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Performing EfFeaive Fault 
Isolation in Integmted 

IN TODAY'S CLIMATE of decreas- 
ing budgets, the number of new 
systems being developed is de- 
creasing, and the lives of existing 
systems are being extended. Con- 
sequently, aging systems are expe- 
riencing failures more frequently 
than before. New systems also fail, 
and those failures are hard to diag- 
nose because of the increased so- 
phistication and complexity of the 
systems. Performing fault isolation 
on existing systems and new com- 
plex systems requires meticulous 
bookkeeping and detailed under- 
standing of failure behaviors. The 
test engineer must devise ap- 
proaches to fault isolation that pro- 
vide accurate diagnostics and that 
take into account such factors as 
sequence, groups, and potential 

__i JOHNW.SHEPPARD i 
WILLIAM R. SIMPSON 

Arinc Research Corporation 

In the sixth and final arti 
series, the authors de 

modifications or constraints. Then 
they add factors typically 

encountered at different levels of 
fault isolation to modify and 
constrain the search 
Finally, they develop 
trees to illustrate the i m p  

these factors. 

I 

false positives and false negatives. In 1 pear on pages 53 and 54 of part 5 of the 1 
part 6 of our series on integrated diag- 
nostic~,'-~ we construct several fault 
trees that account for these and other 
factors. 

We present the case study of an anti- 
tank missile launcher, used throughout 
the series, in the context of a complete 
maintenance architecture. Case study 
documentation is not repeated here due 
to space limitations. The dependency 
diagram and the closed dependency 
matrices for the case study system ap- 

series5 Tables 1 and 2 on pages 26 and 
27 of part 22 provide pertinent data for 
testsand conclusions. We use these data 
to develop diagnostic strategies. 

Information flow model 
This series has presented a model- 

based approach to integrated diagnos- 
tics. The information flow model 
permits a thorough design-for-testability 
procedure and a basis for generating ef- 
ficient and effective fault isolation strat- 

egies. The information flow model 
defines the interrelationships of sys- 
tem elements in terms of the flow of 
diagnostic information. The model 
can include as an information 
source any event or observation 
that provides information about the 
system under study (for example, 
stimulus-response pairs, boundaly- 
scan outputs, and probe informa- 
tion). The model can include as a 
fault isolation conclusion any con- 
clusion that one can draw during 
diagnosis (a failure of a specific 
component, a specific failure mode 
of a piece of hardware, a nonhard- 
ware failure such as bus timing, and 
the absence of a failure). The 
model-based approach is hierarchi- 
cal, and any single model can in- 
clude any conclusion type. 

The first step in the model-building 
process is to determine the level of diag- 
nostic analysis required. Analysis could 
include embedded diagnosis (as in built- 
in test); manual organic maintenance; 
manual, semiautomatic, or automatic 
shop repair of units from field sites; or d e  
pot repair of expensive cards for resale or 
insertion into a logistics pipeline. The lev- 
el of diagnosis determines the fault isola- 
tion conclusions to consider and the 
appropriate tests to conduct. Ideally, the 
engineer develops a hierarchy of sub- 

- 
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Min 
c c - -  - N 0 - , “ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , E u I  pass Fail (Pass, Fail) Rank* 

t l  Yes 1 t 4  =@ 1 t4t5-0 =IO 5 10 
t, Yes I t 1  =@ 1t11t1-0=13 2 5 
t3 Yes I t 3  =@ 1tIOtO-0=11 4 9 
t 4  Yes 1 t 6  =a 1t3t4-0 = 8 7 19 
t5 Yes I t 4  =@ l t 8 t l - 1  = 9 5 11 
t6 Yes I t 5  =@ 1t6t2-1 = 8 6 13  
t7 No (t6) Take values from t6 6 14 
t8  No (t6) Take values from t, 6 15 
t9 No (t6) Take values from t 6  6 16 

t l1 Yes 1 t 7 =  8 1t4t2-1 =@ 6 17 

3 Yes i t 1 1  = 1 ~ 1 t 2 t 0 - o  =@ 3 8 

L o  Yes I t 6  =@ 1t5t2-1 =@ 7 20 

11 2 Yes 1 t 8 =  9 1t3t2-1 =@ 5 12 

t l  4 Yes 1 t 1 2 =  i 3 i t i t o - o = @  2 7 
tl  5 Yes 1 t 1 3 =  141tOtO-O=@ 1 2 
t16 No (t15) Take values from t,, 1 1 

int, Yes 1tO=@ l t 1 2 t l - 0 =  14 1 3 
int, Yes I t 0  =@ 1t11t2-0 = 14 1 4 

7 No (t,,) Take values from t,, 2 6 
t l 8  No (t6) Take values from t 6  6 18 

* May have other 

on where ties are 
l u l l  rankings depending 

1-1 ranked 
Pass = 1 = (column value = 1 A t ,  E UI) Nonunique elements and diagonal elements shaded to indicate no counting 

l u l l  [ U 1 1  [ U 1 1  

Fail = 1 = (row value t 1 A t, E UI) t (column and row value # 1 A t, E UI) - (elimination creates ambiguity) 
1 - 1  k = l  1-1 

Figure 1. Information counts for not-needed ranking in case study test-to-test matrix. Circled values are minimum information counts. 
( G e  part 5 for mathematics.) 

systems (thus, a hierarchy of models) to 
address each level of diagnosis. If  the hi- 
erarchy is developed early in the system 
design process, the engineer can analyze 
the hierarchy and continue to refine sys- 
tem testability as the design matures. This 
approach fits well within concurrent en- 
gineering guidelines because of the close 
ties between system design and testabili- 
ty design. 

Optimized fault isolation: 
the first step 

Previously, we presented an entropy- 
directed search process and several in- 
ference rules for developing fault trees5 
We derived entropy-directed search 
from Shannon’s information theory,6 
which has also been applied extensive- 

ly in decision theory and machine learn- 
ing.7.8 Entropydirected search seeks to 
maximize the reduction of uncertainty 
independently of a test’s o u t ~ o m e . ~ , ~  
Using entropy-directed search, we re- 
duce the search process to a count of 
information gained and focus only on 
learned test outcomes (except in the 
case of tiebreakers). The search for a 
conclusion terminates either when the 
outcomes of all tests are known or when 
only one viable conclusion remains. 

To construct a fault tree using entropy- 
directed search, we first reduce the com- 
putation load by determining which tests 
are not needed for diagnosis. The algo- 
rithm for determining which tests to elim- 
inate is identical to the excestest 
analysis algorithm presented in part 3.3 

We declare a test not needed if elimina- 
tion of the test from the test set will cause 
no relevant additional ambiguity. (Ambi- 
guity occurs when two conclusions have 
identical test signatures.) The algorithm 
ranks the tests in reverse order of desir- 
ability (based on information gain) and 
evaluates the least desirable test first. B e  
cause tests are evaluated sequentially 
and declaring a test not needed may af- 
fect whether downstream tests can be d e  
clared not needed, the ranking forces the 
least desirable tests to be eliminated first. 
This “preconditioning” of the test set gives 
us a tree with the minimum number of 
tests but may cause overall losses in 
efficiency. 

Figure 1 shows the result of counting 
information gain for each test in the case 
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Figure 2. Not-needed analysis for case study. 
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t i 6  Yes 
ti, NO 
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tz No 
f17 Yes 
t14 NO 
t13 NO 
t3 No 
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ti, No 
ts Yes 

ti, No 
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14 No 

tio NO 

Min 

5 
2 
4 

D - N C )  

- I -  ,m - - s 2 2 & ; State Pass Fail (Pass, Fail) - 
tl 0 0 1  
t , 1  1 1  
t 3 1 0  1 
t 4 ' 0  010 
t.5 Not needed 
t6 Not needed 
t 7  Not needed 
t8 Not needed 
t9 Not needed 

8 
5 
5 
3 
2 
1 

ti 6 Not needed 
7 Not needed 

Unknown 5 7 5 
Unknown 1 1 3  1 
Unknown 1 1 3  1 

Figure 3. /nforrnation counts for first test choice in case study test-to-test matrix 
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study, together with the minimum infor- 
mation yield under an arbitrary outcome. 
We can weight the information gain for 
test times, skill levels, failure frequencies, 
or other factors before ranking. Figure 2 
shows the result of evaluating the tests in 
ranked order. In the figure, the test-tc- 
conclusion dependency matrix has been 
transposed and the tests reordered to re- 
flect the ranking. The shaded rows indi- 
cate the tests to be declared not needed. 
For example, the first ranked test is t l 6 .  If 
we remove that row from Figure 2 and 
compare the column signatures across 
all conclusions, we find that no two con- 

f 
t, Pass 
U 

t, = pass 
t, = pass 
t, = pass 
t, = pass 
t, = pass 

int, = pass 
int, = pass 

c1 = pass 
c, = pass 
c, = pass 
c4 = pass 
c, = pass 
cg = pass 

cpl = pass 

Figure 4. First test of fault tree. 
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Fail 
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f Fail 

Backup 

t14 d, 
L 

Pass 

ti, d r 
Pass 

t 4  d 

t,, =fai l  
ti, =fai l  

c13 & No Fault c,,, = pass 
III 

Figure 5. Termination ofa diagnostic 
sequence. 

clusions that previously had different sig- 
natures now have identical signatures. 
Thus, t l6  is not needed and is eliminated. 
At this point, the algorithm masks tl6 out 
of the matrix and evaluates (15. Eliminat- 
ing tI5 would cause c20 to be identical to 
No Fault and ~ 1 3 ,  so t i5  is considered not 
excess and must be retained. Note that 
this is true only because t i6  was eliminat- 
ed. We see from Figure 2 that the analysis 
determines seven tests are not needed. 

Once we have eliminated the excess 
tests (by assigning their test outcomes as 
not needed), we create a fault tree, us- 
ing entropydirected search with the 
depth-first tree traversal described in 
part 5. Figure 3 shows the test-to-test 
matrix after all known tests are masked 
and the information measure is comput- 
ed for all remaining tests. The values in 
Figure 3 differ slightly from those in Fig- 
ure 1 because different tests have been 
masked out. In Figure 1, six tests are 
masked out for uniqueness. In Figure 3, 
seven are masked out as not needed. 
The minimum information measure has 
a maximum value for both t4 and tlo. We 
resolve the tie in favor of t4 because it 
has the largest maximum information 

value. We assign this first test a pass out- 
come and provide both the test and its 
outcome to the inference engine (Fig- 
ure 4). Because the termination meta- 
rules are not invoked, the search 
continues with a second test. 

Figure 5 shows termination of the first 
path in the fault tree. At this point, only 
t i 5  remains, so we do not actually have 
to compute information gain. We must 
choose t15. Drawing inferences from t15's 
passing invokes the termination meta- 
rules and assigns the diagnostic out- 
come to this path. Because the path has 
terminated, the algorithm backs up in 
the tree to t15,  which is assigned the next 
outcome (fail outcome). This also tenni- 
nates the sequence. Again, the algo- 
rithm assigns the diagnostic outcome 
and backs up in the tree to t15, which 
does not have an unevaluated outcome. 
The algorithm backs up again to t14, 
which is assigned a fail outcome. 

At this point, the sequence does not 
terminate, and the algorithm must 
choose a new test. Eventually, because 
there is no previousstep, backing up fails, 
signaling completion of the tree. Table 1 
shows the complete fault tree in tabular 

Table 1. Basic fault tree table for the case study. 

Previous Pass Fail 
Test SkP outcome outcome 

I 1  t4 0 Step 2 Step 9 

~2 tl2 1 Step 3 Step 6 
3 t14 2 Step 4 Step 5 

SkP 

~ 

tl 5 3 cl 3, No Fault c20 
tl 3 3 c19, ;nul ~ 

c16, c171 cl 8, 
6 tl0 2 Step 7 Step 8 

~; 
7 tl 1 6 cl 5 c14 

~8 tl R 6 c11, c12 c7r CE, c9r CIO .. 

9 t3 1 
10 tl 8 9 
1 1  tl 10 
12 tl 10 
13  t2 9 
14 int, 13 
15 int, 13  

Step 10 
Step 1 1  

c2 1 

c5 
Step 14 

c4 
c3 

~~ 

Step 1 3 

c1/ c2 
6 

Step 15 
in t2 

int, 

step 12 
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Table 2. Skill-level-optimized fault tree for the case study. 

Test Previous Pass Fail 
Step (skill level) step outcome outcome 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

~ 

0 
1 
2 
3 
2 
5 
1 
7 
8 
9 
8 
7 

12 
13 
12 
~ 

form. This tree is uniform in depth, al- 
ways requiring four tests to isolate. We 
can use it to fault-isolate the case study, 
but we may need to include several 
practical factors, reviewed in the follow- 
ing sections. 

Diagnosis in an operational 
environment 

If we assume that the case study sys- 
tem is to be used in a field operational 
environment, we must verify that it is 
ready to perform or is repairable in this 
environment. We must consider two as- 
pects of fault isolation in an operational 
environment. First, technicians of various 
skill levels attempt to isolate faults. It is 
therefore important to minimize the skill 
required. Second, we must consider the 
repair hierarchy. When asystem problem 
is difficult to diagnose, the operational 
personnel send the system either to an 
intermediate repair facility or to a repair 
shop. For activities with remote opera- 
tions, repair takes place at the replace 
able unit level and not at the component 
level. Remote activities engaged in oper- 
ations do not undertake repair but send 

step 2 
Step 3 

~ 1 3 ,  NO Fault 

c20 
Step 6 

Step 8 
Step 9 
Step 10 

c7, C8, c9, Cl0 
Step 13 
Step 14 

c3 

c16, C17r C18r ;nul 

cl 5 

c6 

Step 7 
Step 5 
Step 4 

c1, c2 
c2 1 

c19, ;nul 

step 12 
step 11 
c11, c12 

c5 
Step 15 

int2 

c4 

c14 

int, 

the entire system to an intermediate re 
pair facility. When diagnosis become 
too difficult or too many systems are sen 
back to the intermediate repair facility, i 
sends the system to a shop outside thc 
operational environment. 

Because of this repair hierarchy, wc 
must develop three sets of fault isolatior 
procedures and several different faul 
trees for the operational environment 
The first set of procedures, for the inter 
mediate repair facility and activities tha 
are not remotely deployed, isolates to i 
level consistent with component repair 
The procedures are based on minimiz 
ing either skill level or time to isolate 
depending on personnel availability 
The second set of procedures, to bc 
used by remote activities, isolates to thc 
replaceable unit level and is optimizec 
for minimum skill level. The third set o 
procedures, for remote activities en 
gaged in operations, determines wheth 
er or not the system is ready for use. 

Weighted fault trees for interme, 
diate repair. For intermediate repair o 
the case study, two isolation factors arc 

important: skill level (designated by US 
military enlisted rank) and time. 

In the field, an E7 may not be avail- 
able to assist with each fault isolation, so 
a diagnostic procedure should use per- 
sonnel of lower skill levels and call for 
an E7 only when needed. The first step 
in building a fault tree optimized forskill 
level is to assign skill-level weights to 
each test. For the case study, we assign 
the numeric values from the military 
skill-level designations, thus assuming a 
linear relationship between rank and 
skill level required for each test. If we b e  
lieve the linear assumption is incorrect 
or if it yields unsatisfactory results, we 
can mathematically emphasize the skill- 
level factor. We detailed the analytic 
process of integrating multiple optimiza- 
tion criteria into the diagnosis, including 
the use of emphasis factors, in part 5. 

The not-needed analysis applies ap- 
propriate weights (in this case, skill- 
level) before tests are ranked. Table 2 
provides the tree that results from 
weighting by skill level (listed after each 
test name). Note that the system can be 
verified to be operational by an E3 (that 
is, all tests on the No Fault path require 
skill levels of E3 or less). Note also that 
only steps 9 and 10 require high skill lev- 
els. Further, all the difficult tests occur at 
the end of diagnostic sequences. This 
tree requires completion of an average 
of 4.31 tests-a slight increase over the 
unweighted tree, which requires 4.0 
tests to isolate. 

Asecond fault tree is needed for oper- 
ational use when skill level is not a prob- 
lem (that is, when E7 personnel are 
available) but time is. In some cases, 
however, the time required to perform a 
test is a function of a number of factors. 
For example, performing several tests in 
one sequence may require less time 
than performing the same tests in a dif- 
ferent sequence. In that case, test time 
depends on previous tests performed. 
For timecritical applications, we may 
want to construct a matrix of test times 
as a function of previous tests. (Troy de- 
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scribes the matrix approach to time, 
cost, and other factors.lO) In general, 
however, we define a time function in 
which test times depend on access pan- 
els that are already open, tools that are 
within reach, test equipment that has 
been set up, and so on. 

For this article, we assume that a sim- 
ple time metric is sufficient. For the case 
study, we wish to construct a fault tree 
for the intermediate repair facility to 
which personnel resources are fully 
available. Therefore, we construct a tree 

duce cost or weight. In manual diagno- 
sis, the source of unreliable test 
outcomes may be as simple as not hav- 
ing personnel with appropriate skill lev- 

Table 3. Time-optimized fault tree for the case study. 

of a problem although a problem actual- 
ly exists. We can address a false assur- 
ance by determining whether certain 
tests are failing to provide expected in- 

I Test Previous Pass Fail 
i step (time) step outcome outcome 

0 step 2 
1 Step 3 
2 c13, No Fault 
3 c20 
2 Step 6 

5 c2 1 
1 Step 9 

5 cl 6, c17, cl 8, ;nu2 

Step 8 

Step 4 

Step 7 
cl 5 

c1, c2 
Step 10 

step 5 

c19, ;nul 

tl0 (0.60) 8 cl 4 c11, c12 
tl (2.00) 8 Step 11 Step 12 

weighted for both test times and compc- 
nent failure frequencies so that the opti- 
mization goal is the minimum time to 
isolate the most frequently failing ele- 
ment. Table 3 shows the tree, with the 
test time for each test in parentheses. 
The expected time to fault-isolate is 
computed5 as 3.1 1 time units; actual isc- 
lationsvary between one and eight time 
units and require between three and six 
tests. 

Protecting intermediate repair 
from improper diagnosis. Some skill 
levels may not be available in some ac- 
tivities. As a result, personnel with 
lower-than-desirable skill levels may 
perform tests. This situation can lead to 
false test indications (data misinterpret- 
ed or tests incorrectly performed). If we 
can determine when the fault isolation 
may be in error, we can default mainte- 
nance to the next level of repair. So far, 
we have assumed that tests are com- 
pletely reliable. For example, when we 
determine a test passes, the test really 
does pass. For a variety of reasons, 
however, the test may not be reliable. 
For example, to reduce the amount of 
code needed to support built-in test 
(BIT), we may have simplified the pro- 

1 1  f4 (1.50) 10 C7r c8, c9, c10 5 
12 t2 (2.20) 10 Step 13 Step 15 
13 t3 (2.40) 12 c6 Step 14 
14 int2 (1 .OO) 13 c4 int2 
15 inti (1.00) 12 c3 intl 

els. At the lower skill levels, we are not 
certain that test outcomes are being in- 
terpreted correctly or that the test is 
even performed correctly. 

The false test indication discussed in 
the literature most frequently is the false 
alarm. (BIT false alarms and their impli- 
cations for maintenance are discussed 
in reports by Malcom and by Speny Cor- 
poration.IlJ2) The primary result of false 
alarms is wasted maintenance actions, 
including inappropriate repairs and in- 
appropriate system downtime. If mainte 
nance personnel repair the wrong unit, 
troubleshooting time will increase until 
the faulty unit is finally identified. 

A second type of false test indication, 
rarely discussed in the literature but per- 
haps just as devastating, is the false as- 
surance. In a false alarm, we have an 
indication of a problem through im- 

formation within the diagnostic process. 
Several solutions exist for improving in- 
dividual tests, including repeat polling 
and modified t01erances.I~ 

If the problem lies with the technician 
performing the tests rather than the tests 
themselves, we may wish to focus on 
verifying the conclusions being drawn. 
We can verify such conclusions by mod- 
ifying the search process to choose tests 
that focus on the drawn conclusion as a 
hypothesis. Hypothesis-directed search 
and entropy-directed search differ in 
one important aspect: entropydirected 
search does not presuppose any specif- 
ic conclusion, but hypothesisdirected 
search does. 

To perform hypothesisdirected search, 
we examine the test-toconclusion matrix 
asshown in Figure 6 (next page). We now 
define two measures as follows: 

1; (li depends on c j )  A ( c j  E UF), 
0; otherwise 

a..  = 
I' { 
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I ! !  ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I  
c 7 l 0 l 0 1 0 1 0 1 0 1 1  I 1  I 1  I 1  I 1  I 1  I 1  I 1  I 1  I 1  I 1  I 1  I 1  1 o l o l  

U1 r 

where 6 is the number of conclusion 
nondependencies in t,. 

These two measures are complemen- 
tary; that is, e, = IUFl - (. Hypothesis- 
directed search attempts to maximize 
the value of e, when the test does not d e  
pend on the hypothesis and to maxi- 
mize the value of ( when the test does 
depend on the hypothesis. Figure 6 
shows how hypothesis-directed search 
works. In the figure, we have masked all 
nonunique fault isolation conclusions 
(see part 3 of our series for a detailed 
description of uniqueness) and comput- 
ed e, and 6 for the case study. To choose 
a test to verify the hypothesis, we need to 
mask out the irrelevant members of e, 
and (. We have done that for hypotheses 
of cg and c21 (examples 1 and 2, respec- 
tively). We can choose two types of tests 
that will verify the hypothesis in either a 
pass outcome or a fail outcome, but we 

' typically choose the most robust test r e  
~ gardless of its outcome. In processing c20 o ~ o / o ~ o / o ~ o ~ o / o ~ o ~ o ~ o / o 1 o 1 o / 1 j l j o ~ o ~ o / o  

[I1 [ 'I 
e, = c (column value = 1 A cII E UF) and f, = (column value = 0 A cII E UF) 

1.1 1=1 

e t 6  2 4 8 6 7 7 7 7 8 9 1 0 1 3 1 4 1 5 1 5 1 4  7 1 1 
f 1 1 0 1 4 1 2  8 10 9 9 9 9 8 7 6 3 2 1 1 2 9 1 5 1 5  
Example 1 for c6: 

f, M w E@ N x x x x x >a x 3 2 I I 2 x K K t4failoutcome 
Example 2 for cZ1: 

e, K 2 @) X X X X X X X X )4) X3 I4 15 K W X 1 1 t,passoutcome 
f 1 1 0 W W 8 @ 9  9 9 9 8 7 6  3 2 1 1  2 
(Circled values are maximums in rows.) 

Figure 6. Hypothesis-directed search data for case study. 

e 1 6  2 4 x 6  7 7 7 7 8 9 @ ) M M X X M  7 1 1 6 - 9  

9 iX iX&- ]  

,=I where e, is the number of conclusion 1 

mation source), c, is thejth fault isolation 
conclusion, and UF is the set of unique 
fault isolation conclusions; and 

dependencies in t,, t, is the ith test (infor- 

0; otherwise 

the data, it is important that we mask out 
any conclusions not to be considered 
and any tests not to be chosen. 

For the case study, we want to con- 
firm the outcomes of steps in a diagnos- 
tic sequence. We construct the fault 
tree, using weighted, entropy-directed 
search with the following exceptions: 

The not-needed calculation is ex- 
cluded to prevent biasing the data. 
Entropy-directed search proceeds 
until it achieves an answer. At that 
point, the answer becomes the hy- 
pothesis, and we mask any tests that 
have already been completed. We 
then apply hypothesis-directed 
search in combination with depth- 
first search. 
We repeat the process for each fault 
isolation conclusion in the tree, 
thus adding one extra test to each 
diagnostic sequence. We can mod- 
i@ this procedure to include two or 
more extra tests by masking the ex- 
tra test and reapplying the hypothe 
sisdirected search. 
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for minimum skill level with the addition 
of consistency checks (that is, hypothesis 
directed search). The inconsistency desig 
nation occurs when a hypothesis 
verification test outcome is not consistent 
with the hypothesis. When inconsistency 
occurs, the technician sends the entire 
unit to the next repair level. Although the 
tree is significantly larger than the other 
trees, the number of steps to fault-isolate 
is a maximum of six and a minimum of 
four. In fact, each sequence has in- 
creased by only one test. 

Isolation to replaceable unit in re- 
mote activities. The dependency dia- 
gram5 shows the case study with 
replaceable unit boundaries. Although 
testing can provide isolation to the com- 
ponent level, in remote activities techni- 
cians might make repairs at the 
replaceableunit-group level. In addi- 
tion, some of the replaceable units may 
not be field-repairable or may be under 
warranty. For these occasions, we mod- 
ify the termination metarules to include 
“Terminate when only one (or indivisi- 
ble ambiguities among more than one) 
replaceable unit conclusion remains.” 
During fault isolation, we need to make 
two other modifications. First, during the 
not-needed calculation, rather than con- 
sidering potential new conclusion ambi- 
guities, we consider potential new 
ambiguities among replaceable-unit- 
group conclusions. lnferring tests to be 
not needed requires a similar modifica- 
tion. When we modify the tree in Table 
4 to fault-isolate replaceable units, we 
produce the tree in Table 5. This tree 
would be part of an abbreviated mainte 
nance manual for remote operations. 

Remote activities engaged in op 
erations (verifying system availabil- 
ity). In deriving procedures to 
determine whether a system is opera- 
tional or ready for delivery, it is impor- 
tant that we optimize the sequence of 
tests that leads to a No Fault conclusion. 

Test Previous Pass Fail 
outcome Step (skill level) step outcome 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

0 
1 
2 
3 
3 
5 
5 
2 
8 
9 
9 
8 
1 

13 
14 
15 
16 
16 
15 
14 
20 
20 
13 
23 
24 
25 
25 
24 
23 
29 
29 

step 2 
step 3 
step 4 

cl 3, No Fault 
Step 6 

c20 
c19t ;nul 
step 9 

step 10 
c16, cl 7, cl 8, ;nul 

c2 1 
Inconsistency 

Step 14 
Step 15 
Step 16 
Step 17 

cl 5 

cl 4 
Inconsistency 

Inconsistency 
Inconsistency 

Step 24 
Step 25 
Step 26 

Inconsistency 
Inconsistency 
Inconsistency 

Step 30 
Inconsistency 
Inconsistency 

step 21 

Step 13 
Step 8 

Inconsistency 

Inconsistency 
Inconsistency 

step 5 

step 7 

step 12 
step 11 

Inconsistency 
Inconsistency 

Cl I c2 
Step 23 

Step 19 
Step 18 

Inconsistency 
Inconsistency 

C l l r  c12 

9, Ca, c9, CIO 

5 
Step 29 
Step 28 
Step 27 

c6 

c4 
inf2 

Step 31 
c3 
intl 

step 20 

step 22 

Fault trees designed to determine sys- 
tem operability assume a high probabil- 
ity of finding no faults in the system. 

To derive the optimum sequence, we 
use a special type of hypothesisdirected 
search. Recall that no test depends on 
No Fault. When we examine the full d e  
pendency matrix? we can easily verify 
that the No Fault row contains only z e  
ros. For this special case, in hypothesis- 
directed search we completely mask the 
vector land choose tests strictly by max- 

imizing the value of e. Figure 6 shows 
that this maximum occurs at ti5 or tl6, 
which is sufficient for concluding or 
eliminating No Fault. If either t i 5  or tl6 
fails, we reject the system and send it to 
the next level of repair. Where lower 
skill levels lead to uncertain test out- 
comes, we perform both t i 5  and tl6. In 
larger systems, we may need many tests 
to reach the No Fault conclusion. We 
choose each in turn, using hypothesis- 
directed search. 
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case study. As we discussed earlier, in several in- 

Test Previous Pass Fail 
Step (skill level) step outcome outcome 

i Penalize 3.0 time units 2 t4, tl0, tl 1 

fl I f2, t3, t5 3 
4 t6, t7, t8, t9, 

t18r t12, h 3 r  t14 
Individual test, ungrouped 
I nd ividua I test, u ng rou ped 

5 5 

6 tl 6 
I 

7 tl 7 Individual test, ungrouped i 
I I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

~ 

readable output jacks is located behind 
a skin panel fastened with 43 flush- 
mounted screws. When test sequences 
were developed for this subsystem, tests 
using the output jacks were placed in a 
test group. Accessing tests in that test 
group resulted in a time loss because the 
skin Dane1 first had to be removed. Ac- 

0 
1 
2 
3 
3 
5 
5 
2 
8 
9 
9 
8 
1 

13 
14 
14 
13 
17 
18 
19 
19 
18 
22 
22 
17 
25 
25 
- 

step 2 
Step 3 
Step 4 

rug, No Fault 
Step 6 

rug, ;nu1 
Step 9 

Step 10 
ry, rug, ;nu2 

TU2 

Inconsistency 
Step 14 
Step 15 

Inconsistency 
Step 18 
Step 19 
Step 20 

Inconsistency 

Step 23 

Inconsistency 
Step 26 

Inconsistency 
Inconsistency 

rug 

ru6 

Inconsistency 

Inconsistency 

Step 13 
Step 8 

Inconsistency 

Inconsistency 
Inconsistency 

Step 12 
Step 11 

Inconsistency 

TU1 I TU2 

Step 17 
Step 16 

step 5 

step 7 

Inconsistency 

ru6 
Step 25 
Step 22 
Step 2 1 
ru4, ru5 

ru3 
Step 24 

ru3 

Step 27 
TU1 

int2 

int, 

In a shop environment, different consid- 
erations may drive the development of 
fault trees. Forexample, although all nec- 
essary test resources are available in the 
shop, for work flow efficiency all tests r e  
quiring a certain skill level or common 
test equipment should be contiguous in 
the fault tree. A collection of tests with 
common factors is called a test group. 
Some test groups are easier to perform 
than others, and some may have penal- 
ties associated with their execution. Final- 
ly, some test choices are just too critical to 
be left to the computer. 

Handling test groups. In the case 
study, we have defined four test groups, 
shown in Table 6. The tests in each 
group have some logical relationship to 
each other, such as requiring the same 
test equipment. Under ordinary fault is0 
lation conditions, we would like to com- 
plete the tests in one group before 
proceeding to the next group. We ac- 
complish this as follows: 

rn When we are not currently in a test 
group, we choose a test by using the 
normal optimization process. 

rn When we are currently in a group 
and have not completed that group, 

Table 6. Test groups for the case study. 

Group 

we restrict the test choice to the 
available tests in the group. 

rn When we complete a test group, we 
then choose from among all re- 
maining tests or test groups. 
I 

Not all tests are as desirable as others. 
For example, in the inertial navigation number Group members Comments 

, I l  
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cordingly, the test group would receive 
a time penalty weighting that would 
cause tests in the group to be delayed 
and in some cases avoided. Assuming 
the case study system requires a similar 
access panel to perform tests in group 2, 
we have placed a penalty of 3.0 time 
units on that group (Table 6). 

Sequencing. In some cases, the com- 
puter should not determine the test se- 
quence. For example, we should 
perform tests designated “safe-to-turn- 
on” first, but optimization may fail to 
provide this sequencing. In the case 
study, we can assume that if we begin 
testing the system and the inputs are not 
present, we may damage the equip 
ment. Accordingly, we have designated 
a test group that includes the two inputs 
and directed that it must be completed 
first. This procedure is called group se- 
quencing. We can sequence all the 
groups in turn if we wish. In addition, 
there is a chance that testing int, first will 
cause an electrostatic discharge if int, is 
not valid. Therefore, within the group 
we have sequenced the tests so that int2 
is chosen first. Sequencing of this type 
must be consistent with associated infer- 
ences (with a couple of exceptions). 

Multiple failures. Growth in 
computational complexity prohibits 
the development of comprehensive 
multiplefailure fault trees. Nevertheless, 
in several cases, multiple failures are a 
significant problem in developing diag- 
nostic strategies. For the case study, let 
us consider two such multiple failures. 
In part 4 of this s e r i e~ ,~  we discovered 
that the potential for false indication due 
to a multiple failure was present in the 
system. That is, a combined failure of c1 
and c5 or a combined failure of c2 and c5 
could result in a diagnosis of cg. Suppose 
engineering analysis has revealed that 
failure of c, and c5 is indeed possible 
under certain conditions. We wish to in- 
clude this multiple failure in the fault 
tree, and we call the associated group 

/ 

Figure 7. Multiple-failure mapping analysis for case study. 

Failure 1. In addition, suppose that engi- 
neering analysis has determined that 
failure of ~ 1 4  may actually trigger failure 
of cpl and vice versa. We include this 
multiple failure as Failure 2. Although 
generating fault trees that include all 
multiple failures is intractable, we can 
include these specific multiple failures 
in the trees and in the testability analysis 
by mapping the multiple failures to sin- 
gle conclusions in the model. 

We obtain the conclusion Failure 1 by 
combining all the elements of its two 
constituent parts (c1 and c5). In this case, 
testability analysis shows an ambiguity 
between the Failure 1 conclusion and 
the cg conclusion, which we should 

have anticipated from the previous anal- 
ysis of false indications. To compensate, 
we add a special test, t,, which looks 
specifically for the multiple failure and 
nothing else. Analysis shows that Failure 
2 is not a problem and is uniquely isolat- 
able with the current test set. 

Figure 7 shows the complete remap 
ping of the test-toconclusion matrix for 
the two multiple failures, including tx. 
Once we have mapped the additional 
elements into the model, developing 
fault trees is straightforward. Table 7 
shows the tree that includes these multi- 
ple failures. With all factors used, the 
tree requires between one and seven 
tests for resolution and an expected time 
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Table 7. Tailored fault tree table with test groups and test sequencing for the case study. 

Previous Pass Fail 
outcome outcome Step Test step 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

~ 17 

~ 

0 
1 
2 
3 
4 
5 
6 
5 
8 
4 

10 
11 
3 

13 
13 
15 
15 

Step 2 
Step 3 
Step 4 
Step 5 
Step 6 
Step 7 

~ 1 3 ,  NO Fault 

cl 6 ,  c17, c18, ;nu2 
c2 1 

Step 12 

Step 14 

Step 16 
c6 
c4 

cl 5 

c14 

9, c8, c9, cl 0 

int2 
int, 

Step 13 
Step 10 
Step 8 

c19, ;nul 
c20 

step 9 
c1, c2 

Step 11 
Failure 2 
Cl 1 I c12 
Step 15 

c5 
Step 17 
Failure I 

c3 

of 7.55 time units (including the penalty 
of 3.0 time units in seven of the 18 isola- 
tion sequences). 

Special conditions for fault 
isolation 

In some situations, we may wish to 
ovemde the inferences drawn in the in- 
ference engine, modify the way we pro- 
vide information, or tailor the rules to 
terminate isolation. The following para- 
graphs describe five basic types of over- 
rides, or special considerations. 

A priori information (prior infer- 
ence). Before we begin diagnosis, we 
may have information about the failure. 
For example, a light indicating trouble 
with the oil may be illuminated, or cer- 
tain components may have just been 
checked and can be assumed good. In- 
corporating this information before fault 
isolation can reduce the search space 
and improve efficiency. Any informa- 
tion available should be processed by 
the inference engine before we develop 

fault trees. Let us assume that the system 
is being evaluated at the depot, using 
calibrated input sources, and that these 
inputs are good. This results in a fault 
tree that does not include inputs either 
as tests or as conclusions. 

Suppressed test inference. We saw 
earlier that one way to address the false- 
alarm problem is to assume the diagno 
sis was incorrect and choose additional 
tests, using hypothesis-directed search. 
A second way is to assume some testing 
is wrong. Because the outcomes of 
some tests may be determined by other 
tests, we may wish to force execution of 
certain tests, regardless of whether or 
not they can be inferred. These tests may 
be the most accurate, the most reliable, 
or the easiest to perform properly. We 
can place them in the tree, or we can 
suppress inference by the inference en- 
gine (thus forcing them to be tested). 

es for inference. The model also in- 
cludes the capability to specify several 
types of linkages for inference outside 
the dependency matrix representation. 
Such linkages include: 

w A fail test outcome, triggering pass 
inferences (for example, a light that 
indicates a failure also indicates a 
good light bulb and good voltage to 
the light) 
A pass test outcome, triggering fail 
inferences 
A fail test outcome, triggering an 
untestable test or tests (for example, 
unsafetc-test) 

w A pass test outcome, triggering an 
untestable test or tests 

We can derive these linkages directly 
from the inference metarules. Let us as- 
sume that a fail outcome of t4 renders t1 
unsafe to test. This combination is the 
most frequently encountered and is 
closely related to the safetoturnan tests 
(normally handled as a test group and 
sequenced first in the diagnostic pro- 
cess). As a result, if t4 is evaluated, the 
subtree corresponding to t4’s failing will 
not include tl because the linkage caus- 
es tl to be inferred untestable. 

Intermediate conclusions. Often 
during isolation, we wish to note 
progress or specific conclusions as we 
proceed. These intermediate conclu- 
sions exist in the model as tests. These 
tests are immediately declared untest- 
able, but if another value is assigned 
(through inference), then that value is 
reported. For example, we can define a 
test that depends on all conclusions 
designated cl to cIo, a test that depends 
on all conclusions designated cll to cgl, 

and a test that depends on all the in- 
puts. We would then designate these 
three tests intermediate conclusions. 
The intermediate conclusions, then, 
would provide information about two 

Linkages. Dependenciesspecified in halves of the system and about all the 
the model provide certain direct linkag- ~ inputs. An intermediate conclusion 
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means several things to the inference 
engine: 

rn The element is considered untest- 
able. 
The element is not to be counted 
during any optimization. 

rn The element is to be announced 
whenever an inference rule deter- 
mines its state. 

Any combination of elements can 
appear as an intermediate conclusion. 
In a complex avionics system, we can 
consider all warranty items with an inter- 
mediate conclusion. This construct pro- 
vides a means for arbitrarily including 
inferable information in the model with- 
out biasing the optimization process. 

Multiple-outcome tests. So far, we 
have assumed that test outcomes are 
binary; that is, tests either pass or fail. 
However, entropy-directed depth-first 
search is fully capable of analyzing 
tests with multiple outcomes. Previous- 
ly, the backup from a pass outcome led 
to processing a fail outcome, and the 
backup from a failed outcome led to 
another backup in the tree. When mul- 
tiple outcomes are present, we stay 
with the individual node until all out- 
comes are exhausted. That is, on first 
arrival at a node, we proceed with the 
choice and assign the first outcome. 
When we arrive at an answer, we back 
up and examine the node, choose the 
next outcome (if available) in line, or 
back up further. 

In the case study, we can assume that 
in field situations certain tests may not 
be performable (because of equipment 
or personnel shortage) and certain tests 
may be potentially untestable. Thus, the 
tests have three outcomes: pass, fail, and 
unknown. If outcomes other than pass 
and fail are used in a model, then we 
may have to modify the inference meta- 
rules and extend the matrix beyond bi- 
nary. Otherwise, the optimization 
process remains unchanged. 

IN OUR DlSCUSUON OF THE CASE SnrDY, 
we derived five different fault trees for dif- 
ferent circumstances. The fault tree 
shown in Table 7 provides diagnostic se 
quences to be used in the shop; those in 
Tables 2,3,  and 4 would be used in the 
operational environment; and the fault 
tree in Table 5 would be used with a spe 
cia1 checkout procedure in operational 
units engaged in remote operations. 

A portion of fault tree development 
should be performed in concert with the 
testability analyses described in parts 3 
and 4. Incorporation of false-alarm 
checks and multiple-failure diagnosis 
are two examples of the interaction be- 
tween fault isolation and testability anal- 
ysis. The modeling process allows us to 
answer what-if questions and develop 
tailored products such as technical 
manuals for integrated diagnostics. 

This article concludes our presenta- 
tion of the basic concepts of the integrat- 
ed diagnostics modeling approach. We 
refer the reader to papers on several re- 
lated advanced topics not discussed 
here: 

rn Performing interactive fault isola- 
tion: using the model to diagnose 
in a dynamically changing 
en~ir0nment.I~ 
Learning from actual isolations: 
modifying time, failure frequency, 
and other data, as well as learning 
relationships from diagnostic 
 instance^.'^,'^ 

rn Reasoning under uncertainty: what 
to do when outcomes are not exact, 
technicians’ skill levels are in 
doubt, or other uncertainty factors 
are present. 7 ~ 1 8  

rn Partitioning large systems and mod- 
els: Often, large systems translate to 
slow execution in a dynamic envi- 
ronment. Partitioning breaks the 
system into several sub model^.^^ 
Developing an architecture for intel- 
ligent, learning, adaptable, and mod- 
ifiable automatic test equipment?O 

rn Tying system testing to logistics: pro- 

viding for logistics feedback, includ- 
ing computer-aided logistics sup- 
port (CALS).21 

rn Temporal factors: applying point- 
based and interval-based time 
constraints.22 

Developing fault trees for actual, prac- 
tical diagnosis in an integrated diagnostic 
environment is a complex process. Con- 
sidering various ovemdes and constraints 
allows computation of a virtually infinite 
number of fault trees for any complexsy5 
tem. Real fault trees may simultaneously 
invoke several of the factors we have dis- 
cussed. In fact, the development process 
most likely will require iterative design of 
the fault trees. Incorporating constraints 
and ovemdes in the model and algo- 
rithms will be necessaly to consistently 
generate practical diagnostic strategies 
that do not require manual manipulation 
by an expert. @k 
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