
I N T E G R A T E D D I A G N O S T I C S

Performing EfFeaive Fault
Isolation in Integmted

IN TODAY'S CLIMATE of decreas-
ing budgets, the number of new
systems being developed is de-
creasing, and the lives of existing
systems are being extended. Con-
sequently, aging systems are expe-
riencing failures more frequently
than before. New systems also fail,
and those failures are hard to diag-
nose because of the increased so-
phistication and complexity of the
systems. Performing fault isolation
on existing systems and new com-
plex systems requires meticulous
bookkeeping and detailed under-
standing of failure behaviors. The
test engineer must devise ap-
proaches to fault isolation that pro-
vide accurate diagnostics and that
take into account such factors as
sequence, groups, and potential

__i JOHNW.SHEPPARD i
WILLIAM R. SIMPSON

Arinc Research Corporation

In the sixth and final arti
series, the authors de

modifications or constraints. Then
they add factors typically

encountered at different levels of
fault isolation to modify and
constrain the search
Finally, they develop
trees to illustrate the i m p

these factors.

I

false positives and false negatives. In 1 pear on pages 53 and 54 of part 5 of the 1
part 6 of our series on integrated diag-
nostic~,'-~ we construct several fault
trees that account for these and other
factors.

We present the case study of an anti-
tank missile launcher, used throughout
the series, in the context of a complete
maintenance architecture. Case study
documentation is not repeated here due
to space limitations. The dependency
diagram and the closed dependency
matrices for the case study system ap-

series5 Tables 1 and 2 on pages 26 and
27 of part 22 provide pertinent data for
testsand conclusions. We use these data
to develop diagnostic strategies.

Information flow model
This series has presented a model-

based approach to integrated diagnos-
tics. The information flow model
permits a thorough design-for-testability
procedure and a basis for generating ef-
ficient and effective fault isolation strat-

egies. The information flow model
defines the interrelationships of sys-
tem elements in terms of the flow of
diagnostic information. The model
can include as an information
source any event or observation
that provides information about the
system under study (for example,
stimulus-response pairs, boundaly-
scan outputs, and probe informa-
tion). The model can include as a
fault isolation conclusion any con-
clusion that one can draw during
diagnosis (a failure of a specific
component, a specific failure mode
of a piece of hardware, a nonhard-
ware failure such as bus timing, and
the absence of a failure). The
model-based approach is hierarchi-
cal, and any single model can in-
clude any conclusion type.

The first step in the model-building
process is to determine the level of diag-
nostic analysis required. Analysis could
include embedded diagnosis (as in built-
in test); manual organic maintenance;
manual, semiautomatic, or automatic
shop repair of units from field sites; or d e
pot repair of expensive cards for resale or
insertion into a logistics pipeline. The lev-
el of diagnosis determines the fault isola-
tion conclusions to consider and the
appropriate tests to conduct. Ideally, the
engineer develops a hierarchy of sub-

-

70 0740-7475/93/0600-0078$03.00 0 1993 IEEE IEEE DESIGN & TEST OF COMPUTERS

Min
c c - - - N 0 - , “ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , E u I pass Fail (Pass, Fail) Rank*

t l Yes 1 t 4 =@ 1 t4t5-0 =IO 5 10
t, Yes I t 1 =@ 1t11t1-0=13 2 5
t3 Yes I t 3 =@ 1tIOtO-0=11 4 9
t 4 Yes 1 t 6 =a 1t3t4-0 = 8 7 19
t5 Yes I t 4 =@ l t 8 t l - 1 = 9 5 11
t6 Yes I t 5 =@ 1t6t2-1 = 8 6 13
t7 No (t6) Take values from t6 6 14
t8 No (t6) Take values from t, 6 15
t9 No (t6) Take values from t 6 6 16

t l1 Yes 1 t 7 = 8 1t4t2-1 =@ 6 17

3 Yes i t 1 1 = 1 ~ 1 t 2 t 0 - o =@ 3 8

L o Yes I t 6 =@ 1t5t2-1 =@ 7 20

11 2 Yes 1 t 8 = 9 1t3t2-1 =@ 5 12

t l 4 Yes 1 t 1 2 = i 3 i t i t o - o = @ 2 7
tl 5 Yes 1 t 1 3 = 141tOtO-O=@ 1 2
t16 No (t15) Take values from t,, 1 1

int, Yes 1tO=@ l t 1 2 t l - 0 = 14 1 3
int, Yes I t 0 =@ 1t11t2-0 = 14 1 4

7 No (t,,) Take values from t,, 2 6
t l 8 No (t6) Take values from t 6 6 18

* May have other

on where ties are
l u l l rankings depending

1-1 ranked
Pass = 1 = (column value = 1 A t , E UI) Nonunique elements and diagonal elements shaded to indicate no counting

l u l l [U 1 1 [U 1 1

Fail = 1 = (row value t 1 A t, E UI) t (column and row value # 1 A t, E UI) - (elimination creates ambiguity)
1 - 1 k = l 1-1

Figure 1. Information counts for not-needed ranking in case study test-to-test matrix. Circled values are minimum information counts.
(G e part 5 for mathematics.)

systems (thus, a hierarchy of models) to
address each level of diagnosis. If the hi-
erarchy is developed early in the system
design process, the engineer can analyze
the hierarchy and continue to refine sys-
tem testability as the design matures. This
approach fits well within concurrent en-
gineering guidelines because of the close
ties between system design and testabili-
ty design.

Optimized fault isolation:
the first step

Previously, we presented an entropy-
directed search process and several in-
ference rules for developing fault trees5
We derived entropy-directed search
from Shannon’s information theory,6
which has also been applied extensive-

ly in decision theory and machine learn-
ing.7.8 Entropydirected search seeks to
maximize the reduction of uncertainty
independently of a test’s o u t ~ o m e . ~ , ~
Using entropy-directed search, we re-
duce the search process to a count of
information gained and focus only on
learned test outcomes (except in the
case of tiebreakers). The search for a
conclusion terminates either when the
outcomes of all tests are known or when
only one viable conclusion remains.

To construct a fault tree using entropy-
directed search, we first reduce the com-
putation load by determining which tests
are not needed for diagnosis. The algo-
rithm for determining which tests to elim-
inate is identical to the excestest
analysis algorithm presented in part 3.3

We declare a test not needed if elimina-
tion of the test from the test set will cause
no relevant additional ambiguity. (Ambi-
guity occurs when two conclusions have
identical test signatures.) The algorithm
ranks the tests in reverse order of desir-
ability (based on information gain) and
evaluates the least desirable test first. B e
cause tests are evaluated sequentially
and declaring a test not needed may af-
fect whether downstream tests can be d e
clared not needed, the ranking forces the
least desirable tests to be eliminated first.
This “preconditioning” of the test set gives
us a tree with the minimum number of
tests but may cause overall losses in
efficiency.

Figure 1 shows the result of counting
information gain for each test in the case

JUNE 1993 79

I N T E G R A T E D D I A G N O S T I C S
~~ -~

\

Figure 2. Not-needed analysis for case study.

Not
needed

t i 6 Yes
ti, NO

1 % No
1 % No

tz No
f17 Yes
t14 NO
t13 NO
t3 No
t i NO

ti, No
ts Yes

ti, No
tie No
14 No

tio NO

Min

5
2
4

D - N C)

- I - ,m - - s 2 2 & ; State Pass Fail (Pass, Fail) -
tl 0 0 1
t , 1 1 1
t 3 1 0 1
t 4 ' 0 010
t.5 Not needed
t6 Not needed
t 7 Not needed
t8 Not needed
t9 Not needed

8
5
5
3
2
1

ti 6 Not needed
7 Not needed

Unknown 5 7 5
Unknown 1 1 3 1
Unknown 1 1 3 1

Figure 3. /nforrnation counts for first test choice in case study test-to-test matrix

80 IEEE DESIGN & TEST OF COMPUTERS

study, together with the minimum infor-
mation yield under an arbitrary outcome.
We can weight the information gain for
test times, skill levels, failure frequencies,
or other factors before ranking. Figure 2
shows the result of evaluating the tests in
ranked order. In the figure, the test-tc-
conclusion dependency matrix has been
transposed and the tests reordered to re-
flect the ranking. The shaded rows indi-
cate the tests to be declared not needed.
For example, the first ranked test is t l 6 . If
we remove that row from Figure 2 and
compare the column signatures across
all conclusions, we find that no two con-

f
t, Pass
U

t, = pass
t, = pass
t, = pass
t, = pass
t, = pass

int, = pass
int, = pass

c1 = pass
c, = pass
c, = pass
c4 = pass
c, = pass
cg = pass

cpl = pass

Figure 4. First test of fault tree.

."I> No Fault

I
Pass Backup
c(

Fail

Pass B a c k u r n

f Fail

Backup

t14 d,
L

Pass

ti, d r
Pass

t 4 d

t,, =fai l
ti, =fai l

c13 & No Fault c,,, = pass
III

Figure 5. Termination ofa diagnostic
sequence.

clusions that previously had different sig-
natures now have identical signatures.
Thus, t l6 is not needed and is eliminated.
At this point, the algorithm masks tl6 out
of the matrix and evaluates (15. Eliminat-
ing tI5 would cause c20 to be identical to
No Fault and ~ 1 3 , so t i5 is considered not
excess and must be retained. Note that
this is true only because t i6 was eliminat-
ed. We see from Figure 2 that the analysis
determines seven tests are not needed.

Once we have eliminated the excess
tests (by assigning their test outcomes as
not needed), we create a fault tree, us-
ing entropydirected search with the
depth-first tree traversal described in
part 5. Figure 3 shows the test-to-test
matrix after all known tests are masked
and the information measure is comput-
ed for all remaining tests. The values in
Figure 3 differ slightly from those in Fig-
ure 1 because different tests have been
masked out. In Figure 1, six tests are
masked out for uniqueness. In Figure 3,
seven are masked out as not needed.
The minimum information measure has
a maximum value for both t4 and tlo. We
resolve the tie in favor of t4 because it
has the largest maximum information

value. We assign this first test a pass out-
come and provide both the test and its
outcome to the inference engine (Fig-
ure 4). Because the termination meta-
rules are not invoked, the search
continues with a second test.

Figure 5 shows termination of the first
path in the fault tree. At this point, only
t i 5 remains, so we do not actually have
to compute information gain. We must
choose t15. Drawing inferences from t15's
passing invokes the termination meta-
rules and assigns the diagnostic out-
come to this path. Because the path has
terminated, the algorithm backs up in
the tree to t15, which is assigned the next
outcome (fail outcome). This also tenni-
nates the sequence. Again, the algo-
rithm assigns the diagnostic outcome
and backs up in the tree to t15, which
does not have an unevaluated outcome.
The algorithm backs up again to t14,
which is assigned a fail outcome.

At this point, the sequence does not
terminate, and the algorithm must
choose a new test. Eventually, because
there is no previousstep, backing up fails,
signaling completion of the tree. Table 1
shows the complete fault tree in tabular

Table 1. Basic fault tree table for the case study.

Previous Pass Fail
Test SkP outcome outcome

I 1 t4 0 Step 2 Step 9

~2 tl2 1 Step 3 Step 6
3 t14 2 Step 4 Step 5

SkP

~

tl 5 3 cl 3, No Fault c20
tl 3 3 c19, ;nul ~

c16, c171 cl 8,
6 tl0 2 Step 7 Step 8

~;
7 tl 1 6 cl 5 c14

~8 tl R 6 c11, c12 c7r CE, c9r CIO ..

9 t3 1
10 tl 8 9
1 1 tl 10
12 tl 10
13 t2 9
14 int, 13
15 int, 13

Step 10
Step 1 1

c2 1

c5
Step 14

c4
c3

~~

Step 1 3

c1/ c2
6

Step 15
in t2

int,

step 12

JUNE 1993 81

I N T E G R A T E D D I A G N O S T I C S

Table 2. Skill-level-optimized fault tree for the case study.

Test Previous Pass Fail
Step (skill level) step outcome outcome

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

~

0
1
2
3
2
5
1
7
8
9
8
7

12
13
12
~

form. This tree is uniform in depth, al-
ways requiring four tests to isolate. We
can use it to fault-isolate the case study,
but we may need to include several
practical factors, reviewed in the follow-
ing sections.

Diagnosis in an operational
environment

If we assume that the case study sys-
tem is to be used in a field operational
environment, we must verify that it is
ready to perform or is repairable in this
environment. We must consider two as-
pects of fault isolation in an operational
environment. First, technicians of various
skill levels attempt to isolate faults. It is
therefore important to minimize the skill
required. Second, we must consider the
repair hierarchy. When asystem problem
is difficult to diagnose, the operational
personnel send the system either to an
intermediate repair facility or to a repair
shop. For activities with remote opera-
tions, repair takes place at the replace
able unit level and not at the component
level. Remote activities engaged in oper-
ations do not undertake repair but send

step 2
Step 3

~ 1 3 , NO Fault

c20
Step 6

Step 8
Step 9
Step 10

c7, C8, c9, Cl0
Step 13
Step 14

c3

c16, C17r C18r ;nul

cl 5

c6

Step 7
Step 5
Step 4

c1, c2
c2 1

c19, ;nul

step 12
step 11
c11, c12

c5
Step 15

int2

c4

c14

int,

the entire system to an intermediate re
pair facility. When diagnosis become
too difficult or too many systems are sen
back to the intermediate repair facility, i
sends the system to a shop outside thc
operational environment.

Because of this repair hierarchy, wc
must develop three sets of fault isolatior
procedures and several different faul
trees for the operational environment
The first set of procedures, for the inter
mediate repair facility and activities tha
are not remotely deployed, isolates to i
level consistent with component repair
The procedures are based on minimiz
ing either skill level or time to isolate
depending on personnel availability
The second set of procedures, to bc
used by remote activities, isolates to thc
replaceable unit level and is optimizec
for minimum skill level. The third set o
procedures, for remote activities en
gaged in operations, determines wheth
er or not the system is ready for use.

Weighted fault trees for interme,
diate repair. For intermediate repair o
the case study, two isolation factors arc

important: skill level (designated by US
military enlisted rank) and time.

In the field, an E7 may not be avail-
able to assist with each fault isolation, so
a diagnostic procedure should use per-
sonnel of lower skill levels and call for
an E7 only when needed. The first step
in building a fault tree optimized forskill
level is to assign skill-level weights to
each test. For the case study, we assign
the numeric values from the military
skill-level designations, thus assuming a
linear relationship between rank and
skill level required for each test. If we b e
lieve the linear assumption is incorrect
or if it yields unsatisfactory results, we
can mathematically emphasize the skill-
level factor. We detailed the analytic
process of integrating multiple optimiza-
tion criteria into the diagnosis, including
the use of emphasis factors, in part 5.

The not-needed analysis applies ap-
propriate weights (in this case, skill-
level) before tests are ranked. Table 2
provides the tree that results from
weighting by skill level (listed after each
test name). Note that the system can be
verified to be operational by an E3 (that
is, all tests on the No Fault path require
skill levels of E3 or less). Note also that
only steps 9 and 10 require high skill lev-
els. Further, all the difficult tests occur at
the end of diagnostic sequences. This
tree requires completion of an average
of 4.31 tests-a slight increase over the
unweighted tree, which requires 4.0
tests to isolate.

Asecond fault tree is needed for oper-
ational use when skill level is not a prob-
lem (that is, when E7 personnel are
available) but time is. In some cases,
however, the time required to perform a
test is a function of a number of factors.
For example, performing several tests in
one sequence may require less time
than performing the same tests in a dif-
ferent sequence. In that case, test time
depends on previous tests performed.
For timecritical applications, we may
want to construct a matrix of test times
as a function of previous tests. (Troy de-

82 IEEE DESIGN & TEST OF COMPUTERS

scribes the matrix approach to time,
cost, and other factors.lO) In general,
however, we define a time function in
which test times depend on access pan-
els that are already open, tools that are
within reach, test equipment that has
been set up, and so on.

For this article, we assume that a sim-
ple time metric is sufficient. For the case
study, we wish to construct a fault tree
for the intermediate repair facility to
which personnel resources are fully
available. Therefore, we construct a tree

duce cost or weight. In manual diagno-
sis, the source of unreliable test
outcomes may be as simple as not hav-
ing personnel with appropriate skill lev-

Table 3. Time-optimized fault tree for the case study.

of a problem although a problem actual-
ly exists. We can address a false assur-
ance by determining whether certain
tests are failing to provide expected in-

I Test Previous Pass Fail
i step (time) step outcome outcome

0 step 2
1 Step 3
2 c13, No Fault
3 c20
2 Step 6

5 c2 1
1 Step 9

5 cl 6, c17, cl 8, ;nu2

Step 8

Step 4

Step 7
cl 5

c1, c2
Step 10

step 5

c19, ;nul

tl0 (0.60) 8 cl 4 c11, c12
tl (2.00) 8 Step 11 Step 12

weighted for both test times and compc-
nent failure frequencies so that the opti-
mization goal is the minimum time to
isolate the most frequently failing ele-
ment. Table 3 shows the tree, with the
test time for each test in parentheses.
The expected time to fault-isolate is
computed5 as 3.1 1 time units; actual isc-
lationsvary between one and eight time
units and require between three and six
tests.

Protecting intermediate repair
from improper diagnosis. Some skill
levels may not be available in some ac-
tivities. As a result, personnel with
lower-than-desirable skill levels may
perform tests. This situation can lead to
false test indications (data misinterpret-
ed or tests incorrectly performed). If we
can determine when the fault isolation
may be in error, we can default mainte-
nance to the next level of repair. So far,
we have assumed that tests are com-
pletely reliable. For example, when we
determine a test passes, the test really
does pass. For a variety of reasons,
however, the test may not be reliable.
For example, to reduce the amount of
code needed to support built-in test
(BIT), we may have simplified the pro-

1 1 f4 (1.50) 10 C7r c8, c9, c10 5
12 t2 (2.20) 10 Step 13 Step 15
13 t3 (2.40) 12 c6 Step 14
14 int2 (1 .OO) 13 c4 int2
15 inti (1.00) 12 c3 intl

els. At the lower skill levels, we are not
certain that test outcomes are being in-
terpreted correctly or that the test is
even performed correctly.

The false test indication discussed in
the literature most frequently is the false
alarm. (BIT false alarms and their impli-
cations for maintenance are discussed
in reports by Malcom and by Speny Cor-
poration.IlJ2) The primary result of false
alarms is wasted maintenance actions,
including inappropriate repairs and in-
appropriate system downtime. If mainte
nance personnel repair the wrong unit,
troubleshooting time will increase until
the faulty unit is finally identified.

A second type of false test indication,
rarely discussed in the literature but per-
haps just as devastating, is the false as-
surance. In a false alarm, we have an
indication of a problem through im-

formation within the diagnostic process.
Several solutions exist for improving in-
dividual tests, including repeat polling
and modified t01erances.I~

If the problem lies with the technician
performing the tests rather than the tests
themselves, we may wish to focus on
verifying the conclusions being drawn.
We can verify such conclusions by mod-
ifying the search process to choose tests
that focus on the drawn conclusion as a
hypothesis. Hypothesis-directed search
and entropy-directed search differ in
one important aspect: entropydirected
search does not presuppose any specif-
ic conclusion, but hypothesisdirected
search does.

To perform hypothesisdirected search,
we examine the test-toconclusion matrix
asshown in Figure 6 (next page). We now
define two measures as follows:

1; (li depends on c j) A (c j E UF),
0; otherwise

a.. =
I' {

JUNE 1993

I N T E G R A T E D D I A G N O S T I C S

I ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I
c 7 l 0 l 0 1 0 1 0 1 0 1 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 1 o l o l

U1 r

where 6 is the number of conclusion
nondependencies in t,.

These two measures are complemen-
tary; that is, e, = IUFl - (. Hypothesis-
directed search attempts to maximize
the value of e, when the test does not d e
pend on the hypothesis and to maxi-
mize the value of (when the test does
depend on the hypothesis. Figure 6
shows how hypothesis-directed search
works. In the figure, we have masked all
nonunique fault isolation conclusions
(see part 3 of our series for a detailed
description of uniqueness) and comput-
ed e, and 6 for the case study. To choose
a test to verify the hypothesis, we need to
mask out the irrelevant members of e,
and (. We have done that for hypotheses
of cg and c21 (examples 1 and 2, respec-
tively). We can choose two types of tests
that will verify the hypothesis in either a
pass outcome or a fail outcome, but we

' typically choose the most robust test r e
~ gardless of its outcome. In processing c20 o ~ o / o ~ o / o ~ o ~ o / o ~ o ~ o ~ o / o 1 o 1 o / 1 j l j o ~ o ~ o / o

[I1 ['I
e, = c (column value = 1 A cII E UF) and f, = (column value = 0 A cII E UF)

1.1 1=1

e t 6 2 4 8 6 7 7 7 7 8 9 1 0 1 3 1 4 1 5 1 5 1 4 7 1 1
f 1 1 0 1 4 1 2 8 10 9 9 9 9 8 7 6 3 2 1 1 2 9 1 5 1 5
Example 1 for c6:

f, M w E@ N x x x x x >a x 3 2 I I 2 x K K t4failoutcome
Example 2 for cZ1:

e, K 2 @) X X X X X X X X)4) X3 I4 15 K W X 1 1 t,passoutcome
f 1 1 0 W W 8 @ 9 9 9 9 8 7 6 3 2 1 1 2
(Circled values are maximums in rows.)

Figure 6. Hypothesis-directed search data for case study.

e 1 6 2 4 x 6 7 7 7 7 8 9 @) M M X X M 7 1 1 6 - 9

9 iX iX&-]

,=I where e, is the number of conclusion 1

mation source), c, is thejth fault isolation
conclusion, and UF is the set of unique
fault isolation conclusions; and

dependencies in t,, t, is the ith test (infor-

0; otherwise

the data, it is important that we mask out
any conclusions not to be considered
and any tests not to be chosen.

For the case study, we want to con-
firm the outcomes of steps in a diagnos-
tic sequence. We construct the fault
tree, using weighted, entropy-directed
search with the following exceptions:

The not-needed calculation is ex-
cluded to prevent biasing the data.
Entropy-directed search proceeds
until it achieves an answer. At that
point, the answer becomes the hy-
pothesis, and we mask any tests that
have already been completed. We
then apply hypothesis-directed
search in combination with depth-
first search.
We repeat the process for each fault
isolation conclusion in the tree,
thus adding one extra test to each
diagnostic sequence. We can mod-
i@ this procedure to include two or
more extra tests by masking the ex-
tra test and reapplying the hypothe
sisdirected search.

84 IEEE DESIGN & TEST OF COMPUTERS

for minimum skill level with the addition
of consistency checks (that is, hypothesis
directed search). The inconsistency desig
nation occurs when a hypothesis
verification test outcome is not consistent
with the hypothesis. When inconsistency
occurs, the technician sends the entire
unit to the next repair level. Although the
tree is significantly larger than the other
trees, the number of steps to fault-isolate
is a maximum of six and a minimum of
four. In fact, each sequence has in-
creased by only one test.

Isolation to replaceable unit in re-
mote activities. The dependency dia-
gram5 shows the case study with
replaceable unit boundaries. Although
testing can provide isolation to the com-
ponent level, in remote activities techni-
cians might make repairs at the
replaceableunit-group level. In addi-
tion, some of the replaceable units may
not be field-repairable or may be under
warranty. For these occasions, we mod-
ify the termination metarules to include
“Terminate when only one (or indivisi-
ble ambiguities among more than one)
replaceable unit conclusion remains.”
During fault isolation, we need to make
two other modifications. First, during the
not-needed calculation, rather than con-
sidering potential new conclusion ambi-
guities, we consider potential new
ambiguities among replaceable-unit-
group conclusions. lnferring tests to be
not needed requires a similar modifica-
tion. When we modify the tree in Table
4 to fault-isolate replaceable units, we
produce the tree in Table 5. This tree
would be part of an abbreviated mainte
nance manual for remote operations.

Remote activities engaged in op
erations (verifying system availabil-
ity). In deriving procedures to
determine whether a system is opera-
tional or ready for delivery, it is impor-
tant that we optimize the sequence of
tests that leads to a No Fault conclusion.

Test Previous Pass Fail
outcome Step (skill level) step outcome

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
3
5
5
2
8
9
9
8
1

13
14
15
16
16
15
14
20
20
13
23
24
25
25
24
23
29
29

step 2
step 3
step 4

cl 3, No Fault
Step 6

c20
c19t ;nul
step 9

step 10
c16, cl 7, cl 8, ;nul

c2 1
Inconsistency

Step 14
Step 15
Step 16
Step 17

cl 5

cl 4
Inconsistency

Inconsistency
Inconsistency

Step 24
Step 25
Step 26

Inconsistency
Inconsistency
Inconsistency

Step 30
Inconsistency
Inconsistency

step 21

Step 13
Step 8

Inconsistency

Inconsistency
Inconsistency

step 5

step 7

step 12
step 11

Inconsistency
Inconsistency

Cl I c2
Step 23

Step 19
Step 18

Inconsistency
Inconsistency

C l l r c12

9, Ca, c9, CIO

5
Step 29
Step 28
Step 27

c6

c4
inf2

Step 31
c3
intl

step 20

step 22

Fault trees designed to determine sys-
tem operability assume a high probabil-
ity of finding no faults in the system.

To derive the optimum sequence, we
use a special type of hypothesisdirected
search. Recall that no test depends on
No Fault. When we examine the full d e
pendency matrix? we can easily verify
that the No Fault row contains only z e
ros. For this special case, in hypothesis-
directed search we completely mask the
vector land choose tests strictly by max-

imizing the value of e. Figure 6 shows
that this maximum occurs at ti5 or tl6,
which is sufficient for concluding or
eliminating No Fault. If either t i 5 or tl6
fails, we reject the system and send it to
the next level of repair. Where lower
skill levels lead to uncertain test out-
comes, we perform both t i 5 and tl6. In
larger systems, we may need many tests
to reach the No Fault conclusion. We
choose each in turn, using hypothesis-
directed search.

JUNE 1993 85

I N T E G R A T E D D I A G N O S T I C S

case study. As we discussed earlier, in several in-

Test Previous Pass Fail
Step (skill level) step outcome outcome

i Penalize 3.0 time units 2 t4, tl0, tl 1

fl I f2, t3, t5 3
4 t6, t7, t8, t9,

t18r t12, h 3 r t14
Individual test, ungrouped
I nd ividua I test, u ng rou ped

5 5

6 tl 6
I

7 tl 7 Individual test, ungrouped i
I I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

~

readable output jacks is located behind
a skin panel fastened with 43 flush-
mounted screws. When test sequences
were developed for this subsystem, tests
using the output jacks were placed in a
test group. Accessing tests in that test
group resulted in a time loss because the
skin Dane1 first had to be removed. Ac-

0
1
2
3
3
5
5
2
8
9
9
8
1

13
14
14
13
17
18
19
19
18
22
22
17
25
25
-

step 2
Step 3
Step 4

rug, No Fault
Step 6

rug, ;nu1
Step 9

Step 10
ry, rug, ;nu2

TU2

Inconsistency
Step 14
Step 15

Inconsistency
Step 18
Step 19
Step 20

Inconsistency

Step 23

Inconsistency
Step 26

Inconsistency
Inconsistency

rug

ru6

Inconsistency

Inconsistency

Step 13
Step 8

Inconsistency

Inconsistency
Inconsistency

Step 12
Step 11

Inconsistency

TU1 I TU2

Step 17
Step 16

step 5

step 7

Inconsistency

ru6
Step 25
Step 22
Step 2 1
ru4, ru5

ru3
Step 24

ru3

Step 27
TU1

int2

int,

In a shop environment, different consid-
erations may drive the development of
fault trees. Forexample, although all nec-
essary test resources are available in the
shop, for work flow efficiency all tests r e
quiring a certain skill level or common
test equipment should be contiguous in
the fault tree. A collection of tests with
common factors is called a test group.
Some test groups are easier to perform
than others, and some may have penal-
ties associated with their execution. Final-
ly, some test choices are just too critical to
be left to the computer.

Handling test groups. In the case
study, we have defined four test groups,
shown in Table 6. The tests in each
group have some logical relationship to
each other, such as requiring the same
test equipment. Under ordinary fault is0
lation conditions, we would like to com-
plete the tests in one group before
proceeding to the next group. We ac-
complish this as follows:

rn When we are not currently in a test
group, we choose a test by using the
normal optimization process.

rn When we are currently in a group
and have not completed that group,

Table 6. Test groups for the case study.

Group

we restrict the test choice to the
available tests in the group.

rn When we complete a test group, we
then choose from among all re-
maining tests or test groups.
I

Not all tests are as desirable as others.
For example, in the inertial navigation number Group members Comments

, I l

86 IEEE DESIGN & TEST OF COMPUTERS

cordingly, the test group would receive
a time penalty weighting that would
cause tests in the group to be delayed
and in some cases avoided. Assuming
the case study system requires a similar
access panel to perform tests in group 2,
we have placed a penalty of 3.0 time
units on that group (Table 6).

Sequencing. In some cases, the com-
puter should not determine the test se-
quence. For example, we should
perform tests designated “safe-to-turn-
on” first, but optimization may fail to
provide this sequencing. In the case
study, we can assume that if we begin
testing the system and the inputs are not
present, we may damage the equip
ment. Accordingly, we have designated
a test group that includes the two inputs
and directed that it must be completed
first. This procedure is called group se-
quencing. We can sequence all the
groups in turn if we wish. In addition,
there is a chance that testing int, first will
cause an electrostatic discharge if int, is
not valid. Therefore, within the group
we have sequenced the tests so that int2
is chosen first. Sequencing of this type
must be consistent with associated infer-
ences (with a couple of exceptions).

Multiple failures. Growth in
computational complexity prohibits
the development of comprehensive
multiplefailure fault trees. Nevertheless,
in several cases, multiple failures are a
significant problem in developing diag-
nostic strategies. For the case study, let
us consider two such multiple failures.
In part 4 of this s e r i e~ ,~ we discovered
that the potential for false indication due
to a multiple failure was present in the
system. That is, a combined failure of c1
and c5 or a combined failure of c2 and c5
could result in a diagnosis of cg. Suppose
engineering analysis has revealed that
failure of c, and c5 is indeed possible
under certain conditions. We wish to in-
clude this multiple failure in the fault
tree, and we call the associated group

/

Figure 7. Multiple-failure mapping analysis for case study.

Failure 1. In addition, suppose that engi-
neering analysis has determined that
failure of ~ 1 4 may actually trigger failure
of cpl and vice versa. We include this
multiple failure as Failure 2. Although
generating fault trees that include all
multiple failures is intractable, we can
include these specific multiple failures
in the trees and in the testability analysis
by mapping the multiple failures to sin-
gle conclusions in the model.

We obtain the conclusion Failure 1 by
combining all the elements of its two
constituent parts (c1 and c5). In this case,
testability analysis shows an ambiguity
between the Failure 1 conclusion and
the cg conclusion, which we should

have anticipated from the previous anal-
ysis of false indications. To compensate,
we add a special test, t,, which looks
specifically for the multiple failure and
nothing else. Analysis shows that Failure
2 is not a problem and is uniquely isolat-
able with the current test set.

Figure 7 shows the complete remap
ping of the test-toconclusion matrix for
the two multiple failures, including tx.
Once we have mapped the additional
elements into the model, developing
fault trees is straightforward. Table 7
shows the tree that includes these multi-
ple failures. With all factors used, the
tree requires between one and seven
tests for resolution and an expected time

JUNE 1993 87

I N T E G R A T E D D I A G N O S T I C S

Table 7. Tailored fault tree table with test groups and test sequencing for the case study.

Previous Pass Fail
outcome outcome Step Test step

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

~ 17

~

0
1
2
3
4
5
6
5
8
4

10
11
3

13
13
15
15

Step 2
Step 3
Step 4
Step 5
Step 6
Step 7

~ 1 3 , NO Fault

cl 6 , c17, c18, ;nu2
c2 1

Step 12

Step 14

Step 16
c6
c4

cl 5

c14

9, c8, c9, cl 0

int2
int,

Step 13
Step 10
Step 8

c19, ;nul
c20

step 9
c1, c2

Step 11
Failure 2
Cl 1 I c12
Step 15

c5
Step 17
Failure I

c3

of 7.55 time units (including the penalty
of 3.0 time units in seven of the 18 isola-
tion sequences).

Special conditions for fault
isolation

In some situations, we may wish to
ovemde the inferences drawn in the in-
ference engine, modify the way we pro-
vide information, or tailor the rules to
terminate isolation. The following para-
graphs describe five basic types of over-
rides, or special considerations.

A priori information (prior infer-
ence). Before we begin diagnosis, we
may have information about the failure.
For example, a light indicating trouble
with the oil may be illuminated, or cer-
tain components may have just been
checked and can be assumed good. In-
corporating this information before fault
isolation can reduce the search space
and improve efficiency. Any informa-
tion available should be processed by
the inference engine before we develop

fault trees. Let us assume that the system
is being evaluated at the depot, using
calibrated input sources, and that these
inputs are good. This results in a fault
tree that does not include inputs either
as tests or as conclusions.

Suppressed test inference. We saw
earlier that one way to address the false-
alarm problem is to assume the diagno
sis was incorrect and choose additional
tests, using hypothesis-directed search.
A second way is to assume some testing
is wrong. Because the outcomes of
some tests may be determined by other
tests, we may wish to force execution of
certain tests, regardless of whether or
not they can be inferred. These tests may
be the most accurate, the most reliable,
or the easiest to perform properly. We
can place them in the tree, or we can
suppress inference by the inference en-
gine (thus forcing them to be tested).

es for inference. The model also in-
cludes the capability to specify several
types of linkages for inference outside
the dependency matrix representation.
Such linkages include:

w A fail test outcome, triggering pass
inferences (for example, a light that
indicates a failure also indicates a
good light bulb and good voltage to
the light)
A pass test outcome, triggering fail
inferences
A fail test outcome, triggering an
untestable test or tests (for example,
unsafetc-test)

w A pass test outcome, triggering an
untestable test or tests

We can derive these linkages directly
from the inference metarules. Let us as-
sume that a fail outcome of t4 renders t1
unsafe to test. This combination is the
most frequently encountered and is
closely related to the safetoturnan tests
(normally handled as a test group and
sequenced first in the diagnostic pro-
cess). As a result, if t4 is evaluated, the
subtree corresponding to t4’s failing will
not include tl because the linkage caus-
es tl to be inferred untestable.

Intermediate conclusions. Often
during isolation, we wish to note
progress or specific conclusions as we
proceed. These intermediate conclu-
sions exist in the model as tests. These
tests are immediately declared untest-
able, but if another value is assigned
(through inference), then that value is
reported. For example, we can define a
test that depends on all conclusions
designated cl to cIo, a test that depends
on all conclusions designated cll to cgl,

and a test that depends on all the in-
puts. We would then designate these
three tests intermediate conclusions.
The intermediate conclusions, then,
would provide information about two

Linkages. Dependenciesspecified in halves of the system and about all the
the model provide certain direct linkag- ~ inputs. An intermediate conclusion

88

.. .

IEEE DESIGN & TEST OF COMPUTERS

means several things to the inference
engine:

rn The element is considered untest-
able.
The element is not to be counted
during any optimization.

rn The element is to be announced
whenever an inference rule deter-
mines its state.

Any combination of elements can
appear as an intermediate conclusion.
In a complex avionics system, we can
consider all warranty items with an inter-
mediate conclusion. This construct pro-
vides a means for arbitrarily including
inferable information in the model with-
out biasing the optimization process.

Multiple-outcome tests. So far, we
have assumed that test outcomes are
binary; that is, tests either pass or fail.
However, entropy-directed depth-first
search is fully capable of analyzing
tests with multiple outcomes. Previous-
ly, the backup from a pass outcome led
to processing a fail outcome, and the
backup from a failed outcome led to
another backup in the tree. When mul-
tiple outcomes are present, we stay
with the individual node until all out-
comes are exhausted. That is, on first
arrival at a node, we proceed with the
choice and assign the first outcome.
When we arrive at an answer, we back
up and examine the node, choose the
next outcome (if available) in line, or
back up further.

In the case study, we can assume that
in field situations certain tests may not
be performable (because of equipment
or personnel shortage) and certain tests
may be potentially untestable. Thus, the
tests have three outcomes: pass, fail, and
unknown. If outcomes other than pass
and fail are used in a model, then we
may have to modify the inference meta-
rules and extend the matrix beyond bi-
nary. Otherwise, the optimization
process remains unchanged.

IN OUR DlSCUSUON OF THE CASE SnrDY,
we derived five different fault trees for dif-
ferent circumstances. The fault tree
shown in Table 7 provides diagnostic se
quences to be used in the shop; those in
Tables 2,3, and 4 would be used in the
operational environment; and the fault
tree in Table 5 would be used with a spe
cia1 checkout procedure in operational
units engaged in remote operations.

A portion of fault tree development
should be performed in concert with the
testability analyses described in parts 3
and 4. Incorporation of false-alarm
checks and multiple-failure diagnosis
are two examples of the interaction be-
tween fault isolation and testability anal-
ysis. The modeling process allows us to
answer what-if questions and develop
tailored products such as technical
manuals for integrated diagnostics.

This article concludes our presenta-
tion of the basic concepts of the integrat-
ed diagnostics modeling approach. We
refer the reader to papers on several re-
lated advanced topics not discussed
here:

rn Performing interactive fault isola-
tion: using the model to diagnose
in a dynamically changing
en~ir0nment.I~
Learning from actual isolations:
modifying time, failure frequency,
and other data, as well as learning
relationships from diagnostic
 instance^.'^,'^

rn Reasoning under uncertainty: what
to do when outcomes are not exact,
technicians’ skill levels are in
doubt, or other uncertainty factors
are present. 7 ~ 1 8

rn Partitioning large systems and mod-
els: Often, large systems translate to
slow execution in a dynamic envi-
ronment. Partitioning breaks the
system into several sub model^.^^
Developing an architecture for intel-
ligent, learning, adaptable, and mod-
ifiable automatic test equipment?O

rn Tying system testing to logistics: pro-

viding for logistics feedback, includ-
ing computer-aided logistics sup-
port (CALS).21

rn Temporal factors: applying point-
based and interval-based time
constraints.22

Developing fault trees for actual, prac-
tical diagnosis in an integrated diagnostic
environment is a complex process. Con-
sidering various ovemdes and constraints
allows computation of a virtually infinite
number of fault trees for any complexsy5
tem. Real fault trees may simultaneously
invoke several of the factors we have dis-
cussed. In fact, the development process
most likely will require iterative design of
the fault trees. Incorporating constraints
and ovemdes in the model and algo-
rithms will be necessaly to consistently
generate practical diagnostic strategies
that do not require manual manipulation
by an expert. @k

Acknowledgments
We thank the following people, without

whom we could not have produced this se-
ries of articles: Colin Maunder, Leonard
Haynes, Sharon Goodall, Les Orlidge, Sheryl
Sieracki, Elizabeth Reed, Ken Wagner, and
the editors of IEEE Design & Test. We also
thank Jon &re, Brian Kelley, Jerry Graham,
Steve Troy, Brian Pickerall, and the many
others who helped us to develop concepts
or to see the difference between theory and
practice.

References
1. W.R. Simpson and J.W. Sheppard, “Sys-

tem Complexity and Integrated Diag-
nostics,” IEEE Design & Test, Vol. 8, No.
3, Sept. 1991, pp. 16-30.

2. J.W. Sheppard and W.R. Simpson, “A
Mathematical Model for Integrated Di-
agnostics,”IEEED&T, Vol. 8, No. 4, Dec.

3. W.R. Simpson and J.W. Sheppard, “Sys-
tem Testability Assessment for Integrat-
ed Diagnostics,” IEEE D&T, Vol. 9, No. 1,
Mar. 1992, pp. 4@54.

1991, pp. 25-38.

JUNE 1993 89

I N T E G R A T E D D I A G N O S T I C S

4. J.W. Sheppard and W.R. Simpson, “Ap
plying Testability Analysis for Integrated
Diagnostics,” IEEE D&T, Vol. 9, No. 3,
Sept. 1992, pp. 65-78.

5. W.R. Simpson and J.W. Sheppard, “Fault
Isolation in an Integrated Diagnostic
Environment,” IEEED&T, Vol. 10, No. 1,
Mar. 1993, pp. 52-66.

6. C.E. Shannon, “A Mathematical Theory
of Communications,” Bellsystems Tech-
nicalJ., Vol. 27, 1984, pp. 379423.

7. L. Breiman et al., Classification and Re-
gression Trees, Wadsworth, Belmont,
Calif., 1984.

8. J.R. Quinlan, “Induction of Decision
Trees,” Machine Learning, Vol. 1, 1986,

9. F.I. Dretske, Knowledge and the Flow of
Information, MIT Press, Cambridge,
Mass., 1982.

10. S.R. Troy, Cost as a Matrix Input to
STAMP, STAMP Tech. Note 266, Arinc
Research Corp., Annapolis, Md., 1990.

11. J.G. Malcom, “BIT False Alarms: An Im-
portant Factor in Operational Readi-
ness,” Proc. Annual ReliabiliQ and
Maintainability Symp. IEEE, Piscataway,
N.J., 1982, p. 206.

12. Design Guide, Built-in Test (BIlJ and
Built-in Test Equipment (BFE) for Army
Missile Systems, Report TR-RL-CR-81-4,
Sperry Corp., Minneapolis, Minn., 1981.

13. W.R. Simpson and J.W. Sheppard,
“Analysis of False Alarms During System
Design,” Proc. IEEENat’lAerospace Elec-
tronics Conf , IEEE, Piscataway, N.J.,
1992, pp. 657-661.

14. J.W. Sheppard and W.R. Simpson, “ln-
corporating Model-Based Reasoning in
Interactive Maintenance Aids,” Proc.
IEEE Nat’l Aerospace Electronics Conf ~

IEEE, Piscataway, N.J., 1990, pp. 1238-
1243.

15. J.W. Sheppard and W.R. Simpson, “Ele-
ments of Machine Learning in a Field
Diagnostic Maintenance Aid,” Proc.
Artificial Intelligence Applications for Ac-
quisition Management, Logistics Man-
agement, and Personnel Management
C o d , American Defense Preparedness
Assoc., Williamsburg,Va., 1992, pp. 7-13.

pp. 81-106.

16. J.W. Sheppard, “Explanation Based
Learning with Diagnostic Models,” IEEE
Autotestcon Conf Record, 1992, pp. 159
167.

17. J.W. Sheppard and W.R. Simpson, “Un-
certainty Computations in Model Based
Diagnostics,” IEEE Autotestcon Conf
Record, 1991, pp. 233-242.

18. J.W. Sheppard and W.R. Simpson, “A
Neural Network for Evaluating Diagnos-
tic Evidence,” Proc. IEEE Nat’l Aerc-
space Electronics Conf, 1991, pp.

19. W.R. Simpson and J.W. Sheppard, “Par-
titioning Large Diagnostic Problems,”
IEEEAutotestcon Conf Record, 1991, pp.
329327.

20. W.R. Simpson and J.W. Sheppard, “An
Intelligent Approach to Automatic Test
Equipment,” Proc. Int’l Test Cod , IEEE
Computer Society Press, Los Alamitos,
Calif., 1991, pp. 419426.

21. A.B. Blair, J.W. Sheppard, and W.R.
Simpson, “A Partnership for Systems
Support: Artificially Intelligent Mainte
nance Aids and CAE,” Logistics Spec-
trum, J. o f Sociey of Logistics Engineers,
Vol. 26, No. 3, Summer 1992, pp. 1926.

22. J.W. Sheppard and W.R. Simpson, “Fault
Diagnosis Under Temporal Constraints,”
IEEEAutotestcon Conf Record, 1992, pp.

71 7-724.

151-159.

analyst in the Advanced Research and
Development Group at Arinc Research Cor-
poration. He is also a PhD candidate in com-
puter science at Johns Hopkins University.
His research interests include applying AI
techniques to fault diagnosis, machine
learning, neural networks, and knowledge
representation. He was a principal deve!op

er of Pointer, an intelligent, interactive
maintenance aid, and assisted in the devel-
opment of a prototype expert system that
diagnoses system failures and reconfigures
the system to maintain functioning. He holds
a BS from Southern Methodist University and
an MS from Johns Hopkins University, both
in computer science.

William R. Simpson, a research fellow in
the Advanced Research and Development
Group at Arinc Research Corporation, works
on testability and fault diagnosis. He helped
develop the System Testability and Mainte
nance Program, which is based on an infor-
mation flow model. He was also a principal
developer of the Pointer interactive mainte
nance aid. He holds a BS from Virginia Poly-
technic Institute and State University and an
MS and a PhD in aerospace engineering
from Ohio State University.

Direct questions or comments on this
article to the authors at Arinc Research
Corp., Advanced R&D Group, 2551 Riva Rd.,
Annapolis, MD 21401; sheppard@csjhu.edu
or william-r-simpson@mcirnail.com.

90 IEEE DESIGN & TEST OF COMPUTERS

mailto:sheppard@csjhu.edu
mailto:william-r-simpson@mcirnail.com

