isolation
problems), but inappropriately placed
tests may lead to overspecification of
testability in particular areas of the sys-
tem. The test redundancy (TR) and
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Figure 3. Operational isolation (Ol} in the case study.

excesstest (XM) measures indicate
overspecification. We can combine
these measures with other measures to
determine other types of problems in
the systemn.

The test leverage (TL) measure pro-
vides a general indication of how well
testability is specified for the system. For

Indeed, the value of test feedback dom-
inance (TFD) for the case study is 0.25;
that is, 25% of the information sources
are tied up in feedback. Table 3 lists the

; ambiguity groups in the case study, in-

the case study, we found that TL = '

0.7692, which lies between the bounds

recommended by the theoretical mini- |

mum test leverage (0.1808) and the the-
oretical maximum test leverage
(0.9615). The test leverage, however, is
based on no ambiguity.

We determined that for the case

study, TR =0.3; that is, 30% of the tests in
! the model provide completely redun-

dant information with some other test or
tests. One way test redundancy arises is

that the system contains information |

flow feedback. When we examine the

feedback-modified test leverage, we |
find that FMTL = 0.6957, which is less

than TL. Therefore, we know that the sys-
temn also has a problem with feedback.

cluding those involved in feedback. De-
termining a way to break the feedback
loop should reduce the redundancy

Table 3. Ambiguity groups in the case
studly.

Group Members

] <, ¢ ‘
2* C7, €8, C9, €10 I
3 1, €12 1
4 13, No Fault \
5 <16, €17, C1g, inUz 1
6 Crg, inuy |

|

* Part of a topological feedback loop.
** Any ambiguity with No Fault is a
nondetection.



Table 4. Redundant- and excess-test
groups.

Group Tests

* t, b7, g, o, hg
ha b7
hs he
t5 ([excess)
int; (excess)

b wnNn =~

*Topological feedback
| -

provided by the tests in the loop. (Alter-
natively, we could design the feedback
loop so that it is located on a single re-
placeable unit group, eliminating all but
one test.)

In addition to determining TR, we
found that the excess-test measure for
conclusions including inputs (XMIC) is
0.556, and the excesstest measure for
replaceable unit groups including in-
puts (XMIR) is 0.9. These tests provide
the same information as some combina-
tion of other tests and are candidates for
elimination. An excess-test analysis of
the system reveals that t5 and int; may be

considered excess. Table 4 lists all the
redundant and excess tests.

Removing all redundant and excess
tests may have detrimental effects on
overall system testability, depending on
system requirements. Potential effects
include less efficient diagnostic proce-
dures, a decrease in our ability to use
tests for crosschecking and verifying

previous results (thus an increased po- |
tential for false alarms), and more prob- |

lems related to multiple failures. In work

for the US Army, we analyzed an -

electronic-warfare track vehicle and de-
termined that only 650 of 2,000 designed
tests were necessary for unambiguous
fault isolation.® On the other hand, in a
separate analysis of a US Air Force elec-
tronic countermeasure pod, we found
severe susceptibility to false alarms due
to the streamlining of available tests. !’

Specifying additional tests

Now we will begin to use the testabil-
ity analysis results to improve the test- |
ability of the system. We will focus on
whether additional tests will reduce am-
biguity, where these tests should be lo-
cated, and what types of tests they

should be. We will assume that we are
conducting testing at the replaceable
unit group level. Therefore, the results of
the operational-isolation analysis and
the ambiguity group analysis will be par-
ticularly important.

Tests on replaceable unit group
outputs. Asshown in Figure 1, we have
defined replaceable unit groups for the
case study, and we can see that some of
the defined tests are placed within the
group boundaries and some tests are
not. Our first step will be to ensure that
we test each output in the system. There-
fore, we will add tests to all of the re-
placeable unit group outputs and label
the tests ru,,_,,, where n is the index for
the replaceable unit and m is the index
for the output. Figure 4 shows the depen-
dency diagram with the additional tests,

- and Table 5 lists the dependencies and
. feeds for each new test. We leave the

development of the dependency matrix
as an exercise for the reader.

When we analyze testability on this
new model, we see that the isolation lev-
el (IL) has increased from 0.62 to 0.77.
Clearly, we still have ambiguity between

Legend:

[ =Cenclusion

O =Test

O =Testable input IE} =Replaceable unit group

O =System input or output

21 sions + 4 inputs + No fault = 26

2 8

ble unit groups + 4 inputs + No fault = 13 8

Figure 4. Case study dependency diagram with additional tests.
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components in the model. What we
want to know, however, is whether any
ambiguity exists between replaceable
unit groups. The unweighted operation-
al isolation indicates that we will fault-
isolate to one replaceable unit group
65% of the time. In the weighted case,
unique fault isolation will occur 99% of
the time. Thus, we have substantially
improved unique isolation capability,
but ambiguity still exists.

If we were to compute the ambiguity
table, we would find that ambiguity ex-
ists between ru; and inuy, between rug
and inu;, and between ruy and rus. A
closer examination reveals that the first
two of these ambiguities exist because
the inputs are untestable. The remaining
ambiguity exists because of the feed-
back loop, the members of which are
listed in Tables 3 (conclusions) and 4.

The addition of tests to replaceable
unit group outputs resulted in other in-
teresting changes in the model. Both
false failure (FF) and nondetection
(ND) dropped to O—the ideal value for
both measures. False-alarm tolerance
(FAT) is still very good (0.46), but the
excess-test measure (XM) has increased
from 0.35 to 0.62. We expected that be-
cause we added several tests without re-
moving any existing tests.

Asymmetric and conditional tests.
Despite the improvements we have
made to the system, two problems still
exist. A feedback loop is causing ambi-
guity between two replaceable unit
groups, and we cannot distinguish the
untestable inputs from two replaceable
unit groups. Two test paradigms may be
appropniate to solve these problems: the
asymmetric test and the conditional
test.>!! Because observations at inputs
are frequently asymmetric, let us first ex-
amine the asymmetric test.

There are three types of asymmetric
tests: fully asymmetric, positive infer-
ence, and negative inference.!! When a
positive inference test passes, we can
infer that all dependencies of that test
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Table 5. Replaceable unit group output test relationships.

Test Dependencies Feeds i
i i inh, C3 fz
i v inh, (o] f]
\ -1 h, en t

ruz- f3, ¢4 g1, h, b

ruz-p l’3, Cs f5

TUg fé, g f7

sy fo, e ho ‘
i rus fy ho, hs |
‘ g1 rus-1, Q13 None
‘ rug-» hi, s ha
| vz k4, h2, €16, €17, inUy t3

rug-y f]5 None

rug-2 ha, s, 7, oo, inuy he

rug_3 h7 None

will also pass. When the test fails, we can

infer no additional information. When a :

negative inference test fails, we can infer -
that all tests on which the negative infer- .

ence test does not depend will either
pass or be unneeded, that all feeds will
fail, and that all components on which
the test does not depend will be good.

When the test passes, we can infer no

additional information.

When we add asymmetric tests to the
model, ambiguity should decrease, but
we may find that the ambiguities still ex-
ist, depending on how we use the tests.
We call this situation a “sometimes ambi-
guity.” Forexample, let us assume that for
the simple two-component and two-test

system shown in Figure 5, ¢; is a positive !
inference test and ¢, is a symmetric test. |

Either we can faultisolate ¢y uniquely
(that is, t; passes and t, fails), or an ambi-
guity exists between c¢; and ¢, (both £
and & fail). That is, a failure of ¢ is not
enough information for us to infer any-
thing about ¢ or ¢,.

Adding asymmetric tests may make
the ambiguity analysis difficult to per-
form because we must consider all com-
binations of asymmetries. For the same
reason, operational-isolation computa-
tion becomes more complex. To simpli-

fy the computation, we can consider
only the upper and lower bounds on
operational isolation. Specifically, we
can compute the upper bound simply
as operational isolation, assuming the
tests are all symmetric. We compute the
lower bound assuming that all the asym-
metric tests are eliminated from the
model.

Suppose we add two tests to the mod-
el: tasym; and tasym,. These tests are
both negative inference tests, and they
depend on inuy and inuy, respectively.
Because the two tests are asymmetric,
we expect the lower bound on opera-
tional isolation to be unchanged. The
upper bound, however, does change.
First, the ILbecomes 0.84 (the remaining
ambiguity is due to the feedback loop).
The unweighted operational isolation
indicates that we will fault-isolate to one
replaceable unit 85% of the time. In the
weighted case, unique fault isolation

ty t
[ —O—» & +—Q—

s

Figure 5. Simple serial system with an
asymmetric test {t;).
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Table 6. Test mode dependencies of con-
ditional tests in feedback.

| Conditional fest

f] g-test fg-tesf
fo-test c1o, fg-test
fo-test Co, br-test
tr-test cg, ts-test
té—fest C7, f5
rugy-test cg, fg-test
rus_o-test fo-test

will occur 99.8% of the time. Thus, we
have again substantially improved
unique isolation capability.

Now the only problem we have left
with the system is the feedback loop. As
a rule of thumb, we recommend taking
care in “breaking” feedback loops.
Feedback exists in a system to benefit
performance. Therefore, we must devel-
op breaks in feedback loops that do not
adversely affect performance. One way
to do this is to insert switches to break
the loop while the system is in a test
mode. But sometimes we can do noth-
ing to break the loop. For example, a sys-
tem may become unstable when the
feedback loop is broken. We should
then consider such solutions as repack-
aging. For now, we will assume that we
are able to insert a switch that is avail-

Table 7. Redundant-test groups.

‘r
|
|

Group Tests

1 b, ru1

2 rus-o-default, rus_,-test,
rug -defoult,
to-default, fo-test,
tig-default, fg-test,
fé-defouh, fy-defouh,
fg-defouh

b-test, ruy_;-test

ha, rug—

hs, he, rug-1, rug—;

ha h7, rug3

IR
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Dependencies

- able during test mode. We will associate

a conditional test with this switch.
A conditional test is a test whose de-

pendencies are a function of some ex- |

ternal condition such as user inputs,
scale settings, or switches. This defini-
tion is very broad and can lead to com-
binatorial explosion when we analyze

system testability. (Conditional depen-
: test indeed measures what we believe it

| dency in sequential fault isolation is not

a problem, because test selection is al-
ways conditioned on context, anyway.)

One of the best uses for the condition-
al test is to break feedback loops. For
example, suppose we define test ¢ in
the case study to be a conditional test.
Currently, t,3 depends on &, which de-
pends on tg, which depends on t;, which
depends on &, which depends on ¢; and

inal number of information sources. In-
deed, the TL is now 1.65, indicating a
high level of overtesting.

Eliminating excess tests

We have improved the testability of
the missile launcher by adding 23 more
tests. Obviously, with the addition of any
test to the model, we must verify that the

measures. In any event, we will assume
at this point that all the tests can be con-

. structed and that they are correctly rep-

resented in the model. Now the
question is whether we need all the tests

" we specified.

With a test leverage of 1.65, it seems
that we do not need to develop all these

. tests. We will begin by eliminating the

t1s- We have cycled back to f1g in the de- !

pendency chain. Let this cycle corre-
spond to the default condition, which is
the normal operational mode for the sys-
tem. Thus, we can refer to g as g
default. We define conditions for tg, t7, g,
and ty: tedefault, t-default, fe-default,
and tydefault, respectively, all with the
original dependencies.

Now we will define a new condition,
tgtest, which also depends on the tests in
the feedback loop. However, to prevent
completing the cycle, we define addition-
al conditions for the original tests: #test,
Irtest, tytest, and fytest, respectively. Ta-
ble 6 lists the test mode dependencies for
these conditional tests. Note that we have
also made two of the replaceable unit
group output tests conditional tests to en-
sure that they are available in test mode
as well as default mode. Clearly, these
tests will break the feedback loop be-
cause they depend on each member of
the feedback loop without depending on
themselves.

These new tests provide a means for
uniquely isolating any replaceable unit

in the system. All variations of operation-

al isolation are 1. Unfortunately, we have
added 14 replaceable unit group tests,
two asymmetric tests, and seven condi-
tional tests, more than doubling the orig-

redundant tests. Table 7 lists the system’s
redundanttest groups. It is interesting
that the tests in the now broken feed-
back loop continue to provide a tremen-
dous amount of redundant information.
That, of course, is because a mode in
which the feedback loop is intact still
exists.

In deleting the redundant tests, we
must ask what criteria we plan to use for
fault isolation and how the tests affect
these criteria. For example, suppose ¢,
takes considerably less time to perform
than ru_;, but ru,_; requires a lower skill
level. The two tests provide identical in-
formation, so we will decide which to
discard on the basis of the resources we
have. If our technicians are relatively
low in skill, we may want to optimize on
the basis of skill level. We could then
eliminate #. On the other hand, if time is
the primary consideration, we should
keep t, and eliminate ru;_;. But the main-
tenance shop may have varying condi-
tions, making it reasonable to keep both
tests.

We use the excess-est analysis to de-
termine which excess tests we can elim-
inate. This analysis requires us to specify

~ optimization criteria, so the decision to

delete excess tests is also sensitive to
model parameters. We will assume we
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are going to optimize for test times and
failure frequencies. We will attempt to
preserve group tests over individual tests
and preserve old tests over newly creat-
ed orto-becreated tests. Table 8 lists the
tests recommended for removal.

When we eliminate a testable input, it
becomes an untestable input. We can
eliminate all the tests listed in Table 8.
Although eliminating these tests has a
serious negative effect on component-
level testability (for example, [L dropsto
62%), IL remains 100% for isolation to a
single replaceable unit. In addition,
both TR and XM drop to 0. Figure 6
shows the final dependency diagram for
the case study, and Figure 7 (on p. 74)
shows the resulting matrices, from
which we derive the testability statistics.

Other issues

Although we have improved single-
failure testability and reduced the num-
ber of tests, we may wish to retain some
of the excess tests for other reasons. We
removed redundant and excess tests
without considering the effects of these
actions on some subtler testability issues.

False-alarm tolerance. Let us exam-

ine the impact of our actions on one of
these issues—our ability to detect false
alarms. One way to detect a false alarm
is to use tests with inferred outcomes to
cross-check the evaluated tests. In our
March article, we defined false-alarm
tolerance as a measure of our ability to
perform test-to-test cross-checking. Obvi-
ously, as we remove excess tests, we
should expect FAT to decrease. That has
indeed happened. As we can see from

Figure 8a, FAT decreased each time we .

modified the model. In fact, FAT for the
last model is half that for the original
model. In general, the linear relation-
ship may not hold, but the message is
clear: Tests should be removed sparing-
ly if the system has potential false-alarm
problems. In this case, FAT =0.24, which
is still relatively good.

Multiple failures. Another issue we
should consider when removing excess
tests is our ability to fault-isolate in the
presence of multiple failures. As tests are
removed, the number of hidden failures
may increase because we could have
used the eliminated tests to make the
failure signature (discussed in the March
articie) distinet from other failures. Be-

Table 8. Excess tests recommended for
elimination.

f te-default rug-3

f3 fs-test ruz-

f5 '7-defau|t ruz.p

to rus -test rugy-default |
i rug-default  rug i
f3 ta-default rug- !
ha fg-test rug_3

hs fo-test rug—;

ty to-default Uy

inh tg-test

rup

tg-default

cause false failures are related to hidden
failures, we can expect false failures also
to increase.

Removing redundant tests has no effect
on either the hidden-ailure measure (HF)
or the false-failure measure (FF) because
redundant tests provide us no additional
capability to identify either single or multi-
ple failures in the system. Thus, there is no
change in HF or FF between the model
with all the additional tests and the model
with the redundant tests removed. It fol-
lows that we could have mathematically
collapsed the redundant tests in the mod-

Legend:

[ =Conclusion =Test

D =Asymmetric tesw O =Testable mputl E:I =Replaceable unit group

> =system input or output

i
|
21 conclusions + 4 inputs + No fault = 26 ! 9

2 i 1

( 8 replaceable unit groups + 4 inputs + No fault = 13 8

Figure 6. Case study dependency diagram after testability analysis.
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al of excess tests. However, HF for the
model with excess tests removed is still
approximately equal to HF for the origi-

nal model. More significantly, FF (Figure j

8c) increased from 0 to 0.13, greater than
FF for the original model.

If we examine the subsignatures of
the fault isolation conclusions, we find
two faults with potential false indica-
tions. Examining the model, we see that
multiple failures of ¢, and c3 will look
like a failure of int,, and multiple failures
of ¢5, 13, and ¢ will look like a failure of
¢4 (or cg, because ¢4 and ¢g are ambigu-
ous). To determine if these potential
false indications are significant, we must
determine the probabilities that the mul-
tiple failures will occur. If the probabili-
ties are high, we must take some action,
either adding tests or restoring some of
the eliminated excess tests. If the proba-
bilities are low (or the multiple failures
occur in the same replaceable unit
group as the single failure), no action
may be necessary.

To examine the probabilities of these
multiple failures, we will consider the
failure rates and ignore the high proba-
bility of No Fault (because we assume
that a fault has occurred). We also as-
sume that the failures are independent,
so the probabilities of the multiple fail-
ures are the products of the individual
probabilities. (This analysis fails com-
pletely if the failures are not indepen-
dent events. Any interdependency
would indicate that we cannot tolerate
the false-failure situation. Interdepen-
dency could come from a root cause sit-
uation, in which one failure actually
causes the other, or from an increased-
stress situation, in which the failure of x
changes the failure rate of y.) Table 9
lists the probabilities for the compo-
nents of interest (derived from the
weights given in our March article).

Because ¢, and ¢y are ambiguous,
we must consider the possibility that ei-
ther fails to contribute to the false indica-
tion of ¢;. The probability of a false
indication of int; is
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P(f=c)) P(f=c3)
= (0.0055)(0.1105) = (0.0006),

which is an order of magnitude less than
the lowest single failure. Therefore, we
will not wonry about the occurrence of
the multiple failure. Making int; testable
again will eliminate the false-indication
problem.

We determine the probability that ¢,
or ¢g will be falsely indicated by a multi-
ple failure in a similar manner:

[P(F=c)+P(f=c2)] P(F=c13)
P(f=cs)

= (0.0055 +0.1105) (0.0055) (0.1105)

= (0.00007).

This probability is two orders of magni-
tude less than the lowest single failure.

Table 9. Probabilities of component
failure.

Component Probability
= 0.0055 ‘
& 0.0055
o 0.1105
Cs 0.1105 |
a3 0.0055 !
n 0.1105

we must consider several issues. For ex-

i ample, the cost of redesign may be pro-
i hibitive. Laser sensors may be an order of

magnitude more expensive than radar-

. based sensors, so we may be willing to

Therefore, we will not worry about the

occurrence of these multiple failures,
either. Our third article explains in detail
how to include multiple failures in the
model itself to avoid the false-failure
situations.

Alternative approaches

Thus far we have focused on tech-
niques for improving system testability
with available test resources. Now we
will discuss two alternative approaches
to improving testability: redesigning the
system and repackaging functional ele-
ments of the system.

Redesign. Previously, we assumed
that the physical design of the system

accept the degraded testability. Further, a
design is often optimized for perfor
mance. If a redesign adversely affects per-
formance, it is probably unacceptable.
Also, the new tests associated with a new
design may cause unanticipated testabil-
ity problems such as higher probability of
false indication or degraded ability to de-
tect false alarms. In fact, the new design
may be prone to false alarm, and the tests

. may be oversensitive, thus compounding

being analyzed was fixed. However, if .

the system is in the early phases of its life
cycle, it may be possible (and even cost-

. effective) to improve the design from a

testability perspective. For example,
suppose the target tracker of the current
system uses a radar-based sensor. If we
are having trouble detecting certain fail-
ure modes associated with the radar
based tracker, we might consider using
a laser tracker instead.

Of course, if we redesign the system,

the problem.

Redesigning a system for testability is
extremely complex; it essentially takes
the design process back to the early stag-
es. We usually can minimize redesign
problems by making testability a princi-
pal input at each step of system design.
But when a complete redesign is im-
practical because testability has not
played a key part in the design process,
we can limit the scope of redesign
through functional repackaging.

Repackaging. Given the design of a
system, the way the functions of the design
are packaged may directly affect the sys-

. tem’s testability. This became evident ear-

lier in this article, before we made any
changes to the testability of the case study
system. Recall that we assigned several
components to different replaceable unit
groups. These groups corresponded to the
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system’s functional packaging. When we
examined operational isolation, we found
that the system exhibited tremendous am-
biguity between the replaceable units.
Two contributors to ambiguity were the
nondetection of ¢;3 and the existence of
two untestable inputs. Obviously, no level
of repackaging will solve these problems,

but repackaging could have corrected |

other ambiguities in the system.
The ambiguity groups for the original

model are listed in Table 3. We can see

that the ambiguity of ¢; and ¢, results in
ambiguity between riz; and ru,. Thisis not
good. Because neither c3 nor ¢, is ambig-
uous with any other components, we
may want to combine ru; and rus,, thus
completely enclosing the ambiguity in
one group (say, 1 g7). We can do exact-
ly the same thing for the members of
Group 2 because they make up the feed-
back loop. However, we find that since
¢y is in the now-combined group (say,
Niygs) and ¢qp IS in rnzg, we may want to re-
package by putting ¢, in rug instead, thus
preventing ambiguity between rugs and
rug. Because ¢ and ¢, are now in the
same replaceable unit group, we no long-
er have an ambiguity problem in Group
3. However, ¢j3 in Group 4 is still unde-
tectable. The only way to solve this prob-
lem is by adding at least one test.

We can treat Groups 5 and 6 together.
First, we can consider the inputs as part
of the replaceable unit groups with
which they are ambiguous rather than
as individual components. This would
solve the ambiguity problem for Group
6. However, it may be more appropriate
to treat Groups 5 and 6 separately, in
which case we need to define addition-
al tests. In addition, Group 5 creates am-
biguity between ru; and rug. A solution
would be to repackage cgin ru;.

To summarize, we could repackage
the case study as follows:

m Combine ru; and ru; into rugs.
m Combine ruy and rus into rugs.
m Repackage ¢, as a member of ru;.
m Repackage c g as a member of rnu;.
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m Add tests to directly observe inu;, -

inuy, and ¢y3.

After making these changes to the orig-
inal model, we find that TR decreases
from 0.3 to 0.26, XM decreases from 0.35
to 0.3, and all the operational-isolation
measures become 1. As a result, we need
not worry about adding a large number
of tests to the system, and we can concen-
trate on other issues, such as false alarms
and multiple failures.

Extending testability analysis

We have been examining issues di-
rectly related to system testability to
determine our ability to perform fault
isolation. Now let us examine several
additional applications of these testabil-
ity analysis techniques.

Operational-readiness inspection.
Much of the testing performed by the
military services takes place during
operational-readiness inspections. The
purpose of an ORlis to ascertain if a weap-
on system is healthy and functioning and,
when a material problem exists (such asa
poor radar video output), to localize its

source sufficiently to take action. The over-

all goal is to minimize test resources and
provide maximum coverage.

The tests performed by ORI teams cor-
respond directly to tests in the informa-
tion flow model. Each test, as an
information source, has a set of depen-
dencies. If the test passes, the set of de-
pendencies or elements is verified. If the
test fails, some member of the dependen-
cy list is suspect. We can derive the cor-
responding model by using the details of
the tests available and the weapon sys-
tem schematics in the same manner as a
normal fault isolation analysis. Using the
outcomes of asymmetric, conditional,
and linked tests is also appropriate.

A key difference between modeling
for ORI testing and modeling for normal
testability is in the setup of test elements.
Constraints in the operational environ-
ment may cause the analyst to place a

In addition fo
diagnostic or
readiness festing, the
information flow
model can serve as a
logic model for
knowledge base
verification.

number of tests into a forced group. This
means that all tests will be evaluated (that
is, inference is suspended.) Such con-
straints may also cause the analyst to se-
quence groups in a special order by
various methods (weighting or direct se-
quencing). The analyst may also antici-
pate multiple failures by checking the
staffing levels for each system. For exam-
ple, if the video technician is new, the
maintenance of the system may be sus-
pect, and the analyst may want to include
multiple failures in the video hardware
areas for the analysis. Despite these re-
strictions, ORI analysis can provide signif-
icant improvements in testability. 2

Knowledge base verification. In
addition to its use for diagnostic or readi-
ness testing, the information flow model
can be used as a logic model for knowl-
edge base verification.'>* Specifically,
we can use a model of the knowledge
base to obtain indications of knowledge
base consistency, completeness, and
correctness. If we assume that our
knowledge base is a rule base, we can
map rule antecedents to tests and we
can map rule consequents to model
conclusions. We can then easily deter-
mine dependency relationships by ex-
amining the chains of inference through
the knowledge base.

Consistency analysis consists of iden-
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tifying problems of overspecification |
and inappropriate specification of the

rules. Results include identification of
redundant rules, subsumed rules, redun-
dant if conditions, and logical circulari-

ty. The information flow model actually |
absorbs redundant and subsumed rules, |
and we can use the model to derive a -

reduced set of rules. We identify redun-
dant ifconditions by locating redundant
and excess predicates (tests). We identi-
fy logical circularity directly from the
feedback analysis.

Completeness analysis is similar in

principle to consistency analysis in that -

we are attempting to determine whether

the specified set of rules is sufficient for ;

us to draw the required set of conclu-

sions. The parts of the testability analysis |

related to completeness include identi-

that will never be drawn (called dead-
end goals), identifying if conditions that
do not lead to a conclusion (called

dead-end if conditions), and anticipat- |

ing the effects of illegal attribute values.

ertheless, we have developed model ex-

tensions and modeling techniques for
high-level software analysis.'>!6 At the
functional level, we can model software
functions and tests in much the same
way as for hardware testing. Unfortunate-
ly, software testing is philosophically
different from hardware testing, so infor-
mation flow modeling is not amenable to
low-level software testability.

Software testability requires testing a
system design. Software does not fail;

- rather, design flaws become evident as :
| different paths through the software are
traversed. Zero-defect software cannot !

be achieved because exercising all pos-
sible paths and all possible states in an
arbitrarily complex software system is

computationally impossible. Further, ifa

. bug is identified and corrected, testing
fying ambiguity, identifying conclusions

Completeness analysis uses the failure- 1

modes-and-effects analysis (FMEA) that
arises from the information flow model.

Correctness analysis examines specif-
ic inference traces and drawn conclu-
sions. The most important element of a
correctness analysis is a domain expert,
which examines inference traces and
results to determine if the drawn conclu-
sions are correct. We can perform parts
of the correctness analysis from the
FMEA, but we need an inference engine
to perform a thorough analysis. The fault
isolation analysis we will describe in fu-
ture articles in the series is most applica-
ble to the correctness issue.

Software testability. The focus of
the integrated diagnostics concept is on
system-level testability. For most systems,

testability must address not only hard- -
ware but software. The majority of the :
analyses available from the information
flow model address hardware testability | modeling system performance (at least
and are difficult to apply to software. Nev- : to a point) is possible, but this problem
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must essentially start from scratch (the
principle behind regression testing) be-
cause the design of the software has
now changed. If the information flow

model has too high a resolution, the fix !

will require a modification of the model.
Modifying the model can be cumber-
some and is generally not feasible.

Performance testing. Another con-
cem in integrated diagnostics is to deter-
mine whether a system is performing
according to the design specifications.
The resulting test scenarios are related
not to fault diagnosis but to perfor-
mance evaluation. Operational readi-
ness inspection addresses some of the

problems related to performance, but .

another aspect of operations (perfor-
mance) testing is the operational-readi-
ness evaluation (ORE). ORE differs
significantly from ORI in that ORE evalu-
ates personnel and procedures, together

with equipment. In addition, such ;
concermns as timing, efficiency, and ap- |

plicability are pertinent to system perfor-
mance. We have not yet attempted to
represent performance issues in the in-
formation flow model. We believe that

is similar to and even less well con-
strained than software testing.

IN THIS ARTICLE AND THE PREVIOUS
one, we have focused on applying the
information flow model to assess system
testability and optimize available test re-
sources. We have examined the prob-
lems of excess information provided by
a test set, ambiguity arising from defi-
ciencies in the test set, multiple failure,
and the test set’s effect on false-alarm tol-
erance. We have applied the analysis
techniques to a specific example—the
antitank missile launcher—and have
demonstrated how we might improve
the testability of that system.

Improving system testability is one
step in the integrated diagnostic pro-
cess. The next step we will examine is
using the available resources to isolate
faults. In particular, we will be interested
in deriving the best set of strategies for
the specific conditions of the system.
We need to consider inference meth-
ods, hierarchical inference, multiple-
attribute tests, optimization criteria, and
consistency checking. The next article
will provide the algorithmic details of
fault isolation, and the following article
will provide a detailed example of isolat-
ing faults in the case study system.
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