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The first step an engineer must take in 
modeling a system is to determine the 
level of diagnosis appropriate for that 

Fault Isohion in an Integrated 
Diagnostic Environment 

of diagnosis. Next, the engineer must d e  
termine sets of tests and conclusions 
that will isolate faults to each l ine  

A MODEL-BASED APPROACH to 
integrated diagnostics permits engi- 
neers to design complex systems 
that make effective use of test re- 
sources. The information flow mod- 
el, which we detailed in part 2 of 
this series, consists of two primitive 
elements: information sources, or 
tests, and fault isolation conclu- 
sions. We use the terms tests and 
information sources interchange- 
ably because a test is any source of 
information about the system’sstate 
of health. Thus, tests include tradi- 
tional stimulus-response pairs asso 
ciated with direct probing, the 
observation of functional behavior, 
the detection of physical anomalies 
such as smoke or charred mount- 
ings, and boundayscan data.5 
Fault isolation conclusions include 
specific failure modes for compc- 
nents, chips, cards, assemblies, and 
entire subsystems and systems. Fur- 

I 
WILLIAM R. SIMPSON 

JOHN W. SHEPPARD 

Arinc Research Corporation 

integrated diagnostics,’- 
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strategies. Of particular con 

optimizing diagnosis to 

They discuss a technique 

can include multiple cost 

such as test time, skill leve 

failure frequency, as well 

information value. 

component. If the system is still in 
the design phase, the engineer must 
apply judgment to hypothesize a p  
propriate sets. As the design ma- 
tures, the diagnostic hierarchy 
becomes more fixed. Thus, model 
development parallels the design 
process. 

In constructing a diagnostic mod- 
el, the most important and most 
difficult step is determining the d e  
pendency relationships among tests 
and between tests and conclusions. 
Dependency determination a p  
proaches include simulation, failure 
modeandeffects analysis, dataflow 
analysis, logic flow analysis, and tra- 
ditional, manual circuit analysis. In 
all of these approaches, the engineer 
examines each test and asks two irn- 
portant questions: 

What inferences can be drawn 
from a passed outcome? 
What inferences can be drawn 
from a failed outcome? 

Our second article explained how to 
derive dependencies from the answers 
to these questions.2 

In addition to determining dependen- 
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Figure I. Dependency diagram of antitank missile launcher case study. 

cies, the engineer must specify the fol- 
lowing information for the model, also 
covered in the second article: 

hierarchical grouping of tests 
hierarchical grouping of 

cost weights for tests 
probability data for conclusions 
required test sequence 
test inference types 
multiple failures 

conclusions 

Once the model has been construct- 
ed, an iterative process of analysis and 
redesign begins. First, the engineer 
analyzes system te~tability.~.~ From this 
analysis, the engineer derives design 
recommendations and determines ways 
to improve testability and eliminate r e  
dundancy. The process continues until 
the design is final or further improve- 
ments would not be cost-effective. 

Following the testability analysis cycle, 
the engineer has several diagnostic o p  
tions. The appropriate choices depend 
on the type of system and the level of di- 
agnosis required. For example, if the diag- 

nostic capability is to be embedded, the 
engineer can use the model to derive 
built-in test procedures or to develop a 
comprehensive on-board maintenance 
system. If the system will be tested by au- 
tomated test equipment, the engineer 
can derive the test executive’s test s e  
quence from the model or can replace 
the test executive with a model-based 
reasoner. For manual diagnosis, analysts 
can construct efficient fault trees from the 
model for a technical manual, either pa- 
per or electronic. In most cases, the engi- 
neer will combine these diagnostic 

Fault isolation theory 
Fault isolation can be described rnath- 

ematically as a partitioning process. For a 
given system we consider several conclu- 
sions, at least one of which is the correct 
conclusion. We call this set of conclu- 
sions F.3 At some point in testing, we have 
a set of conclusions considered feasible 
solutions to the diagnostic problem. We 
call this set G. If we have not performed 
any testing, G is equivalent to F. Perfor- 
mance and evaluation of a test will allow 
us to infer two subsets of conclusions: 
those that are feasible, G, and those that - 

options to create the most efficient form 1 are no longer feasible, H. Note that rea- 
of maintenance architecture. ~ soning with certainty requires a conclu- 

This article describes how to use the sion to be in either G or H but not in both 
information flow model to conduct effi- sets. (Reasoning under uncertainty relax- 
cient fault isolation. We use the antitank es this assumption and will be discussed 
missile launcher case study described in a later article in theseries.) Thus, given 
throughout the series to present the ba- G and H, it should be clear that 
sic fault isolation approaches, derive an 1 

information theory approach to optimi- 
zation, and apply factors for multicriterion 
optimization. Figure 1 is a dependency 
diagram for the case study. Figure 2 
(next page) is an overview of the model- 
based process. 

G U H = F and 
G n H = 0 (the empty set) 

Initially, H has no members. A test 
outcome implies that a list of conclu- 
sions is no longer feasible, either direct- 
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Figure 2. Model-based integrated diag- 
nostic process. 
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ly, by determining that the conclusions 
are false, or indirectly, by determining 
that some other set of conclusions must 
contain the answer. As we proceed with 
testing, G should decrease in size, and H 
should increase in size. Ultimately, a 
strategy isolates a failure when any of 
the following is true: 

rn G consists of a single conclusion. 
rn G consists of an ambiguity group 

that we cannot partition further. 
rn We have no more tests to evaluate. 

No conclusions remain in G .  

The process for determining which 
elements belong in G and which ele- 
ments belong in H is called inference, 
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Figure 3. Closed dependency matrices for case study: test-to-test dependency matrix (a); 
test-to-conclusion dependency matrix (bj. I = dependency; 0 = no dependency. 
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Table 1. Inference metarules for the information flow model. 
~ 

1. IF test ti is untestable, THEN no in- 
ference is  available except that ti is 
untestable. 

AND IF test f; is not negative infer- 
ence, THEN every member of the 
information source set I that is not 
otherwise inferred as passed or 
failed and upon which ti depends is 
inferred to have a passed outcome. 

AND IF test t; i s  not negative infer- 
ence, THEN every member of the 
fault isolation set F upon which ti de- 
pends is inferred to be a member of 
the infeasible set H and not a mem- 
ber of the feasible set G. 

4. IF test ti has a failed outcome, AND 
IF test t; is not positive inference, 
THEN every member of the infor- 
mation source set I that i s  not other- 
wise inferred passed or failed and 
that depends upon t; is inferred to 
have a failed outcome. 

5. IF test t; has a failed outcome, AND 
IF test t; is not positive inference, 
THEN every member of the fault iso- 
lation set F upon which does not 
depend is inferred to be a member 
of the infeasible set H and not a 
member of the feasible set G. 

6. IF test f; has a failed outcome, AND 

2. IF test t; has a passed outcome, 

3. IF test $ has a passed outcome, 

and the software that performs this pro 
cess is called an inference engine. 

Inference using matrix 
representation 

Figure 3 shows the closed dependen- 
cy matrices for the case study. (We ad- 
dressed the development of the 
matrices, including special test para- 
digms, in part 2 of the series.) In Figure 3, 
test dependency is represented by a 1 
and nondependency by a 0. Assuming 
that dependency is symmetric, we can 
use the matrix structure for direct infer- 
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IF test ti is not positive inference, 
THEN every member of the informa- 
tion source set I (t,) that i s  not other- 
wise inferred passed or failed and 
that does not depend upon 5, and for 
which 5 does not depend upon tq i s  
inferred to be not needed UNLESS the 
lack of evaluation of this test will 
cause additional ambiguity in the 
feasible set G. 

7. IF any member of I (t,) that i s  not oth- 
erwise known to be passed or failed 
contains only members of F as depen- 
dencies that are also members of H, 
THEN t, i s  inferred to have a passed 
outcome. 

8. IF any member of I (t,) that i s  not oth- 
erwise known to be passed or failed 
contains all the members of G as de- 
pendencies, THEN tp is inferred to 
have a failed outcome. 

9. IF test t; has a failed outcome, AND IF 
the failed outcome of test t; is cross- 
linked to t,, THEN t, is inferred to 
have a passed outcome, and infer- 
ence metarules 1 through 8 are ap- 
plied to t,. 

10. IF test $has a passed outcome, AND 
IF the passed outcome of test $ is cross- 
linked to t,, THEN t, is inferred to have 
a failed outcome and inference meta- 
rules l through 8 are applied to tT 

ence. (If special test paradigms require 
special inference, we must use other 
forms of logical inference.) We label the 
columns of the dependency matrices 
“depends” and the rows “feeds,” and we 
use the depends and feeds as an infer- 
ence mechanism. 

For example, in Figure 3b, t8 depends 
on in[], int2, c3 c4, c5, c6, c7, c8, cg, and cl0. If 
t8 passes, each fault isolation conclusion 
will be infeasible (in H). In Figure 3a, t8 

and tI8. If t8 fails, each feed will also fail, 
and each of the depends will be feasible 

feedst6,t7,t8,t9,t10,tl1,t12,t13,t14,tlj,t16,t17, 

-~ 

1 1. IF test t, has a failed outcome, AND 
IF the failed outcome of test t, is 
cross-linked to Test Group A, THEN 
each test t, that is a member of Test 
Group A is inferred to have a 
passed outcome, and inference 
metarules 1 through 8 are applied 
to each such t,. 

12. IF test t, has a passed outcome, 
AND IF the passed outcome of test f, 
is cross-linked to Test Group A, 
THEN each test t, that is a member 
of Test Group A is inferred to have 
a failed outcome, and inference 
metarules 1 through 8 are applied 
to each such tT 

AND IF the passed outcome of test t, 
is linked to Test Group A or t, as un- 
testable, THEN t, or each test tk that 
is a member of Test Group A is in- 
ferred to have an untestable out- 
come, and inference metarule 1 is 
applied to f, or each such tk. 

14. IF test t, has a failed outcome, AND 
IF test t, is linked to Test Group A or 
tq as untestable, THEN t, or each 
test tk that is a member of Test 
Group A is  inferred to have an unt- 
estable outcome, and inference 
metarule 1 is applied to t, or each 
such ti. 

13. IF test t, has a passed outcome, 

(in G, unless they were otherwise deter- 
mined infeasible). We can confirm these 
inferences by examining Figure 1. 

A rule used to determine which infer- 
ences can be drawn is called an infer- 
ence metarule (a rule that handles 
rules). Table 1 lists one possible set of 
inference metarules for the case study 
information flow model. These are the 
rules we will use for our analyses. 

We can verify most of the metarules 
by carefully inspecting the case study 
and its matrices. Two points are of inter- 
est. First, rule 6 is complex to determine, 
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requiring a special algorithm to satisfy 
the UNLESS portion. Second, rules 9 
through 14 describe inferences not in- 
cluded in the matrices (rules 1 through 
8 describe inferences inherent in the 
matrices). Such inferences include 
linked-outcome tests and asymmetric 
tests. Note that all the rules assume a sin- 

-* 
Figure 4. Simple fault isolation example. 

gle failure; we discuss the impact of this 
assumption in the next section. 

Developing fault isolation 
strategies 

The problem we discuss here is how 
to choose tests and how to determine 
the order in which to perform the tests to 
localize a fault to a given level. When we 
conduct diagnosis, we do not know 
which element has failed, so we assign 
an unknown outcome to each member 
of the feasible set G. In addition, we as- 
sign an unknown outcome to each test 

Table 2. Example test sequences and outcomes. 
~~~ ~~~ ~~~ 

Sequence Conclusion Comments 

1 .  intl=passed t2=passed 

2. intl=failed t2=passed 

3. intl=passed t?=failed 
4. int,=failed t.=failed 
5. intl=untested t2=passed 
6. intl=untested t,=failed 
7. intl=passed t2=untested 
8. intl=failed t2=untested 
9. intl=untested t2=untested 

IO .  t2=passed intl=passed 

1 1 .  t2=passed int,=failed 
12. t2=passed intl=untested 
13. t,=Failed intl=passed 
14. t2=foiled intl=failed 

15. t,=failed intl=untested 
1 6. h=untested intl =passed 
1 7. t2=untested intl =failed 

18. h=untested intl=untested 

No Fault 

Inconsistency 

C1 

inti 
No Fault 
intl or cl 

c1 or No Fault 
int, 

intl or c1 
or No Fault 

No Fault 

Inconsistency 
No Fault 

C1 

inti 

intl or c1 
c1 or No Fault 

int1 

intl or c1 
or No Fault 

Unlike sequence IO, this 
sequence cannot be 
terminated early. 

assumption, we could 
terminate after inti. 

With single-failure 

See sequence 2. 

See sequence 2. 
No testing has 

been performed. 
With single-failure 

assumption, we could 
terminate after t2. 

See sequence 10. 
See sequence 10. 

Unlike sequence 4, this 
sequence cannot be 
terminated early. 

Unlike sequence 8, this 
sequence cannot be 
terminated early. 

See sequence 9. 

we will consider. A goal of diagnosis is to 
minimize the average number of tests 
needed to isolate the fault. An entire 
fault isolation strategy comprises a com- 
bination of sequences that form a deci- 
sion tree. The leaves of the tree are the 
fault isolation conclusions, and the inter- 
nal nodes of the tree are tests. Each test 
has a branch for each of its outcomes. 

One might ask, “Why all the concern 
with efficient search methods? With 
high-speed computers, why don’t we 
just compute all the possible test se- 
quences and choose a set that solves the 
required diagnostic problem according 
to whatever efficiency criteria we speci- 
fy?” To understand why this is not possi- 
ble, we must first understand the nature 
of the calculations involved and the 
complexity of the possible solution set. 

To demonstrate, Figure 4 presents a 
simple, solvable problem. In the exam- 
ple system, F has three members (inti, 
c1, and No Fault), and I has two mem- 
bers (inti and t2). Table 2 lists the 18 pos- 
sible test sequences for the system. We 
reach the conclusions in the table by 
applying the metarules in Table 1. We 
derive a simple equation that provides 
an upper bound on the number of pos- 
sible sequences (Theorem 1 in the box 
at right provides a proof): 

where III is the number of tests, rn is the 
number of outcomes of each test, and 
f(m, 111) is the number of test sequences 
that can be constructed. 

An entire fault isolation strategy con- 
sists of a combination of test sequences 
selected for their compatibility. We can 
make one tree from sequences 1 through 
9 and a second tree from sequences 10 
through 18 because evely sequence in a 
tree must start with the same information 
source. If we choose sequences 1,3,4,5, 
6, 7, and 9, we have a viable tree. We ex- 
clude sequences 2 and 8 because they 
are subsumed by sequence 4. Figure 5 
shows the resultant tree structure. 
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Proofs of Equations 1 , 2, and 3 
Theorem 1 

Given a set of I I I tests, each test hav- 
ing m outcomes, then at most f (m, I I 1 ) 
test sequences can be constructed, 
where 

Proof 
By induction on I I I . 
For the base case, suppose I I I = 1. 

Only one test exists for any sequence, 
but that test has m outcomes. Thus, we 
can construct m sequences. Note that 

/fm, l)=rn' I!=m 

For the inductive step, assume that 
the inductive hypothesis holds for test 
sets of sizes ranging from I I I = 1 to I I I 
= n - 1 . Assume that I I I = n. Clearly, 
we can select any of the n tests to start 
a sequence, and that test has rn out- 
comes. Thus, we have mn starts of se- 
quences. After we choose the initial test, 
the subsequences are all of length n - 
1 . Therefore, by the inductive hypothe- 
sis, there are f(m, n - 1 ) = m p1 (n - 
I ) !  subsequences. Combining these 
subsequences with the initial choice, we 
have 

f (m,  n) = (m ' n) [m"-] (n - l)!] 

= n [ r n R  (n - l)!] 
=m"n (n- l)! 
=m"n! QED 

Theorem 2 
Given a set of I I I tests, each test with 

m possible outcomes ( I I I > 1, m > 0), at 
most g(m, I I I ) trees can be constructed, 
where, assuming g(m, 1 ) = 1, 

ptoof 
By induction on I I I . 
For the base case, when I I I = 1 , it is 

trivially true that there can be only one 
tree. This is a singularity in our analysis. 
Consider I I I = 2. Now we can select ei- 
ther of the two tests as the root (start) of 
the fault tree. Each of the subtrees for the 
m outcomes is determined (that is, there 
is only one subtree for each member of I). 
This means there are only two possible 
trees for Ill = 2. Note that 

g(m,2) =m2-22! 
=m02! 
=2 

For the inductive step, assume that the 
inductive hypothesis holds for test sets of 
sizesrangingfrom Ill =2to III = # - I .  
Assume I I I = n. Clearly, we can select 

any of the n tests as the root of the tree. 
There are then m subtrees of the root 
(one for each outcome). We know from 
the inductive hypothesis that each sub- 
tree is oneof drn, n - I )  = m ~ 1 - 2  (n - 
1 )! possibilities. Therefore, we have 
(mn)m *3(r1- I)!  possiblefaulttrees(in 
other words, m -2 n! = g(m,n) trees). 

QED 

Theorem 3 
Given a set of conclusions, C U IN, 

plus a special conclusion referred to as 
No Fault, the number of possible multi- 
ple conclusions that we can draw is h(c, 
d ), where 

h(c,d) = 1 + t(?) 
i = l  

0 

and cis IC  u INI, and dis the maxi- 
mum number of conclusions to be con- 
sidered, d I c. 

Proof 
Theorem 3 describes a simple com- 

binatorial expansion. Note that No 
Fault is  treated separately because it 
must occur as a single conclusion, ac- 
counting for the 1 in Equation 3. Clear- 
ly, the other combinations are simply 
the sum of cchoose i, which is given by 
the binomial coefficient. QED 

We can also derive an equation that 
provides an upper bound on the num- 
ber of possible trees to be considered 
(see Theorem 2 iii  box for a proof): 

\ N o 3  

Passed 
t, e- Untested 

Failed 

C, OR NO Fault 
-~ / 

c> :No Fault 

Passed Passed - -  

Untested 
Failed Failed 

int m<OR c, 

~ g(n7 111) = rr7 ' - 111' CL) 

where g(m. 111) 15 the numbei of trees 

In the example m = 3, and I I I  = 2 so 

int, & Untested ~ h t ,  OR c ,  OR No Fault 
- 

that can be consttucted / 

that f(3,2) = 18, and g(3, 2) = 2 Table '3 
(next page) shows the comblnatotidl 

.- \ 

Figure 5. One resultant tree for example in Figure 4 
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Table 3. Complexity contribution of test numbers to number ofsequences and fault trees. 

Number of tests Number of sequences Number of fault trees 
I1 I f(m, I /  I )  g(m, 11 1 )  

15 

100 

18 2 
162 18 

1,944 21 6 
29,160 3,240 

1.88 1019 2.09 x 1 OT8 

4.81 xi0205 5.35 10204 

Table 4. Failure conclusions when considering d or fewer multiple failures. 

C d 
(Components (Number of failure conclusions considered) 
that can fail) 1 2 3 ... C 

2 3 
3 4 
4 5 
5 6 
6 7 

15 16 

1 00 101 

- 4 
7 8 

1 1  15 
16 26 
22 42 

121 576 

5,051 166,751 

... 4 

... 8 

... 16 

... 32 

... 64 

... 32,768 

... 1.27~1 030 

growth of complexity with the number 
of tests. Note that Equations 1 and 2 do 
not have the number of conclusions, IFI, 
as a factor, but have only information 
sources, 111, and number of outcomes, 
m. This point is important and we will 
elaborate upon it later, when we discuss 
how to choose tests. 

Most testability and fault isolation 
tools, as well as mathematical derivations 
of fault isolation paradigms, assume asin- 
gle failure in the system, accurate tests, 
and a binary test outcome. The reason 
we make these restrictive assumptions is 
the number of combinations that would 
result mathematically if we considered 
all possible alternatives. We have just 
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seen some of the problems related to the 
number of test outcomes considered and 
the number of resultant tree structures. A 
third simple equation reveals the combi- 
natorial growth associated with compre 
hensive multiplefailure analysis (see 
Theorem 3 in box for a proof): 

h(c,d)  = 1 + i[;) 
i= l  

where c is the number of components, 
d is the number of failures to be consid- 
ered at one time, and h(c, d) is the result- 
ing number of complex conclusions to 
be considered. 

If we have two components and wish 

to consider all combinations of failures, 
there are four possible conclusions: 
component 1, component 2, both com- 
ponents, and No Fault. With three com- 
ponents, these numbers increase to 
eight conclusions; with four compo- 
nents, there are 16 possible conclusions. 
Table 4 shows the number of failure 
conclusions possible, assuming d or 
fewer failures. 

The phenomenal computational 
complexity associated with multiple fail- 
ures and multiple test outcomes illus- 
trates the complex nature of the 
diagnostic problem. Our restrictive as- 
sumptions reduce the domain of the 
problem to a more manageable level 
and yet provide reasonable testability of 
the system. The data in Table 4 also illus- 
trate just how critical multiplefailure 
analysis is to identifying likely multiple 
failures to be included in the model. 

Choosing tests 
Any problem that grows in complexi- 

ty to the degree just described is intrac- 
table. Exhaustive search, therefore, is 
not practical, and we must consider al- 
ternative diagnostic approaches. We are 
looking for a method for choosing tests 
to minimize combinatorial growth and 
still produce efficient strategies. 

Directed search. We will use the 
case study (Figure 1) to begin develop 
ing a sense of how to choose a test to 
evaluate. The case study system has four 
outputs-one coming from ~ 1 3  and 
three coming from nIzlg. One of the latter 
outputs is tested by t16. If we perform t l 6  

and it passes, we conclude No Fault or 
~ 1 3 .  The metarules in Table 1 will declare 
that evely other conclusion is false and 
move them into the infeasible set, H. In 
addition, the expected outcome of ev- 
ery test in I will be determined. If we per- 
form t,6 and it fails, we reduce the size of 

, the feasible set by removing No Fault 
and ~ 1 3 ,  leaving 24 conclusions in G. 

1 Next, we follow the path from t l6  back 
toward the system input. This brings us 
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tinue until a test passes, thus “bracket- 
ing” the answer. 

answer must lie downstream. A failed 
outcome would imply the opposite. But 
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the information sources (the tests). One 
way to determine when the fault is isolat- 

isolation. Directed search almost always approaches. For example, an exponen- 
results in an answer if inference is per- tial approach would select a test that is 
formed with care, but resulting fault I 63% from the system input.6 Other a p  
trees tend to be extremely inefficient. proaches combine strategies. For exam- 
For example, if c20 failed, we would ple, we can select an initial test using the 
need only two tests to diagnose the fault, half-interval approach. As long as tests 

ed Shannon’s information t h e ~ r y . ~  Tests 
impart information about the diagnostic 
state of a system. If we choose tests that 
minimize the amount of uncertainty in 
the system, we can efficiently test the 
system. Our approach, entropydirected 

and if No Fault was in the system, we pass, we use the half-interval approach. search, consists of selecting information 
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I t 4  =@ 
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I t 6  =@ 

I t 1  =@ 

I t 4  =@ 
1 t 5 = @  

I t 6  =@ 
1 t 7 =  8 
1 t 8 =  9 

I t11  = 12 
1 t 1 2 =  13 
1 t 1 3 =  14 

4t5-0t1 = 10 
11t1-Ot1 = 13 
1oto-ot1 = 11 

3t4-0t1 = 8 
8t1-1t1 = 9 
6t2-1t1 = 8 

5t2-1 ti =@ 
4t2-1 ti =@ 
3t2- I  ti = @ 
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ot0-0+1=@ 

12t1-0t1 = 14 
11t2-0t1 = 14 

Figure 6. lnformation counts in the case study test-to-test matrix. Circled values are minimum information counts; min-max occurs at t4 

and tlo. 

p(t = pass) = 0.5. This assumption pro- 
vides the maximum reduction in system 
entropy. Ideally, any test chosen should 
approach this limit. As a result, the con- 
sequences of using a 0.5 probability val- 
ue are minimized; however, we can 
modify this probability with a weighting 
process described later. Thus, 

I(tj = -(0.5) log (0.5) - (0.5) log (0.5) 
= -(0.5) * (-1) - (0.5) * (-1) 
= 0.5 + 0.5 = 1 

In evaluating a test, we learn 1 bit of 
information for its outcome and 1 bit of 
information for each unique test we in- 
fer. (We defined a unique test in part 3 of 
the series.) Thus, we can reduce the en- 
tropy calculation to simple counting.8 
As early as 1960, Johnson addressed the 
problem of constructing optimal diag- 
nostic decision trees using information 
rnea~urement.~ Hartman et al. and Ad- 
dis subsequently performed additional 
work applying information theory and 

the design of diagnostics.'"," Chang and 
Kautz applied a closely related counting 
approach to the specific problem of di- 
agnosing digital combinational cir- 
c u i t ~ . ' ~ ~ ' ~  

For each test in the model whose out- 
come we do not know (through either 
testing or inference), we compute the 
amount of information, assuming the 
test passes and then assuming the test 
fails. In all these calculations we assume 
that we will identify asingle conclusion. 
However, the single conclusion may be 
a specified multiple failure. We limit in- 
formation counting to tests. Conclusions 
are a by-product of the inference pro- 
cess. We compute the information value 
for a test, t,, according to these rules, 
which precisely follow the inference 
metarules in Table 1: 

1. Assume ti passes, and count the 
number of tests that can be inferred. 
This is the number of unique tests 
upon which t, depends plus one 

(for the test itself). 
2. Assume ti fails, and count the num- 

ber of tests that can be inferred. This 
is the number of tests that depend 
on ti plus the number of tests that 
can be considered not needed plus 
one (for the test itself). The not 
needed calculation consists of ex- 
amining test 5 to see if it either d e  
pends on ti or is depended on by t i .  
If neither is true, and if eliminating 
5 does not create a new ambiguity, 
t, is not needed. 

3. Multiply the pass value and the fail 
value by a weight computed as d e  
scribed in either Equation 16 or 
Equation 19. Let the minimum b e  
tween the weighted pass value and 
the weighted fail value be the test's 
information value. 

4. Choose the test with the highest 
weighted information value. 

When several tests have the same infor- 
mation value, we can apply several t i e  
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breakers, discussed later in this article. 
To compute the tests' information val- 

ues, we must define several variables. 
First, let gi represent the information 
learned from t is  passing. Then 

g, = 

a,, = 

111 

+Call 

l;(Dv =1) A ( i # ; ) A ( r ,  EUI) 
,=I 

A([, = unknown) 
0;othenvise (6) 

where b is the closed matrix and bij is 
the element at the ith row, jth column. 
Note that we do not count i = j  because 
that is represented by the 1 in Equation 
6. Note also that we consider only rela- 
tionships to unique tests (4 E UI) and 
currently unknown tests. This counting 
algorithm follows from inference meta- 
rule 2. 

Now let b, represent the information 
learned from the failure of ti. We can 
then compute the sum of four terms 
(corresponding to inference metarules 4 
through 6): 

b, = x p ,  + x y I j - x 6 ,  +1 0 
r=l r=l r=l 

where 

PI, = 

Y, = 

and 

6, = 

'l;(D,, = 1)A (i # j )  A([, E UI) 

A (t,  = unknown) 

0; otherwise (9 

'1;[Dr, = 0) A [Dlr = 0) A (i # j )  
A ( t ,  E UI) A ( t ,  = unknown) 

10;othenvise (9) 

if t ,  is deleted, 
l;(yll = 1) A ambiguities in i G increase 

[O; otherwise 
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signatures to be 
the same (new 

ambiguity) 

Eliminating t, 
removes these 
dependencies. 

Conclusion elements 
to be considered 

. - a  
0 7 N 0 * LD * m - -  

2 - - - - - 
1 1  1 1 1 1 --.E .E 

Figure 7. Test-not-neededcalculation. 

Equations 6 and 7 are similar and rep 
resent a column scan and a row scan, 
respectively. Equation 9 covers cases for 
which no explicit dependency relation- 
ships exist, and Equation 10 covers the 
UNLESS portion of inference metarule 6. 
The computation of Equation 10 is iden- 
tical with the excess test computation 
described in part 4 of this series. 

Figure 6 shows the information break- 
down for the selection of the first test of 
the case study, with the calculations in 
Equations 6 and 7. Figure 7 illustrates the 
test-not-needed computation. Here we 
consider t5 as having failed, and the fig- 
ure shows the appropriate counting in- 

formation. Equation 9 identifies tl as nei- 
ther depending on rj nor being depend- 
ed on by tj , but Equation 10 removes rj 
from the count because its elimination 
increases ambiguity. 

We make the actual test choice with a 
min-max algorithm as follows: 

@; = min e;, bi], 

111 
y = max 

r=1 

We choose tisuch ... at $, = v/. This pro 
cess, derived from the minimax theorem 
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Table 5. Search strategies and their results for the case study. 

Average Variance 
First number in number I 

’ Strategy Description test oftests oftests ~ 

I Directed 

Half-interval 

Half-interval 
directed 

, Exponential 

Exponential 
directed 

Half-interval 
with pretest’ 

Entropy- 
directed 

Perform all tests sequentially t i6  6.1 5.06 
beginning with first known I 
fault or output. Skip tests 
whose outcome can be inferred. 

Proceed from outputs to inputs 
after a passed test, and from inputs 
to outputs after a failed test. 

failed test outcome is met; then 
proceed with directed search. I 

with a 63% partition. 

but with a 63% partition. 

pretest of inputs and outputs. 

Test at middle of system. t8 4.2 0.56 

~ 

Proceed with half-interval until f8 4.3 0.76 

Same as half-interval but ti0 4.5 1.60 

Same as half-interval directed t i 0  4.7 1.96 

Same as half-interval but with inti 6.1 5.45 

Method outlined in this article. t4 4.0 0.00 

‘Any of the preceding strategies can be utilized after a pretest of inputs and outputs. 

of game theory, assures that the test c h e  
sen will have a robust value regardless of 
its outcome. If several tests have the 
same information value, we can apply a 
number of tiebreakers. For example, in 
the case study t4 and tlo tie, so to break 
the tie we choose the test with the high- 
est maximum information value as fol- 
lows: For t4, g4 = 7 and b4 = 8. For tlo, glo 
= 7 and blo = 7. Thus, max {g4, b4) > max 
kl0, blo), so we select t4. Additional tie- 
breakers include counting information 
in the conclusion set, counting first- 
order inferences, and selecting the test 
with the largest index value. The last 
method has the added advantage of al- 
ways breaking the tie. 

Comparison of methods 
Table 5 summarizes the search strat- 

egies discussed in this article and 

shows the average and variance of the 
number of tests in the diagnostic trees 
for the case study. The entropydirected 
and half-interval approaches perform 
better than the other approaches; in 
fact, the entropydirected approach ac- 
tually yields the theoretical minimum 
values for binary tests for the case 
study. Unfortunately, we cannot prove 
optimality because generating optimal 
binary decision trees is known to be 
NP-complete, and we are forced to use 
a local search mechanism.I4 In one 
case, where we have a fully serial sys- 
tem, we can prove that the entropy- 
directed approach is optimal. For this 
case, the entropydirected approach 
becomes equivalent to the half-interval 
approach. Further, for a large number 
of real systems, the entropydirected a p  
proach has provided results at or very 

near the theoretical minimum number 
of tests. 

Multicriterion optimization 
So far we have assumed that factors 

associated with test times, test costs, and 
failure frequencies are either unavail- 
able or unimportant. In real problems, 
of course, these factors may be more 
important than the number of tests con- 
ducted. For example, four tests may re- 
quire several hours, while several dozen 
tests may take just a few minutes. The 
latter case may be preferable if it is just 
as accurate as the former, requires the 
same level of expertise, and all other fac- 
tors are equal. We may wish to include 
multiple factors directly in the computa- 
tion, such as the least costly isolation on 
premium shifts and the quickest isola- 
tion on normal shifts (the latter factor al- 
lows more work to be performed on 
normal shifts). 

Clearly, several factors can influence 
the process by which we choose tests. 
Normally, for multicriterion optimiza- 
tion we develop a common factor, such 
as dollar value, and reduce each perti- 
nent parameter to the common ele- 
ment. Our process uses information 
value as the common element, scaling 
that value in terms of relative worth. 

We empirically derived a weighting 
scheme and verified it byappli~ation.’~’~ 
The weighting scheme is based on two 
types of parametes: 

parameters directly related to test 
worth, such as test cost, test time, 
and skill level 
parameters indirectly related to test 
worth through the conclusions in 
the analysis, such as component 
failure frequency and component 
criticality 

Using these weights, we modified the 
min-max algorithm to operate on 
weighted information value: 
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We choose ti such that 4; = y*. We 
use w/  for the weighting applied to a 
passed test outcome and wy for the 
weighting applied to a failed outcome 
because in general the two weights may 
be different. Note that we can combine 
multiple types of weights by multiplying 
weights together. Of course, the terms in 
the product must first be normalized or 
standardized. Thus, a weight, wi, is sim- 
ply computed as 

" *  
wi = n w j i  

j=l 

where w; is the normalized weight of 
typejassociated with test ti, and n is the 
number of weighting types. 

Weighting for direct parameters. 
For the direct parameters, we use the 
convention that a largervalue indicates a 
less desirable test. This is consistent with 
the normal range of values assigned to 
weights, such as test cost or test time. 
Thus, we expect the value of information 
provided by a test to decrease as the di- 
rect parameter increases. In other words, 
the weight applied should be inversely 
proportional to the direct parameter: 

where d; is the value of the direct param- 
eter, K~ is a normalization constant, and 
wi is the weight that will be applied to the 
information measures. For the direct pa- 
rameters, K~ is given by 

K , =  ("( E -  $ 
Thus wi will always be a number b e  
tween 0 and 1. 

Weighting for indirect parame- 
ters. For the indirect parameters, we 
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apply the weights to the conclusions in 
the model and derive weights for the 
tests. Therefore, we use the convention 
that a larger value indicates higher prior- 
ity in considering the conclusion. This 
scaling is consistent with the normal 
range of values assigned to weights, 
such as failure rate or criticality. Using 
indirect parameters, we determine the 
weight applied to the test through the 
dependency relationships stored in the 
matrix. First, we compute the test contri- 
bution, tc, : 

IF1 
tCi = E a J  

i=l 

e j ;  DJi = 1 (1 s) 
0; otherwise 

where aj = 

where ej is the indirect parameter value 
attached to conclusion cj More simply, 
tci is the sum of all ei that apply to the test. 
Then 

where K~ is a normalization constant d e  
termined by 

This assures that wi will have a value b e  
tween 0 and 1. 

Weighted test choices for case 
study. Table 6 (next page) presents the 
computed weights to be applied in fault- 
isolating the case study. We took the 
data for test times, skill levels, and failure 
rates from part 2 of our series? We com- 
puted the normalizers with Equations 16 
(for direct weights) and 19 (for indirect 
weights). We multiplied the information 
counts by these weights, as shown in 
Table 7. 

This formulation considers each pa- 
rameter equally. That may not be at all 
desirable, and an analyst may wish to 
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emphasize one parameter over another. 
For example, in the last column of Table 
7, where all test weights are treated 
equally, tl is chosen. Table 6 shows that 
tll has a high skill level, and we may 
wish to emphasize the skill level require 
ment and reduce the skill level of the 
first test chosen. Because we have nor- 
malized the weights, we can use an em- 
phasis factor that applies an exponent to 
the parameter to be emphasited. Then 
we can compute the weighted informa- 
tion value of a test as follows: 

where w;i is the normalized weight of 
typej for test ti, q is the emphasis expo 
nent applied to weights of typej, and R 
is the number of weight types. We then 
choose ti such that 

For example, suppose the three 
weights to be applied are skill level, test 
time, and failure rate, corresponding to 
types 1,2, and 3, respectively. Then, if q1 
= 2, qz = 1, and q3 = 1 (emphasizing the 
skill level factor), the test choice of the 
first column of Table 7 changes from tl 
to t18. Note that t18 has a considerably 
lower skill level. 

Constructing the fault tree. The test 
choice algorithm is central to construct- 
ing a fault tree, but it is not complete; it 
must be combined with a problem r e  
duction strategy and a tree traversal 
strategy. Figure 8 (page 66) shows the 
nodal-pivoting tree traversal strategy we 
use to develop fault trees. This tech- 
nique, based on a pre-order (depth-first) 
tree traversal, is computationally effi- 
cient and can easily be adapted to tests 
with multiple outcomes. The technique 
is described in detail by Cormen, Leiser- 
son, and Rivest.I8 The nodal pivot point 



Table 6. Case study weight computations. 

Failure Failure -7 
Skill Time ratesum rate Failure 1 

Test Skill Time weight weight fortest weight Conclusion rate 1 

tl 3 2.00 
t2 3 2.20 
t3 5 2.40 
t4 4 1.50 
t5 4 1.30 

t7 5 1.00 
t8 3 2.00 

t6 3 3.00 

t9 4 0.50 
ti0 6 0.60 
tl1 7 0.10 
t12 2 0.90 
t13 3 1.20 
ti4 4 1.60 
tis 2 1.50 
f16 3 2.00 
t17 3 1.50 
ti8 3 0.30 
int, 2 1.00 
in4 3 1.00 

0.0537 
0.0537 
0.0322 
0.0403 
0.0403 
0.0537 
0.0322 
0.0537 
0.0403 
0.0268 
0.0230 
0.0806 
0.0537 
0.0403 
0.0806 
0.0537 
0.0537 
0.0537 
0.0806 
0.0537 

0.01 79 
0.01 62 
0.01 49 
0.0238 
0.0275 
0.01 19 
0.0357 
0.01 79 
0.071 4 
0.0595 
0.0357 
0.0397 
0.0298 
0.0223 
0.0238 
0.01 79 
0.0238 
0.01 19 
0.0357 
0.0357 

330 
110 
220 
530 
420 
440 
440 
440 
440 
450 
550 
650 
785 
800 
900 
900 
800 
440 

10 
10 

Normolizers 
Skill (Equation 17): 0. 1 6 10 
Time (Equation 17): 0.0357 
Failure rote sum for test (Equation 20): 0.000 1035 

is where we assign and process test out- 
comes, using the inference metarules in 
Table 1. We repeat the test choice pro- 
cess, using the reduced set of unknown 
tests and feasible answers, until we can 
draw conclusions. 

The remaining problems include stor- 
ing intermediate answers (the reduced 
problem set) to allow backtracking, and 
terminating the diagnostic sequence. 
We accomplish the former through re- 
cursion or an explicit stack structure, 
which we will not detail here. 
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0.0341 5 
0.01 138 
0.02276 
0.05484 
0.04346 
0.04553 
0.04553 
0.04553 
0.04553 
0.04656 
0.0561 9 
0.06725 
0.081 22 
0.08273 
0.0931 2 
0.0931 2 
0.08273 
0.04553 
0.001 04 
0.001 04 

C1 

c2 
c3 
c4 
5 

c7 
C8 

c9 
c10 
c11 
c12 

6 

c13 
c14 
c15 
c16 
c17 
C18 

c20 
c2 1 

c19 

int, 
int2 

;nu1 
;nu2 

5 
5 

100 
100 
100 
100 
5 
5 
5 
5 
5 
5 
5 

100 
100 

5 
5 
5 
5 

100 
100 

10 
10 
10 
10 

We terminate a diagnostic sequence 
through the inference process; Table 8 
gives applicable inference metarules. In 
our experience, rule 15 is the only one 
that terminates a sequence; the meta- 
rules in Table l force rule 15 to be satis- 
fied at the same time as rules 16 and 17. 
Under rule 15, the entire diagnostic pre 
cess considers only tests and scarcely 
looks at the conclusions until it declares 
termination. Only inference metarule 6 
and second-level tiebreakers use the 
conclusion set at all, in determining 

which tests to use and in which se- 
quence to use them. Thus, entropy- 
directed search differs significantly from 
other approaches to diagnosis, which 
heavily emphasize conclusions in the 
development of test strategies. 

THE THEORETICAL EXPLANATION in this 
article lays a solid foundation on which 
we can approach system diagnosis. The 
techniques described here have been 
applied in a number of cases with solid 
cost benefiGand sometimes spectac- 
ular results (order-of-magnitude im- 
provements). The first article of the 
series described some of these real- 
world applications. 

We have, however, ignored many as- 
pects of real problems. For example, di- 
agnosis frequently begins with our 
knowledge of specific symptoms a sys- 
tem is exhibiting. These symptoms prc- 
vide valuable information that can 
significantly reduce the number of faults 
to be considered (and the number of 
tests to be performed). We would like to 
include this information in generating 
fault trees. 

Furthermore, in our last two articles 
we posed several testability problems 
that we can address (and maybe even 
solve) by means of existing tests and the 
information flow model. For example, 
we can use excess and redundant tests 
to identify false alarms as they occur. For 
us to use these tests, fault trees must take 
them into account, which means that 
certain inferences may need to be sup 
pressed. 

Finally, we can use the group con- 
structs in the model to guide hierarchi- 
cal diagnosis and to further control test 
selection, adapting the optimization and 
inference procedures to provide maxi- 
mum flexibility and realistic testing. We 
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Table 7. Weighted test choice. 

Weiaht 
Least time Minimum skill, 

Most for most least time for 
MI" Minimum Minimum frequently frequent most frequent 

Test {gkb;) skill time failing item failure failure 

fl 
f2 

4 
f4 

ts 

t;l 
f8 

f6 

5 0.2685 
2 0.1074 
4 0.1 288 
7 t  0.2821 
5 0.201 5 
6 0.3222 
6*' 0.1 932 
6** 0.3222 

f9 6** 
fl0 7 
fl 1 6 
f12 5 
fl 3 3 
fl 4 2 
fl 5 1 
fl 6 1 ** 
tl7 2** 
fl 8 6** 
inf1 1 
inf2 1 
Best test f4 

0.241 8 
0.1 876 
0.1 380 
0.4030 
0.161 1 
0.0806 
0.0806 
0.0537 
0.1074 
0.3222t 
0.0806 
0.0537 

fl8 

0.0895 
0.0324 
0.0596 
0.1 666 
0.1 375 
0.071 4 
0.2142 
0.1074 
0.4284 
0.41 65 
2.1420t 
0.1985 
0.0894 
0.0446 
0.0238 
0.01 79 
0.0476 
0.71 40 
0.0357 
0.0357 

fl 1 

* Value from Figure 6 
*' Value taken from unique element of redundant group3 
t Indicates test choice 

0.1 7075 
0.02276 
0.091 04 
0.38388t 
0.21 800 
0.273 1 8 
0.2731 8 
0.2731 8 
0.2731 8 
0.32592 
0.3371 4 
0.33625 
0.24366 
0.16546 
0.0931 2 
0.0931 2 
0.16546 
0.273 1 8 
0.001 04 
0.001 04 

f4 

0.0030564 
0.0003687 
0.001 3565 
0.0091 363 
0.0059950 
0.0032508 
0.0097525 
0.0048899 
0.01 95051 
0.01 93922 
0.12035Wt 
0.01 33491 
0.007261 1 
0.0036898 
0.00221 63 
0.001 6668 
0.0039379 
0.0325084 
O.oooO371 
O.oooO371 

fl 1 

0.0001641 
O.oooO198 
O.oooO437 
0.0003682 
0.000241 6 
0.0001746 
0.00031 40 
0.0002626 
0.0007861 
0.00051 97 
0.0027683 
0.001 0759 
0.0003899 
0.0001487 
0.0001786 
O.oooO895 
0.00021 15 
0.001 7457 
0.0000030 
0.0000020 

fl 1 

will discuss these and additional issues 
in part 6 of this series, in which we will 
develop specific fault trees for the case 
study. @k 
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