
Applying Testability AnaIysis
b r Integrated Diagnostics

AN IMPORTANT STEP in the inte-
grated diagnostic process is devel-
oping requirements and gathering
resources to test a system. In the
third article in this series,’ we de-
scribed a number of measures that
evaluate system testability at a spe
cific time during system design. In
this article, we demonstrate how to
use these measures to improve test-
ability as part of an iterative design
process. Our objective is to mini-
mize ambiguity in replaceable unit
groups (defined as a group of fault
isolation conclusions treated as one
isolatable element), while also min-
imizing the amount of testing and
the number of tests.

We assume that the system is d e
signed to perform a specific job and
that the next iteration in the design
process will improve system test-

-1 JOHN W. SHEPPARD
i
1 WILLIAM R. SIMPSON

1 Arinc Research Corporation

L _ _ _ _ - L

In part 4 of their series, the authors
discuss a key element in the

integrated diagnostic process:
applying the testability measures
described in part 3 to improve
system design and thus improve

system testobiliiy. The authors also
explore altendve approaches to
improving system testability and

describe addifional applications of
testability analysis.

ability from a maintenance perspective. 1 cle.2 Figure 1 is a dependency diagram
Any changes made to improve testabili-
ty should not alter system performance
during normal operational modes.

Throughout our discussion, we refer
to the case study of an antitank missile
launcher introduced in our second arti-

for the case study. Tables 1 and 2 list the
tests and conclusions in the case study.

Motivation for improving testability
In recent years, the idea of system test-

ability has changed from a mere after-

thought to an integral part of the d e
sign process. Designers now empha-
size field maintainability early in the
life cycle, to maximize downstream
ability to test the system and diag-
nose faults, and to minimize the like
lihood of retest OK (RTOK) and
cannot duplicate (CND) e ~ e n t s . ~ . ~
Recall that a RTOK event occurs
when a unit thought to be not func-
tioning nominally at one level of
maintenance is replaced and then
found to be functioning nominally
at the next level. ACND event occurs
when a fault indication is not repeat-
able at the same level of mainte
nance. We perform diagnostic
testing for two basic reasons: to veri-
fy that the system is operational and
behaves nominally, and to localize a
fault to a degree consistent with the
level of repair.

In addition to improving testability,
we want to provide a method of
performing testability analysis and diag-
nosis in an integrated diagnostic frame
work.5,6 This framework requires a
structured process in which diagnostic
data are available at all maintenance

SEPTEMBER 1992 0740-7475/92/0900-0065503.00 0 1992 IEEE 65

Figure 1. Dependency diagram ofantitank missile launcher case study.

accomplished in a centralized, hierar-
chical manner. In the second article of

Table 1. Tests in the case study.
area around a pin). Again, because of
the logical basis, fault isolation conclu- 1 Available tests LClbel'

rily inferencebased; that is, for each test
in the model, we ask what we leam from
a pass or a fail test outcome. In charac-
terizing the model, we described sever-
al test variants that have the effect of
modifying the inference process. For
example, the asymmetric test allows in-
ference to be suppressed for either a
pass or a fail outcome.

The two primitive elements in the in-
formation flow model are the test and
the fault isolation conclusion. Because

Fire command signal
Reticle position tracker
One-two fidelity signal
Readiness output signal
Boundary parameter signal
Summary safe/arm signal
Combined fidelity signal
Error signal
Course correction signal
Command corrector signal
Command response signal
Track signal
Power ready signal
Power ready/enable signal
Bounded error signal
Launcher enable signal
Launch track generator signal
Launch track evaluation signal
Launcher ready signal
Stabilized loop signal output

implemented function. Nor does it limit
a conclusion to a failure mode. The
model leaves the mapping between the
conclusion and a system element at the
disposal of the modeler.

One advantage of the information
flow model is that we can readily repre
sent it in a form that facilitates analysi-
in particular, an adjacency matrix
corresponding to a graph of the model's
topology. Figure 2 (on page 68) is an ad-
jacency matrix representation of the

intl
;ntz

tl

h
t3

t4

t5

b

t9

tl0

tl 1

tl2

t6 I

tl3

tl 4

tl 5

tl 6

tl 7

tl 8

' int corresponds to a testoble input, in-

cluding both the test and conclusion

element, and t corresponds to a test.

IEEE DESIGN C TEST OF COMPUTERS 66

late the matrix to determine testability
characteristics and to develop efficient
fault isolation strategies.

Review of the analyses
The information flow model allows us

to identify several characteristics of sys-
tem testability, such as conclusion ambi-
guity and test redundancy. Conclusion
ambiguity occurs when the current set
of tests cannot distinguish among two or
more conclusions. This situation is dis-
tinct from the desire to draw two or
more conclusions, which is called the
multipleconclusion problem (to be ad-
dressed in a future article). Test redun-
dancy occurs when two or more tests
provide identical logical information
about the system.

A redundant test is a form of excess
test. A test is considered excess when
some combination of other tests provides
the same information it does. We are in-
terested in identifying excess tests b e
cause they allow us to make engineering
trade-offs to obtain the best combination
of tests for the stated testing objectives.

Tools and methods for analyzing sys-
tem testability often incorporate the as-
sumption that only one failure will occur
at any time. This assumption permits us
to greatly reduce the search space.' Nev-
ertheless, system designers need to
know the problems that may result from
the presence of multiple failures. The
information flow model enables the an-
alyst to predict two difficult multiple-
failure problems: the root cause failure
and the false failure. Any fault may hide
an additional failure from detection. A
root cause failure occurs when one of
these hidden failures is the cause of an
isolated fault. Repair of the isolated fault
alone is not effective because the root
cause will make the repaired unit fail
again. In addition, it is possible for two
or more faults to produce symptoms
identical to some other fault in the sys-
tem. In that case, repair of the isolated
fault is ineffective because the fault was
not truly a fault in the first place.

SEPTEMBER 1992

Table 2. Conclusions in the case study
~~~ ~ ~ ~~ ~~ ~~~ ~- 

Fault isohtion conclusion Label' Rate** Replaceable unit+ 

Fire command signal 
Reticle position tracker 
Command override 
Override enable 
Sight activation function 
Safe/arm determination 
Launcher ready evaluator 
Boundary check 
Parameter fidelity 
Parameter fidelity backup 
Error evaluator 
Error corrector 
Command signal evaluator 
Response generator 
Target tracker 
Command to track comparator 
Guidance output 
Launcher power supply (battery) 
Launcher power enable 
Launcher power signal conditioner 
Cross-check override 
Error signal boundary check 
Launcher full ready function 
Launch command function 
Fire ready activation function 

int1 
int2 
;nul 
inu2 

C1 

c2 
c3 
c4 
c5 
c6 

c7 
C8 

c9 
Cl 0 

c11 
Cl 2 

c13 
cl 4 

c15 
cl 6 

c17 
C l  8 

c20 
c2 1 

c19 

10 
10 
10 
10 
5 
5 
00 
00 
00 
00 
5 
5 
5 
5 
5 
5 
5 

100 
100 
5 
5 
5 
5 

100 
100 

No fault found No Fault 9,095 0 

* int corresponds to a testable input, including both the test and conclusion element; inu 

** Units are not significant as long as they are consistent. 

t System inputs are not listed as members of replaceable unit groups, although they could be. 

corresponds to an untestable input; and c corresponds to a conclusion. 

Our analyses permit the engineer to 
assess both a system's inherent testability 
(that is, the maximally achievable test- 
ability) and its achieved testability (test- 
ability resulting from the defined set of 
tests). The information flow model fol- 
lows the flow of diagnostic information 
through the system and represents the 
logical relationships between tests and 
conclusions used in diagnosis. The mod- 
el's composition is intimately tied to infor- 
mation provided by tests. Thus, modeling 
system connectivity provides information 

on inherent testability; modeling informa- 
tion provided by actual tests yields an 
analysis of achieved testability. 

Interpreting the testability measures 
In our last article we discussed mea- 

sures that evaluate the testability of a sys- 
tem. These measures are derived from 
the information flow model and there- 
fore are actually measures of the model. 
Specifically, we developed measures 
associated with ambiguity, feedback, 
the test set, and multiple failures. We in- 

67 



~ tended the measures to indicate system 
I testability, not to set firm thresholds or 
~ standards by which to determine if asys- 
' tern has good or bad testability. Rather, 

one must interpret the measures in the 
context of a specific system and its set of 

l In the earlier article we presented al- ' gorithms for computing the testability 
measures, and we gave ideal values and 
values for the case study. Now we will 

e ti, review three of the measures-opera- 
tional isolation, test redundancy, and 
excess tests--so that we can make deci- 
sions about the testability of the case 
study and formulate recommendations 
for improving system testability. 

- N  
Tests 

- r .  -m -v -m -w -? -m -m -- 0 -  -- -? -z -z -e -P +z E E 
t i  
t 2  
t3  

t 4  

t5 1 requirements. 

t 7  

t 9  

t i 0  

t i  2 

4 3  

t1 4 

t8 

t1 5 

t1 6 

t1 7 

t l  8 
Int, Operational Isolation. Operational 
int, isolation (01 [ n ] )  indicates potential 
fal RTOK problems due to high ambiguity 

in a fielded system. Operational isola- 
Int, tion is the percentage of time the test set 
Int, will fault-isolate to n or fewer replace 

C1 able unit groups. 
CZ We compute operational-isolation 
c 3  variations based on information about 
c4 the system and on the subset of conclu- 
c5 sions to be considered. We will consid- 

er four such variations. The first, OI,, 
c7 

~ assumes a uniform failure rate for all the 
C9 I individual components that make up 

E c10 the replaceable unit groups and consid- 
2 ci1 ers all fault isolation conclusions. The 
g c i 2  second, OI,,, assumes individual failure 

rates for all the components and also 
considers all fault isolation conclusions. 
01, corresponds to an expected percent- 
age of the time that fault isolation will be 
at n or fewer replaceable unit groups. 
The third and fourth variations are both 
weighted, but one (0IJ ignores system 
inputs, and the other (0Inf) ignores sys- 
tern inputs in combination with No 
Fault. These two variations give us the 
options of considering the system inde 
pendent of incoming information and 
when a failure has been detected. 

Figure 3 presents operational isola- 
tion values for the case study. We can 
immediately see that the system has a 

c6 

c8 

- 

c13 

ci4 

c i5  

ci6 

c17 

c18 

c19 

c20 

c21 
lnu, 
Inu2 

No fault 

fbl 
Figure 2. Closed dependency matrices of case study system: test-to-test dependency ma- 
trix (a); test-to-conclusion dependency matrix (b). f=  a first-order dependency; h = a bit 
resulting from transitive closure; l = a bit resulting from logical closure; n = a bit resulting 
horn incremental closure. 

68 IEEE DESIGN & TEST OF COMPUTERS 



problem with ambiguity. Because none 
of the operational isolation measures in- 
dicate the ability to fault-isolate to single 
replaceable unit groups 100% of the 01 
time, the system clearly exhibits ambigu- 
ity between at least two replaceable unit 
groups. In fact, for both the weighted 
and the unweighted OIs, ambiguity ex- 
ists between three replaceable unit 
groups. Note, however, that excluding 
inputs reduces ambiguity to two re- 
placeable unit groups at most. There- 
fore, a major contributor to ambiguity is 
our inability to directly observe the sys- 
tem inputs. 

When we compare OIi, and Ol,,f for 
one replaceable unit group, we see that 
a second contributor to ambiguity is our 
inability to detect some failure. Further 
analysis of the system reveals that we 
cannot detect the failure of ~ 1 3  with the 
current set of tests. This, in fact, is the 
only nondetection. Because c13  is not 
detected, it will be ambiguous with No 
Fault. Furthermore, the extreme differ- 
ence between the two values is a result 
of the fact that the failure rate of No Fault 
(that is, the probability that No Fault will 
be concluded) is extremely high- 
0.9095 (Table 2). Thus, we have deter- 
mined that additional testability is 
necessary to detect a previously unde- 
tectable failure. 

We used this analysis to evaluate the 
testability of the air pressurization system 
for an 11-MW fuel cell power plant.8 The 
system-level analysis determined that 
only 33% of the system could be unique- 
ly isolated during system start-up and 60% 
during its operational mode. We devel- 
oped additional tests that increased oper- 
ational isolation to 75% during start-up 
and 75% during operation. 

Excess-test measures. Not only 
may a system have ambiguity problems 
(and therefore operational-isolation 
problems), but inappropriately placed 
tests may lead to overspecification of 
testability in particular areas of the sys- 
tem. The test redundancy (TR) and 

i] One replaceable unit 
Two or fewer replaceable units 
Three or fewer replaceable units 

1 0  
0 9  
0 8  
0 7  
0 6  
0 5  
0 4  
0 3  
0 2  
0 1  
n n  

W N O  7 - m o  w o o  - 0 0  
T r w o  7 - 0  0 0 0  w o o  m - e o  w m o  m o o  m o o  

".., 

Z?? g g p  g p p  g p p  
01" 01, O h  Oh, 

Type of operational isolation 

Figure 3. Operational isolation (01) in the case study. 

excess-test (XM) measures indicate 
overspecification. We can combine 
these measures with other measures to 
determine other types of problems in 
the system. 

The test leverage (TL) measure pro- 
vides a general indication of how well 
testability is specified for the system. For 
the case study, we found that TL = 
0.7692, which lies between the bounds 

Indeed, the value of test feedback dom- 
inance (TFD) for the case study is 0.25; 
that is, 25% of the information sources 
are tied up in feedback. Table 3 lists the 
ambiguity groups in the case study, in- 
cluding those involved in feedback. D e  
termining a way to break the feedback 
loop should reduce the redundancy 

recommended by the theoretical mini- 
mum test leverage (0.1808) and the the- , 
oretical maximum test leverage 
(0.9615). The test leverage, however, is 
based on no ambiguity. 

Table 3. Ambiguity groups in the case 
sbdy. 

~~ ~ ~ ~~~~~~~ 

Members Group 

We determined that for the case 
study, TR = 0.3; that is, 30% of the tests in 
the model provide completely redun- 
dant information with some other test or 
tests. One way test redundancy arises is 
that the system contains information 
flow feedback. When we examine the 
feedback-modified test leverage, we 
find that FMTL = 0.6957, which is less 
than TL. Therefore, we know that the sys- 
tem also has a problem with feedback. 

* Port of o topologicol feedbock Imp. 
** Any ombiguify with No Fault i s  o 

nondetection 

SEPTEMBER 1992 69 



Group Tests tests may have detnmental effects on 
overall system testability, depending on 

should be. We will assume that we are 
conducting testing at the replaceable 
unit group level. Therefore, the results of 
the operational-isolation analysis and 
the ambiguity group analysis will be par- 
ticularly important. 

8 replaceable unit groups + 4 inputs + No fault = 13 

Tests on replaceable unit group 
outputs. As shown in Figure 1, we have 
defined replaceable unit groups for the 
case study, and we can see that some of 
the defined tests are placed within the 
group boundaries and some tests are 
not. Our first step will be to ensure that 
we test each output in the system. There- 
fore, we will add tests to all of the re- 
placeable unit group outputs and label 
the tests TU,,, where n is the index for 
the replaceable unit and m is the index 
for the output. Figure 4 shows the depen- 
dency diagram with the additional tests, 
and Table 5 lists the dependencies and 
feeds for each new test. We leave the 
development of the dependency matrix 
as an exercise for the reader. 

When we analyze testability on this 
new model, we see that the isolation lev- 
el (IL) has increased from 0.62 to 0.77. 
Clearly, we still have ambiguity between 

8 

70 

- 

IEEE DESIGN & TEST OF COMPUTERS 



components in the model. What we 
want to know, however, is whether any 
ambiguity exists between replaceable 
unit groups. The unweighted operation- 
al isolation indicates that we will fault- 
isolate to one replaceable unit group 
65% of the time. In the weighted case, 
unique fault isolation will occur 99% of 
the time. Thus, we have substantially 
improved unique isolation capability, 
but ambiguity still exists. 

If we were to compute the ambiguity 
table, we would find that ambiguity ex- 
ists between ru7 and i n y ,  between vu8 
and inul, and between ru4 and rug. A 
closer examination reveals that the first 
two of these ambiguities exist because 
the inputs are untestable. The remaining 
ambiguity exists because of the feed- 
back loop, the members of which are 
listed in Tables 3 (conclusions) and 4. 

The addition of tests to replaceable 
unit group outputs resulted in other in- 
teresting changes in the model. Both 
false failure (FF) and nondetection 
(ND) dropped to &the ideal value for 
both measures. False-alarm tolerance 
(FAT) is still very good (0.46), but the 
excess-test measure (XM) has increased 
from 0.35 to 0.62. We expected that b e  
cause we added several tests without r e  
moving any existing tests. 

Asymmetric and conditional tests. 
Despite the improvements we have 
made to the system, two problems still 
exist. A feedback loop is causing ambi- 
guity between two replaceable unit 
groups, and we cannot distinguish the 
untestable inputs from two replaceable 
unit groups. Two test paradigms may be 
appropriate to solve these problems: the 
asymmetric test and the conditional 

Because observations at inputs 
are frequently asymmetric, let us first ex- 
amine the asymmetric test. 

There are three types of asymmetric 
tests: fully asymmetric, positive infer- 
ence, and negative inference.” When a 
positive inference test passes, we can 
infer that all dependencies of that test 

Table 5. Replaceable unit group output test relationships. 

Test Dependencies Feeds I 

t2 

tl 
t4 
m6-1 I tl I t5 
t5 
t7 
t10 
tl 01 tl8 
None 

4 2  

None 

None 

tl 3 

tl6 

will also pass. When the test fails, we can 
infer no additional information. When a 
negative inference test fails, we can infer 
that all tests on which the negative infer- 
ence test does not depend will either 
pass or be unneeded, that all feeds will 
fail, and that all components on which 
the test does not depend will be good. 
When the test passes, we can infer no 
additional information. 

When we add asymmetric tests to the 
model, ambiguity should decrease, but 
we may find that the ambiguities still ex- 
ist, depending on how we use the tests. 
We call this situation a “sometimes ambi- 
guity.” For example, let us assume that for 
the simple two-component and twetest 
system shown in Figure 5, t, is a positive 
inference test and b~ is a symmetric test. 
Either we can fault-isolate cz uniquely 
(that is, t, passes and t2 fails), or an ambi- 
guity exists between c1 and c2 (both t l  
and t2 fail). That is, a failure of t l  is not 
enough information for us to infer any- 
thing about cl or c2. 

Adding asymmetric tests may make 
the ambiguity analysis difficult to per- 
form because we must consider all com- 
binations of asymmetries. For the same 
reason, operational-isolation computa- 
tion becomes more complex. To simpli- 

fy the computation, we can consider 
only the upper and lower bounds on 
operational isolation. Specifically, we 
can compute the upper bound simply 
as operational isolation, assuming the 
tests are all symmetric. We compute the 
lower bound assuming that all the asym- 
metric tests are eliminated from the 
model. 

Suppose we add two tests to the mod- 
el: tasyml and tasym2. These tests are 
both negative inference tests, and they 
depend on inul and inu2, respectively. 
Because the two tests are asymmetric, 
we expect the lower bound on opera- 
tional isolation to be unchanged. The 
upper bound, however, does change. 
First, the IL becomes 0.84 (the remaining 
ambiguity is due to the feedback loop). 
The unweighted operational isolation 
indicates that we will fault-isolate to one 
replaceable unit 85% of the time. In the 
weighted case, unique fault isolation 

Figure 5. Simple serial system with an 
asymmetric test (tl). 

SEPTEMBER 1992 71 



T E S T A B l l l T Y  A N A L Y S I S  

temal condition such as user inputs, 

these conditional tests Note that we have 
also made two of the replaceable unit Table 7. Redundant-test groups 

~- 
group output tests conditional tests to en- 
sure that they are available in test mode ~ Group Tests , , 

1 .  as well as default mode. Clearlv, these 
I 
2 

3 
4 
5 
6 

~ 

f2, ru1-1 
ru52-default, ruS2-test, 

ru4-l -default, 
t9-default, tp-test, 
tl ,-default, tl8-test, 
t6-default, t,-default, 
t8-default 

f7-test,  TU^-1 -test 

fl2r rug-2 
tl 5 tl6, rU8-l I ru8-2 
t14t t17t rug-3 

~ ~ 

tests will break the feedback loop b e  
cause they depend on each member of 
the feedback loop without depending on 
themselves. 

These new tests provide a means for 
uniquely isolating any replaceable unit 
in the system. All variations of operation- 
al isolation are 1. Unfortunately, we have 
added 14 replaceable unit group tests, 
two asymmetric tests, and seven condi- 
tional tests, more than doubling the orig- 

inal number of information sources. In- 
deed, the TL is now 1.65, indicating a 
high level of overtesting. 

Eliminating excess tests 
We have improved the testability of 

the missile launcher by adding 23 more 
tests. Obviously, with the addition of any 
test to the model, we must verify that the 
test indeed measures what we believe it 
measures. In any event, we will assume 
at this point that all the tests can be con- 
structed and that they are correctly rep 
resented in the model. Now the 
question is whetherwe need all the tests 
we specified. 

With a test leverage of 1.65, it seems 
that we do not need to develop all these 
tests. We will begin by eliminating the 
redundant tests. Table 7 lists the system’s 
redundant-test groups. It is interesting 
that the tests in the now broken feed- 
back loop continue to provide a tremen- 
dous amount of redundant information. 
That, of course, is because a mode in 
which the feedback loop is intact still 
exists. 

In deleting the redundant tests, we 
must ask what criteria we plan to use for 
fault isolation and how the tests affect 
these criteria. For example, suppose t2 
takes considerably less time to perform 
than Y U ~ - ~ ,  but Y U ~ - ~  requires a lowerskill 
level. The two tests provide identical in- 
formation, so we will decide which to 
discard on the basis of the resources we 
have. I f  our technicians are relatively 
low in skill, we may want to optimize on 
the basis of skill level. We could then 
eliminate f z .  On the other hand, if time is 
the primary consideration, we should 
keep t2 and eliminate Y U ~ - ~ .  But the main- 
tenance shop may have varying condi- 
tions, making it reasonable to keep both 
tests. 

We use the excess-test analysis to de- 
termine which excess tests we can elim- 
inate. This analysis requires us to specify 
optimization criteria, so the decision to 
delete excess tests is also sensitive to 
model parameters. We will assume we 

72 IEEE DESIGN & TEST OF COMPUTERS 



are going to optimize for test times and 
failure frequencies. We will attempt to 
preserve group tests over individual tests 
and preserve old tests over newly creat- 
ed or tobecreated tests. Table 8 lists the 
tests recommended for removal. 

When we eliminate a testable input, it 
becomes an untestable input. We can 
eliminate all the tests listed in Table 8. 
Although eliminating these tests has a 
serious negative effect on component- 
level testability (for example, IL drops to 
62%), IL remains 100% for isolation to a 
single replaceable unit. In addition, 
both TR and XM drop to 0. Figure 6 
shows the final dependency diagram for 
the case study, and Figure 7 (on p. 74) 
shows the resulting matrices, from 
which we derive the testability statistics. 

Other issues 
Although we have improved single- 

failure testability and reduced the num- 
ber of tests, we may wish to retain some 
of the exces tests for other reasons. We 
removed redundant and excess tests 
without considering the effects of these 
actions on some subtler testability issues. 

False-alarm tolerance. Let us exam- 

ine the impact of our actions on one of 
these issues-our ability to detect false 
alarms. One way to detect a false alarm 
is to use tests with inferred outcomes to 
crosscheck the evaluated tests. In our 
March article, we defined false-alarm 
tolerance as a measure of our ability to 
perform test-totest crosschecking. Obvi- 
ously, as we remove excess tests, we 
should expect FAT to decrease. That has 
indeed happened. As we can see from 
Figure 8a, FAT decreased each time we 
modified the model. In fact, FAT for the 
last model is half that for the original 
model. In general, the linear relation- 
ship may not hold, but the message is 
clear: Tests should be removed sparing- 
ly if the system has potential false-alarm 
problems. In thiscase, FAT=O.24, which 
is still relatively good. 

Multiple failures. Another issue we 
should consider when removing excess 
tests is our ability to fault-isolate in the 
presence of multiple failures. As tests are 
removed, the number of hidden failures 
may increase because we could have 
used the eliminated tests to make the 
failure signature (discussed in the March 
article) distinct from other failures. Be- 

Table 8. Excess tests recommended for 
elimination. 

t6-defauit 
tb-test 
t7-default 
~ 4 - 1  -test 
r ~ 4 - 1  -default 
/,-default 
t8-test 
tg-test 
+-default 
tl ,-test 
tla-default 

cause false failures are related to hidden 
failures, we can expect false failures also 
to increase. 

Removing redundant tests has no effect 
on either the hidden-failure measure (HF) 
or the falsefailure measure (FF) because 
redundant tests provide us no additional 
capability to identify either single or multi- 
ple failures in the system. Thus, there is no 
change in HF or FF between the model 
with all the additional tests and the model 
with the redundant tests removed. It fol- 
lows that we could have mathematically 
collapsed the redundant tests in the mod- 

SEPTEMBER 1992 73 



Tests 
+ 

t, 
t4 

t7 test 

IU5-i default 

I b - 1  

2 ti, 
F rui-2 

ru7-i 

tasym, 
tasym, 

int, 
W 

inti 
int, 

ci  
CZ 

c3 

c4 
c5 

c7 

C9 

E c10 

g C l i  

c6 

c8 

._ 
- g ci2 

c13 
U 

ci4 
ci5 

ci 7 

ci  8 

c19 
c20 
CP, 

inu, 
inup 

c i 6  

fbl 

FAT 

0 5 1  
0 5  0 44 

0 3  
0 2  
0 1  
00 

Models fal 
HF 

b:: L 0.92 
n 

0 5  
0 4  
0 3  
0 2  
0.1 
0 0  ~~ 

M 
FF 

0.5 
0.4 
0.3 
0.2 

Models 

0.13 1 0.04 0.00 

Models 
0.0 ' 
(0 

0 Original model 
Model with replaceable unit group tests, 
asymmetric tests, and conditional tests 

Figure 7. Closeddependency matrices after testability analysis: test-to-test [a); test-to- 
conclusion [b). 

~ i Model with excess tests removed 

el. In fact, that is exactly what happens dur- 
ing fault isolation (to be discussed in the 
next article in this series). 

Removing excess tests, however, does 
affect both HFand FF. In fact, as Figure 8b 
shows, HF has decreased with the remov- 

74 

- 

Figure 8. Variations in [a) false-alarm tol- 
erance (FAT), [b) hidden-failure [HFJ, and 
[cj false failure [E) measures. 

IEEE DESIGN C TEST OF COMPUTERS 



al of excess tests. However, HF for the 
model with excess tests removed is still 
approximately equal to HF for the origi- 
nal model. More significantly, FF (Figure 
8c) increased from 0 to 0.13, greater than 
FF for the original model. 

If we examine the subsignatures of 
the fault isolation conclusions, we find 
two faults with potential false indica- 
tions. Examining the model, we see that 
multiple failures of c1 and cj will look 
like a failure of int,, and multiple failures 
of cs, ~ 1 3 ,  and czl will look like a failure of 
c4 (or cg, because c4 and c6 are ambigu- 
ous). To determine if these potential 
false indications are significant, we must 
determine the probabilities that the mul- 
tiple failures will occur. If the probabili- 
ties are high, we must take some action, 
either adding tests or restoring some of 
the eliminated excess tests. I f  the proba- 
bilities are low (or the multiple failures 
occur in the same replaceable unit 
group as the single failure), no action 
may be necessaly. 

To examine the probabilities of these 
multiple failures, we will consider the 
failure rates and ignore the high proba- 
bility of No Fault (because we mume 
that a fault has occurred). We also as- 
sume that the failures are independent, 
so the probabilities of the multiple fail- 
ures are the products of the individual 
probabilities. (This analysis fails com- 
pletely if the failures are not indepen- 
dent events. Any interdependency 
would indicate that we cannot tolerate 
the falsefailure situation. Interdepen- 
dency could come from a root cause sit- 
uation, in which one failure actually 
causes the other, or from an increased- 
stress situation, in which the failure of x 
changes the failure rate of y.) Table 9 
lists the probabilities for the compo- 
nents of interest (derived from the 
weights given in our March article). 

Because c2 and cZ1 are ambiguous, 
we must consider the possibility that ei- 
ther fails to contribute to the false indica- 
tion of c4. The probability of a false 
indication of int, is 

5EPTEMBER 1992 

p ( t =  c l j  ~ ( f =  c3) 
= (0.0055)(0.1105) = (0.0006), 

which is an order of magnitude less than 
the lowest single failure. Therefore, we 
will not wony about the occurrence of 
the multiple failure. Making intl testable 
again will eliminate the falseindication 
problem. 

We determine the probability that c4 
or c6 will be falsely indicated by a multi- 
ple failure in a similar manner: 

[P(t=c,)+P(f=c21)] P(f=c13) 
P(f = c,) 

= (O.OOS5 +0.1105) (0.0055) (0.1 105) 
= (0.00007). 

This probability is two orders of magni- 
tude less than the lowest single failure. 
Therefore, we will not worry about the 
occurrence of these multiple failures, 
either. Our third article explains in detail 
how to include multiple failures in the 
model itself to avoid the false-failure 
situations. 

Alternative approaches 
Thus far we have focused on tech- 

niques for improving system testability 
with available test resources. Now we 
will discuss two alternative approaches 
to improving testability: redesigning the 
system and repackaging functional e le  
ments of the system. 

Redesign. Previously, we assumed 
that the physical design of the system 
being analyzed was fixed. However, if 
the system is in the early phases of its life 
cycle, it may be possible (and even cost- 
effective) to improve the design from a 
testability perspective. For example, 
suppose the target tracker of the current 
system uses a radar-based sensor. If we 
are having trouble detecting certain fail- 
ure modes associated with the radar- 
based tracker, we might consider using 
a laser tracker instead. 

Of course, if we redesign the system, 

Table 9. Probabilities of component 
failure. 

' Component P r o b a b a  
_ _ ~  

C1 0.0055 
c2 0.0055 
c3 0.1 105 
c5 0.1 105 
cl 3 0.0055 
c2 1 0.1 105 

we must consider several issues. For ex- 
ample, the cost of redesign may be pro 
hibitive. Lasersensors may be an orderof 
magnitude more expensive than radar- 
based sensors, so we may be willing to 
accept the degraded testability. Further, a 
design is often optimized for perfor- 
mance. If a redesign adversely affects per- 
formance, it is probably unacceptable. 
Also, the new tests associated with a new 
design may cause unanticipated testabil- 
ity problemssuch as higher probability of 
false indication or degraded ability to de- 
tect false alarms. In fact, the new design 
may be prone to false alarm, and the tests 
may be oversensitive, thus compounding 
the problem. 

Redesigning a system for testability is 
extremely complex; it essentially takes 
the design process back to the early stag- 
es. We usually can minimize redesign 
problems by making testability a princi- 
pal input at each step of system design. 
But when a complete redesign is im- 
practical because testability has not 
played a key part in the design process, 
we can limit the scope of redesign 
through functional repackaging. 

Repackaging. Given the design of a 
system, the way the functions of the design 
are packaged may directly affect the 7% 
tem's testability. This became evident ear- 
lier in this article, before we made any 
changes to the testability of the case study 
system. Recall that we assigned several 
components to different replaceable unit 
groups. These groups corresponded to the 

75 



In Uddition to system's functional packaging. When we 
examined operational isolation, we found 

Add tests to directly observe inu,, 
inu2, and ~ 1 3 .  

diugnosiic or 

readiness ksfing, he 

that the system exhibited tremendous am- 
biguity between the replaceable units. After making these changes to the ong 
Two contributors to ambiguity were the inal model, we find that TR decreases 
nondetection of ~ 1 3  and the existence of 1 from 0.3 to 0.26, XM decreases from 0.35 
two untestable inputs. Obviously, no level to 0.3, and all the operational-isolation 
of repackaging will solve these problems, measures become 1. As a result, we need i n h u i i o n  flow 

mddd can serve us Q 
but repackaging could have corrected 
other ambiguities in the system. 

not wony about adding a large number 
of tests to the system, and we can concen- 

logicmodelfor The ambiguity groups-for the original 
model are listed in Table 3. We can see 

trate on otherissues, such as false alarms , 
and multiple failures. 

that the ambiguity of c1 and c2 results in 
ambiguity between rul and ruz. This is not 
good. Because neither c:~ nor cql is ambig 
uous with any other components, we 
may want to combine rul and ru2, thus 
completely enclosing the ambiguity in 
one group (say, rula). We can do exact- 
ly the same thing for the members of 
Group 2 because they make up the feed- 
back loop. However, we find that since 
cI1 is in the nowcombined group (say, 
ruuqa) and cI2 is in W6, we may want to re- 
package by putting c1 in rug instead, thus 
preventing ambiguity between ru4&5 and 
r u g .  Because cI l  and c12 are now in the 
same replaceable unit group, we no long- 
er have an ambiguity problem in Group 
3. However, ~ 1 3  in Group 4 is still unde- 
tectable. The only way to solve this prob 
lem is by adding at least one test. 

We can treat Groups 5 and 6 together. 
First, we can consider the inputs as part 
of the replaceable unit groups with 
which they are ambiguous rather than 
as individual components. This would 
solve the ambiguity problem for Group 
6. However, it may be more appropriate 
to treat Groups 5 and 6 separately, in 
which case we need to define addition- 
al tests. In addition, Group 5 creates am- 
biguity between ru7 and rug. A solution 
would be to repackage c18 in mi. 

To summarize, we could repackage 
the case study as follows: 

w Combine rul and r u 2  into rul&2. 
Combine ru4 and rug into ru4K;5. 
Repackage c1 as a member of rug. 
Repackage c18 as a member of mi. 

Extending testability analysis 
We have been examining issues di- 

rectly related to system testability to 
determine our ability to perform fault 
isolation. Now let us examine several 
additional applications of these testabil- 
ity analysis techniques. 

Operational-readiness inspection. 
Much of the testing performed by the 
military services takes place during 
operational-readiness inspections. The 
purpose of an OR1 is to ascertain if a weap 
on system is healthy and functioning and, 
when a material problem exists (such as a 
poor radar video output), to localize its 
sourcesufficiently to take action. The over- 
all goal is to minimize test resources and 
provide maximum coverage. 

The tests performed by OR1 teams cor- 
respond directly to tests in the informa- 
tion flow model. Each test, as an 
information source, has a set of depen- 
dencies. If the test passes, the set of de- 
pendencies or elements is verified. If the 
test fails, some member of the dependen- 
cy list is suspect. We can derive the cor- 
responding model by using the details of 
the tests available and the weapon sys- 
tem schematics in the same manner as a 
normal fault isolation analysis. Using the 
outcomes of asymmetric, conditional, 
and linked tests is also appropriate. 

A key difference between modeling 
for OR1 testing and modeling for normal 
testability is in the setup of test elements. 
Constraints in the operational environ- 
ment may cause the analyst to place a 

knowledgebuse 

verifcufion. 

number of tests into a forced group. This 
means that all tests will be evaluated (that 
is, inference is suspended.) Such con- 
straints may also cause the analyst to s e  
quence groups in a special order by 
various methods (weighting or direct s e  
quencing). The analyst may also antici- 
pate multiple failures by checking the 
staffing levels for each system. For exam- 
ple, if the video technician is new, the 
maintenance of the system may be sus- 
pect, and the analyst may want to include 

' multiple failures in the video hardware 
areas for the analysis. Despite these r e  
strictions, OR1 analysis can provide signif- 
icant improvements in testability.I2 

Knowledge base verification. In 
addition to its use for diagnostic or readi- 
ness testing, the information flow model 
can be used as a logic model for knowl- 
edge base verifi~ation.'~,'~ Specifically, 
we can use a model of the knowledge 
base to obtain indications of knowledge 
base consistency, completeness, and 
correctness. If we assume that our 
knowledge base is a rule base, we can 
map rule antecedents to tests and we 
can map rule consequents to model 
conclusions. We can then easily deter- 
mine dependency relationships by ex- 
amining the chains of inference through 
the knowledge base. 

Consistency analysis consists of iden- 

7u IEEE DESIGN & TEST OF COMPUTERS 



tifying problems of overspecification 
and inappropriate specification of the 
rules. Results include identification of 
redundant rules, subsumed rules, redun- 
dant ifconditions, and logical circulari- 
ty. The information flow model actually 
absorbs redundant and subsumed rules, 
and we can use the model to derive a 
reduced set of rules. We identify redun- 
dant ifconditions by locating redundant 
and excess predicates (tests). We identi- 
fy logical circularity directly from the 
feedback analysis. 

Completeness analysis is similar in 
principle to consistency analysis in that 
we are attempting to determine whether 
the specified set of rules is sufficient for 
us to draw the required set of conclu- 
sions. The parts of the testability analysis 
related to completeness include identi- 
fying ambiguity, identifying conclusions 
that will never be drawn (called dead- 
end goals), identifying ifconditions that 
do not lead to a conclusion (called 
deadend if conditions), and anticipat- 
ing the effects of illegal attribute values. 

ertheless, we have developed model ex- 
tensions and modeling techniques for 
high-level software analy~is.’~,’~ At the 
functional level, we can model software 
functions and tests in much the same 
way as for hardware testing. Unfortunate- 
ly, software testing is philosophically 
different from hardware testing, so infor- 
mation flow modeling is not amenable to 
low-level software testability. 

Software testability requires testing a 
system design. Software does not fail; 
rather, design flaws become evident as 
different paths through the software are 
traversed. Zerodefect software cannot 
be achieved because exercising all pos- 
sible paths and all possible states in an 
arbitrarily complex software system is 
computationally impossible. Further, if a 
bug is identified and corrected, testing 
must essentially start from scratch (the 
principle behind regression testing) be- 
cause the design of the software has 
now changed. If the information flow 
model has too high a resolution, the fix 
will require a modification of the model. 

Completeness analysis uses the failure 
modes-andeffects analysis (FMEA) that 

Modifying the model can be cumber- 
some and is generally not feasible. 

arises from the informaiion flow model. 
Correctness analysis examines specif- 

ic inference traces and drawn conclu- 
sions. The most important element of a 
correctness analysis is a domain expert, 
which examines inference traces and 
results to determine if the drawn conclu- 
sions are correct. We can perform parts 
of the correctness analysis from the 
FMEA, but we need an inference engine 
to perform a thorough analysis. The fault 
isolation analysis we will describe in fu- 
ture articles in the series is most applica- 
ble to the correctness issue. 

Software testability. The focus of 
the integrated diagnostics concept is on 
system-level testability. For most systems, 
testability must address not only hard- 
ware but software. The majority of the 
analyses available from the information 
flow model address hardware testability 
and are difficult to apply to software. Nev- 

Performance testing. Another con- 
cem in integrated diagnostics is to deter- 
mine whether a system is performing 
according to the design specifications. 
The resulting test scenarios are related 
not to fault diagnosis but to perfor- 
mance evaluation. Operational readi- 

is similar to and even less well con- 
strained than software testing. 

IN THIS ARTICLE AND THE PREVIOUS 

one, we have focused on applying the 
information flow model to assess system 
testability and optimize available test re- 
sources. We have examined the prob- 
lems of excess information provided by 
a test set, ambiguity arising from defi- 
ciencies in the test set, multiple failure, 
and the test set’s effect on false-alarm tol- 
erance. We have applied the analysis 
techniques to a specific example-the 
antitank missile launcher-and have 
demonstrated how we might improve 
the testability of that system. 

Improving system testability is one 
step in the integrated diagnostic pro- 
cess. The next step we will examine is 
using the available resources to isolate 
faults. In particular, we will be interested 
in deriving the best set of strategies for 
the specific conditions of the system. 
We need to consider inference meth- 
ods, hierarchical inference, multiple- 
attribute tests, optimization criteria, and 
consistency checking. The next article 
will provide the algorithmic details of 
fault isolation, and the following article 
will provide a detailed example of isolat- 
ing faults in the case study system. @ 

References 
1. W.R. Simpson and J.W. Sheppard, “Sys- 

tem Testability Assessment for Integrated 
Diagnostics,” IEEEDesign & Test ofCom- ness inspection addresses some of the 

problems related to performance, but 
another aspect of operations (perfor- 
mance) testing is the operational-readi- 
ness evaluation (ORE). ORE differs 
significantly from OR1 in that ORE evalu- 
ates personnel and procedures, together 
with equipment. In addition, such 
concerns as timing, efficiency, and ap- 
plicability are pertinent to system perfor- 
mance. We have not yet attempted to 
represent performance issues in the in- 
formation flow model. We believe that 
modeling system performance (at least 
to a point) is possible, but this problem 

puters, Vol. 9, No. 1, Mar. 1992, pp. 4@%. 
2. J.W. Sheppard and W.R. Simpson, “A 

Mathematical Model for Integrated Di- 
agnostics,” lEEE Design & Test of  Com- 
puters, Vol. 8, No. 4, Dec. 1991, pp. 25-38. 

3. Testability Program for Electronic Sys- 
tems and Equipment, MIL-STD2165, Na- 
val Electronics Systems Command 
(ELEX-811 l), Washington, DC, 1985. 

4. D. Droste and W. Parsons, “Testability: 
The State of the Art-Automatic Testing 
in the Next Decade and the 21st Centu- 
ry,” Autotestcon 89 Con[ Record, IEEE, 
New York, 1989, pp. 168174. 

SEPTEMBER 1992 77 



INTERNATIONAL 
TEST CONFERENCE 

1991 

This book focusg on the measum test 
professionals are taking to combat escalating 
costs, untestable designs, and increaxd 
development time. Much of the conference 
concentrates on the realization that design 
and test data must be integrated and 
standardized and that design, test 
development, and production planning 
must be performed concurrently. 

c I JWpages October 1991 lSBN08186-91565 
Catalog t 2 156 5 160 W Members $80 W 

ICCD ’91 
1991 IEEE INTERNATIONAL 

CONFERENCEON 
COMPUTERDESIGN: 

Explores key t&ological areas 
including processor and computer architec- 
ture, VLSI technology, computer-aided 
design for both integrated circuits and 
systems, and design and test methods and 
techniques for circuits and systems. ZCCD 
‘91 contains over 100 papers separated into 
these four tracks - Architedure, VLSI and 
Technology, CAD, and Design and Test. 

672pages. September 1991. ISBN 0-8 186-2270-9 
Catalog t 2270 5 100.00 Members $50 00 

Ala Available: 

EAD-91 
608 pages November I W I ISBN 0-8 186-2 157-5 

Catalog # 2 157 $90 00 Members $45 W 

Order Today ! 
Call 1-80KS-BOOKS 

or 714/ 821-8380 

or call for our ”new” 
1992 Publications Catalog 

78 

- 

5. W.L. Keiner, “A Navy Approach to l n t e  
grated Diagnostics,” Autotestcon 90 
Con[ Record, IEEE, New York, 1990, pp. 
443450. 

6. J.  Franco and J.  Scott, “WSTA-The 
IDSS Weapon System Testability Analyz- 
er,” Autotestcon 86 Symp. Proc., IEEE, 
New York, 1986, pp. 435-440. 

7. K. Pattipati and M. Dontamsetty, “Stud- 
ies in Testability Optimization,” Mid- 
West Testability Group, Mulville, New 
York, 1988. 

8. C.R. Unkle and H.P. Himpler, “STAMP 
Demonstration for Air Pressurization 
System,” letter report, Arinc Research 
Corp., Annapolis, Md., 1985. 

9. D.C. Curtis et al., “AN/MSQlOSC Team- 
pack Testability and Fault Isolation 
Analysis,” Publication 2968-014009, 
Arinc Research Corp., 1986. 

10. E. Esker and H. Horvath, “System Test- 
ability and Maintenance Program for the 
ANIALQ28501) (Seek Ice Modification 
Program),” Arinc Research Corp., 1985. 

11. W.R. Simpson and J.W. Sheppard, “Sys- 
tem Complexity and Integrated Diagnos- 
tics,” IEEE Design & Test of Computers, 
Vol. 8 ,  No. 3, Sept. 1991, pp. l&30. 

12. B. Pickerall, “Testability Analysis and 
Revised Procedures for Overall Combat 
System Operability Test (OCSOT) USS 
Dale (CG-19),” Tech. Report 35990141- 
4528, Arinc Research Corp., 1987. 

13. J. Sheppard, “An Approach to Verifying 
Expert System Rule Bases,” Artificial In- 
telligence Tech. Note 1700, Arinc Re- 
search Corp., 1989. 

14. J. Sheppard, “An Approach to RuleBase 
Verification,” Artificial Intelligence 
Tech. Note 1322. Arinc Research Corp., 
1989. 

15. J. Sheppard and W. Simpson, “Function- 
al Path Analysis: An Approach to Soft- 
ware Verification,” Proc ACM 16th 
Annual Computer Science C o d ,  ACM, 
New York, 1988. pp. 26&272. 

16. R. Bond and J.  Sheppard, “Structural 
Analysis Methods to Aid in Software 
Testing, Debugging, and Maintenance,” 
Software Engineering Tech. Note 2402, 
Arinc Research Corp., 1989. 

John W. Sheppard is a senior research 
analyst in the Advanced Research and D e  
velopment Group at Arinc Research Corpo 
ration. He is also a PhD candidate in 
computer science at Johns Hopkins Univer- 
sity. His research interests include applying 
AI techniques to fault diagnosis, machine 
leaming, neural networks, and knowledge 
representation. He has developed algo 
rithms to diagnose system failures, verify 
knowledge bases, and classify software. He 
was also a principal developer of Pointer, an 
intelligent, interactive maintenance aid. 
Sheppard holds a BS from Southem Method- 
ist University and an MS from Johns Hopkins 
University, both in computer science. 

the Advanced Research and Development 
Group at Arinc Research Corporation, works 
on testability and fault diagnosis. He helped 
develop the System Testability and Mainte 
nance Program, which is based on an infor- 
mation flow model. He was also a principal 
developer of the Pointer interactive mainte 
nance aid. He holds a BS from Virginia Poly- 
technic Institute and State University and an 
MS and a PhD in aerospace engineering 
from Ohio State University. 

Direct questions or comments to the au- 
thors at Arinc Research Corp., Advanced 
Research and Development Group, 2551 
Riva Rd., Anapolis, MD 21401; e-mail: 
sheppard @cs.jhu.edu or wsimpson@ 
mcimail.com. 

IEEE DESIGN & TEST OF COMPUTERS 

mailto:cs.jhu.edu
http://mcimail.com

