
IEEE Test and Diagnostics Standards

John Sheppard
ARINC

2551 Riva Road
Annapolis, MD 21401

410-266-2099
jsheppar @arinc.com

Abstract - The 1232 family of standards were developed to
provide standard exchange formats and software services
for reasoning systems used in system test and diagnosis.
The exchange formats and services are based on a model of
information required to support test and diagnosis. The
standards were developed by the Diagnostic and
Maintenance Control (D&MC) subcommittee of IEEE
SCC20. The current efforts by the D&MC are a combined
standard made up of the 1232 family, and a standard on
Testability and Diagnosability Metrics, P1522. The 1232
standards describe a neutral exchange format so one
diagnostic reasoner can exchange model information with
another diagnostic reasoner. In addition, software
interfaces are defined whereby diagnostic tools can be
developed to process the diagnostic information in a
consistent and reliable way. The objective of the Testability
and Diagnosability Metrics standard is to provide notionally
correct and mathematically precise definitions of testability
measures that may be used to either measure the testability
characteristics of a system, or predict the testability of a
system. The end purpose i s to provide an unambiguous
source for definitions of common and uncommon testability
and diagnosability terms such that each individual
encountering it can know precisely what that term means.
This paper describes the 1232 and PI522 standards and
details the recent changes in the information models,
restructured higher order services and simplified
conformance requirements.

INTRODUCTION

Tools such as Computer Aided Design (CAD), Computer
Aided Manufacturing (CAM), and Automatic Test Equipment
(ATE) are generating large collections of product data. One
characteristic of product data is object-like structure. Product
databases are large due to the complexity of the products
themselves and the detail of the information. Product
databases are often difficult to maintain because “corporate
knowledge” often evaporates as the product transitions from
design to manufacturing, from manufacturing to the market,
and finally to repair. Product description at one phase of the
lifecycle must be useable by tools at subsequent phases to
avoid re-entering data. Information is expensive to obtain.

Mark Kaufman
NWAS

PO Box 5000
Corona, CA 91718

kaufmanma @ corona.navv.mil
909-273-5725

Each phase of the product cycle has unique information needs
and makes unique information contributions. Better decision-
making requires better information in a timely manner. Data
mining warehousing, XML, information systems, all add
value. This trend has been accelerating and now touches our
everyday lives. Do you have a grocery club card?

The Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE) standards are product
information exchange standards for test and diagnosis. The
original standards, the 1232 series, developed a means of
exchange of information between diagnostic reasoners. As the
information models for the 1232 standards were developed, it
became apparent that these models could be used for
standardizing testability and diagnosability metrics.

IEEE Std 1232-1995 defines the architecture of an AI-
ESTATE-conformant system and has been published as a
“full-use” standard;. However, this standard was published
before the vision of AI-ESTATE was fully developed. IEEE
Std 1232.1-1997 defines a knowledge and data exchange
standard and was published as a “trial-use” standard. Trial-
use indicates that it is preliminary in nature, and the standards
committee is seeking comments from organizations
attempting to implement or use the standard. In 1998, IEEE
Std 1232.2-1998 was approved. This standard formally
defines a set of standard software services to be provided by a
diagnostic reasoner in an open-architecture test environment.
Since IEEE Std 1232.2-1998 is also a trial-use standard,
comment and feedback are solicited. These standards were
developed using information modeling. Five information
models addressing static and dynamic aspects of the
diagnostic domain were developed. The IEEE 1232 AI-
ESTATE series of standards also provide the foundation for
precise and unambiguous testability and diagnosability
metrics.

As systems became more complex, costly, and difficult to
diagnose and repair, initiatives were started to address these
problems. The objective of one of these initiatives, testability,
was to make systems easier to test. Early on, this focused on
having enough test points in the right places. As systems
evolved, it was recognized that the system design had to

0-7803-6395-7/00/$10.00 02000 IEEE 6.B.1-1

mailto:arinc.com
http://corona.navv.mil

include other characteristics to make the system easier to test.
As defined in MIL-STD-2165, testability is “a design
characteristic which allows the status (operable, inoperable,
or degraded) of an item to be determined and the isolation of
faults within the item to be performed in a timely manner.”
[l]. The purpose of MIL-STD-2165 was to provide uniform
procedures and methods to control planning, implementation,
and verification of testability during the system acquisition
process by the Department of Defense (DoD). It was to be
applied during all phases of system development-from
concept to production to fielding. MIL-STD-2165, though
deficient in some areas, provided useful guidance to
government suppliers. Further, lacking any equivalent
industry standard, many commercial system developers have
used it to guide their activities although it was not imposed as
a requirement.

A VISION FOR TEST AND DIAGNOSIS
STANDARDS

Diagnosis

The vision of AI-ESTATE standards is to provide an
integrated, formal view of diagnostic information as it exists
in diagnostic knowledge bases and as it is used (or generated)
in diagnostic systems. We assert that the whole purpose of
testing is to perform diagnosis [2]. In justifying this
assumption, we rely on a very general definition of diagnosis,
derived from its Greek components (6 ~ a yLyVWCTK&Wv)
meaning, “to discern apart.” Given such a broad definition,
all testing is done to provide information about the object
being tested and to differentiate some state of that object from
a set of possible states.

In support of this vision, the Diagnostic and Maintenance
control (D&MC) committee has been working on combining
the existing 1232 standards into a single, cohesive standard.
This “unified” standard provides formal specifications of all
of the information models (both for file exchange and for
diagnostic processing), from which the service specifications
are then derived. The architectural framework is retained at
the conceptual level to emphasize that a wide variety of
implementation models are possible that still support standard
exchange of information as long as the definition of that
information is clear and unambiguous. Thus, in a sense, the
models define the architecture, and the implementation is left
entirely to the implementer.

With this vision in mind, we expect AI-ESTATE to play a
central role in any test environment (thus the “All Test
Environments” part of the name). To date, the focus of the
standards has been the development of specifications
supporting diagnosis in the traditional sense of the word (i.e.,
fault isolation). The broader AI-ESTATE vision involves
tying diagnostic information to explicit product behavior

descriptions, assessments of the ability of testing to satisfy its
requirements, and maturation of the diagnostic process
through test and maintenance information feedback.

Testability and Diagnosability

In 1997, the AI-ESTATE committee began to work on a new
standard to take over where the canceled MIL-STD 2165 left
off. The military standard focused on specifying the essential
elements of a testability program and explained the elements
needed to define a testability program plan. In addition, MIL-
STD 2 165 contained the “definition” of several testability
metrics, and included a testability checklist to be used to
determine overall system testability. The approach being
taken to develop this new standard involves defining
testability and diagnosability metrics based on standard
information models. The updated models in the combined
1232 standard provide a solid basis for the development of
testability and diagnosability metrics.

THE AI-ESTATE ARCHITECTURE

According to IEEE Std 1232-1995, the AI-ESTATE
architecture is “a conceptual model“ in which “AI-ESTATE
applications may use any combination of components and
intercomponent communication” 131. Another “view” of the
AI-ESTATE architecture is provided by IEEE Std 1232.2-
1998. IEEE Std 1232.2-1998includes explicit definitions of
information services to be provided by a diagnostic reasoner,
where the services “can be thought of as responses to client
requests from the other components of the system
architecture” [4]. More specifically, “each of the elements
that interface with the reasoner will interact through [an]
application executive and will provide its own set of
encapsulated services to its respective clients” [4]. Figure 1
illustrates this architecture.

Although not necessarily obvious from the standards
themselves, these two “views” of the AI-ESTATE
architecture present an interesting dichotomy. Specifically,
the architecture standard provides a concept of AI-ESTATE
that permits any communication mechanism to be used
between components of a test environment in support of the
diagnostics provided by that environment. The service
specification, on the other hand, seems to cast the
communication mechanism in the form of a client-server
architecture. We note that the service specification did not
intend to require a client-server approach but presented this
as an example architecture that fits within the component
orientation.

We note that the intent of AI-ESTATE is to provide a formal,
standard framework for the exchange of diagnostic
information (both static and dynamic) in a diagnostic
environment. This exchange occurs at two levels. At the first

6.B.l-2

Rgre 1. A B T A E ArCtitfcQu-e

level, model data and knowledge are exchanged through a
neutral exchange format, as specified by IEEE Std 1232.1-
1997 [5] . At the second level, specified by IEEE Std 1232.2-
1998 [4] information is exchanged as needed between
software applications within the diagnostic environment. This
information includes entities from a model or information on
the current state of the diagnostic process.

To facilitate encapsulation of the information and the
underlying mechanisms providing that encapsulation, AI-
ESTATE assumes the presence of an “application executive.”
We emphasize that this application executive need not be a
physically separate process but can be identified as a “view”
of the process when it involves the communication activity. In
the following sections, we will provide a more detailed
discussion of the exchange and service elements of the
architecture.

Data and Knowledge Exchange

IS0 10303-1 1 (EXPRESS) and IS0 10303-21 (STEP
Physical File Format) are used to define information models
and exchange formats for diagnostic knowledge [6, 71. These
two international standards are being maintained by the STEP
(Standard for the Exchange of Product model data)
community. The current approach to static information
exchange within AI-ESTATE is to derive the exchange
format from the formal information models as specified in the
IS0 standards.

The purpose of information modeling is to provide a formal
specification of the semantics of information that is being
used in an “information system.” Information models identify
the key entities of information to be used, their relationships
to one another, and the “behavior” of these entities in terms
of constraints on valid values [8]. The intent is to ensure that
definitions of these entities are unambiguous.

IEEE 1232.1 was published as a “trial-use” standard to
provide a period for people to study it, attempt to implement
it, and provide feedback to the AI-ESTATE committee on the
ability of the standard to satisfy the stated requirements. Since
publication, comments have been received to indicate that
ambiguity still exists in the information models. Because of
the concern that the information models are still ambiguous,
the models have undergone close examination and
modification.

Diagnostic Services

The approach taken to defining services in AI-ESTATE has
been based on the traversal (i.e., the following of the
relationships defined between model entities to access
specific pieces of information in the models) of the
information models. The “simplest” services involve
traversing the models defined in IEEE 1232.1 (i.e., the
exchange models); however, these models provide little
functionality in terms of actual diagnosis.

In IEEE 1232.2, a novel use of information modeling was
applied in that a dynamic information model was specified to
support dynamic services. This model, called the “dynamic
context model” (DCM) relied on dynamically creating
entities that populate the model during a diagnostic session.
In fact, as suggested by “dcm.session” and “dcm.step” in the
model shown in Figure 2, a diagnostic session is modeled as a
sequence of steps instantiated from the set of possible values
specified in the static model. Details of how the service
specification is expected to be implemented can be found in
19, 101.

One of the concerns raised by a member of the AI-ESTATE
committee was whether the standard specifies a set of
services or simply an Application Programming Interface.
The claim was that the service specification must include a
behavior specification as well and that this can only be
accomplished by defining a set of baseline behaviors, perhaps
through some sort of test bed.

The committee observed that there are different opinions over
the difference between a service specification and an API
specification. Many, in fact, took issue with the claim that
they were different. Further, it was determined that including
test cases to specify standard behavior was not desirable due
to the wide variety of diagnostic approaches using common
diagnostic knowledge. Rather, it was believed that it was
more important for the information itself to be standardized
and the specific behavior to be left to the implementation.

6.B.1-3

Figure 2 Dynamic Context Model

In the original definition of the services, the list was limited
to the set of “primitive accessor” services corresponding to
elements in the information models. Recently, the services
have been redefined to provide a naming convention covering
the primitives in the models (thus reducing the number of
services to be defined from over 400 to approximately 160).
In addition, two new classes of services have been added:
utility services and higher-order services. The utility services
provide methods for determining if “optional” model
attributes exist and for countinglindexing elements within
aggregate attributes (i.e., sets and lists). The higher-order
services provide convenient methods for performing
reasoning within the AI-ESTATE framework. These services
include, for example, apply-test-outcome puts an outcome to
the active test associated with the current step in the DCM. It
then spawns the inference process within the attached
reasoner. When the inference is complete, it proceeds to put
inferred outcomes for related tests and diagnoses within the
current step. As an option, it may also update the current
hypothesis (if the reasoner is capable of generating a
hypothesis).

Conformance

The published standards provide very strict rules for
conformance. Specifically, data exchange must
conform to the published models. No subsets are
permitted (except by dropping optional attributes),
and extensions must be handled via the EXTEND
schema. In addition, all services must be specified
(i.e., no extensions and no subsets).

Currently, the D&MC is debating about a more
manageable and flexible approach to conformance.
The current proposal requires an application to
include a conformance “matrix” with associated
documentation to identify those areas claiming to be
conformant.

To claim minimal conformance to IEEE Std 1232 for
model development, a conformance matrix containing
at least the following must be provided. The core
model elements of the common element model
(CEM) plus at least one of either the Fault Tree
Model (FTM), Diagnostic Inference Model (DIM) or
Enhanced Diagnostic Model (EDIM). Further for
each Enhanced Model Element the capability of the
application to either read or write the element must be
specified.

To claim minimal conformance to IEEE Std 1232 for
the application runtime environment (i.e., services), a
conformance matrix containing at least the following
must be provided. The Core Primitive Services for

the CEM and DCM and at least one of the Fault Tree Model
(FI’M), Diagnostic Inference Model (DIM) or Enhanced
Diagnostic Model (DIM). The Enhanced Primitive Services
for the CEM and DCM must be specified. The Core Higher-
Order Services for the DCM are required. The Enhanced
Higher-Order Services must be specified.

TESTABILITY AND DIAGNOSABILITY
METRICS

Testability has been broadly recognized as the “-ility” that
deals with those aspects of a system that allow the status
(operable, inoperable, or degraded) or health state to be
determined. Early work in the field primarily dealt with the
design aspects such as controllability and observability.
Almost from the start this was applied to the manufacturing of
systems where test was seen as a device to improve
production yields. The concept slowly expanded to include
the aspects of field maintainability such as false alarms,
isolation percentages, and other factors associated with the
burden of maintaining a system.

6.B.1-4

In the industry, many terms such as test coverage and
Fraction of Fault Detection (FFD) are not precisely defined or
have multiple definitions. Further, each diagnostic tool
calculates these terms differently and therefore the results are
not directly comparable. Some measures, such as false alarm
rate, are not measurable in field applications. Other measures
such as Incremental Fault Resolution, Operational Isolation,
and Fault Isolation Resolution appear different, but mean
nearly the same thing.

Lacking well-defined testability measures, the tasks of
establishing testability requirements, and predicting and
evaluating the testability of the design are extremely difficult.
This in turn makes effective participation in the design for
testability process difficult. These difficulties will be greatly
diminished by the establishment of standard testability
metrics. An immediate benefit will come with a consistent,
precise, and measurable set of testability attributes that can be
compared across systems, tools, and within iterations of a
system’s design.

As we strive to establish concurrent engineering practices, the
interchange between the testability function and other
functions becomes even more important. To create integrated
diagnostic environments, where the elements of automatic
testing, manual testing, training, maintenance aids, and
technical information work in concert with the testability
element, we must maximize the reuse of data, information,
knowledge, and software. Complete diagnostic systems
include Built-In-Test (BIT), Automatic Test Equipment
(ATE), and manual troubleshooting. It would be desirable to
be able to predict and evaluate the testability of systems at
these levels.

It is not an accident that the P1522 standard contains both the
words testability and diagnosability. The distinction is not
always easy to maintain, especially in light of the expansion
of the use of the testability term. Diagnosability is the larger
term and encompasses all aspects of detection, fault
localization, and fault identification. Testability is a design
characteristic of the system. The boundary is fuzzy and often
it is not clear when one term applies and the other does not.
The P1522 standard is meant to encompass both aspects of
the test problem. Because of the long history of the use of the
testability term, we will seldom draw a distinction. However,
the use of both terms is significant in that testability is not
independent of the diagnostic process. The writing of test
procedures cannot and should not be done separately from
testability analyses. To do so, would be meeting the letter of
the requirements without considering {he intent.

The objective of the P1522 standard is to provide notionally
correct, inherently useful, and mathematically precise
definitions of testability metrics and characteristics. It is
expected that the metrics may be used to either measure or

predict the testability of a system, . Notionally correct means
that the measures are not in conflict with intuitive and
historical representations. Beyond that, the measures must be
either measurable or predictable. The former may be used in
the specification and enforcement of acquisition clauses
concerning factory and field-testing, and maintainability of
complex systems. The latter may be used in an iterative
fashion to improve the factory and field-testing and
maintainability of complex systems. The most useful of all
are measures that can be used for both. Because of the last
point, the emphasis will be on measurable quantities
(metrics).

Things that can be enumerated by observation and folded into
the defined figures-of-merit will be developed into metrics.
However, a few measures are inherently useful on the design
side even if they are not measurable in the field and they are
defined in a separate section in P1522. The end purpose is to
provide an unambiguous source for definitions of common
and uncommon testability and diagnosability terms such that
each individual encountering the metric can know precisely
what that metric measures.

Testability and Diagnosability Metrics and the
1232 Standards

Metrics are a measure of some identifiable quantity. The
metrics of P1522 are derived from information obtained from
the information models in IEEE 1232. The very basic
information, the primitives, is counts of something. The
number of faults, components, and functions are obtainable
from the information services of the 1232 models. For
example, a testability analysis tool would ask for the total
number of faults and then ask for the number of faults
detected. The tool would then calculate the fraction of faults
detected. This example is extremely simplified.

In the revised CEM, each diagnosis has a criticality. This
relationship allows the testability analysis tool to generate
metrics that are based on Failure Effects Mode and Criticality
Analysis (FEMCA). Adding this information to the previous
example would generate the fraction of catastrophic faults
detected. A further variation on this would be to determine
the percentage of failed components that would lead to a
catastrophic failure detected by Built-in-Test (BIT).

Metrics Issues

MIL-STD-2165 defined Fraction of Faults Detected (FFD)
two ways. The first is the fraction of all faults detected by
BITExtemal Test Equipment (ETE). The second is the
fraction of all detectable faults detected by BITETE [l].
False alarms were excluded from the definition. From these
two variations grew many others. As noted in
“Organizational-Level Testability” [1 11 FFD has been

6.B.1-5

defined as: Fraction of all faults detected or detectable by
BITETE, Fraction of all detectable faults detected or
detectable with BITETE, Fraction of all faults detected
through the use of defined means, Percentage of all faults
automatically detected by BITETE, Percentage of all faults
detectable by BITETE, Percentage of all faults detectable
on-line by BITETE, Percentage of all faults and out-of-
tolerance conditions detectable by BITETE, and Percentage
of all faults detectable by any means.

One problem with traditional metrics is that they are
“overloaded.” Overloaded in this case means that due to
“common understanding” of the terms, fine variations are not
specified. Consequently, users of the term do not necessarily
know the implications of a precise definition. Discussions of
overloaded terms go on at length, in part because everyone in
the discussion has brought along a lot of mental baggage.
Often, progress is only made when a neutral term is chosen
and the meaning is built from the ground up. This
overloading is so severe, for example, that there was no
definition of FFD in System Test and Diagnosis [2], the
authors preferring to use Non-Detection Percentage (NDP).
FFD is the negative of NDP and is equal to 1-NDP.

Even the number of faults counted in the field requires a more
precise definition. The “overloaded” version is simply a
count of all the things that failed. The quantity of all faults, as
usually defined in the industry, is different. The quantity of
faults detected by BITETE, and the quantity of faults
detected exclude the occurrence of false alarms. Intermittent
faults are classified as a single fault. Temporary faults, those
caused by external transients of noise, are not classified as
faults.

Another aspect of the challenge is that many metrics sound
different but are not. For example, Ambiguity Group
Isolation Probabilities, Fault Isolation Resolution, Isolation
Level, and System Operational Isolation Level mean nearly
the same thing.

OTHER PRODUCT DATA APPLICATIONS

Ties to Maintenance Feedback

In 1993, a Project Authorization Request (PAR) was
submitted to the IEEE for new standards project related to
specifying information and services for test and maintenance
information feedback. The Test and Maintenance Information
Management Standard (TMIMS) project was approved by the
IEEE in early 1994. The focus of this project was to define
exchange and service standards (similar to AI-ESTATE)
which support the test and diagnostic maturation process. In
1998, due to a lack of progress, the TMIMS PAR was
cancelled. The revised AI-ESTATE models make
development of the TMIMS standard achievable.

AI-ESTATE continues to require definition of exchange and
service standards related to test and maintenance information.
In 1998, shortly after the cancellation of the TMIMS PAR,
the D&MC committee decided to include test and
maintenance information in its scope. The approach will be
consistent with AI-ESTATE (i.e., the definition of
information models and EXPRESS-level services derived
from traversing the models). The starting point for the new
models will be the dynamic context model in IEEE 1232.2.
By keeping track of the sequence of events during a
diagnostic session, much of the historical information is
identified and captured that can be used for later diagnostic
maturation.

As a result of ongoing work by members of the D&MC, a
proposal for a new information model addressing TMIMS
issues is in preparation. The model begins with a
representation of the information contained within IEEE Std
1545 [12] . This standard captures parametric test
information. The TMIMS information includes parametrics,
test events, maintenance events, and explicit ties to AI-
ESTATE. The Dynamic Context Model defined in AI-
ESTATE is forming the foundation for capturing a diagnostic
session and will be the primary starting point for any
connections to the historical data.

Ties to Product Descriptions

Through the 1990s, the IEEE has been developing a family of
standards under the umbrella of “A Broad Based
Environment for Test” (ABBET) [13,14]. An early
architecture of ABBET, based on information modeling,
presented ABBET as five layers: 1) product description, 2)
test requirements/strategy, 3) test methods, 4) test resources,
and 5) instrumentation. Since then, standards for the “lower
layers” of ABBET (i.e., layers 3-5) have been defined;
however, it has long been recognized that the major benefit
from standardization will come from the “upper layers” (i.e.,
layers 1 and 2).

AI-ESTATE satisfies many of the requirements related to
layer two of ABBET (however, AI-ESTATE has never been
considered part of the ABBET family). Further, a recent
proposal for a new information model-based standard, called
the Test Requirements Model (TeRM), will address specific
concerns of test requirements [15, 161. Standards for the
product description layer have always been problematic due
to issues related to the revelation of intellectual property. In
mid-2000, a PAR will be presented to the IEEE to cover the
TeRM work. With the combination of TeRM, AI-ESTATE,
and TMIMS, it is anticipated that intellectual property can be
hidden from information provided in standard form while still
supporting the test engineer fully.

6.B.1-6

CONCLUSION REFERENCES

Reasoning system technology has progressed to the point
where electronic and other complex systems are employing
artificial intelligence as a primary component in meeting
system test and verification requirements. This is giving rise
to a proliferation of AI-based design, test, and diagnostic
tools. Unfortunately, the lack of standard interfaces between
these reasoning systems has increased the likelihood of
significantly higher product life-cycle cost. Such costs arise
from redundant engineering efforts during design and test
phases, sizeable investment in special-purpose tools, and loss
of system configuration control.

The AI-ESTATE standards promise to facilitate ease in
production testing and long-term support of systems, as well
as reducing overall product life-cycle cost. This will be
accomplished by facilitating portability, knowledge reuse,
and sharing of test and diagnostic information among
embedded, automatic, and stand-alone test systems within the
broader scope of product design, manufacture, and support.
AI-ESTATE was first conceived in 1988 as a standard for
representing expert-system rule bases in the context of
maintenance data collection. Since that time, AI-ESTATE has
evolved to be embodied in three published standards related
to the exchange of diagnostic information and the interaction
of diagnostic reasoners within a diagnostic environment. The
three standards have been recommended for inclusion on the
US DoD ATS Executive Agent’s list of standard satisfying
requirements for ATS critical interfaces. In looking to the
next generation, AI-ESTATE is expanding to address issues
of testability, diagnosability, maintenance data collection, and
test requirements specification.

Further information on the AI-ESTATE standards and the
activities of the D&MC can be found at:
httrJ://grouper.ieee.org/ErouDs/l232/.

ACKNOWLEDGMENTS

In many ways, it is unfortunate that a paper such as this
includes only the names of two authors. The work reported
here is the result of efforts of a committee of devoted
volunteers who have supplied their expertise in system test
and diagnosis to develop strong, sound standards supporting
the diagnostics community. We would like to thank Les
Orlidge, Randy Simpson, Tim Bearse, Tim Wilmering, Greg
Bowman, Dave Kleinman, Lee Shombert, Sharon Goodall,
Len Haynes, Jack Taylor, Amanda Giarla, Bill Simerly, and
Helmut Scheibenzuber for their efforts in developing the
standards and promoting their use in industry.

1. MIL STD 2165. 1985. Testability Program for
Electronic Systems and Equipment, Washington, DC:
Naval Electronic Systems Command (ELEX-8 11 1)

2. Simpson, W. and Sheppard, J. 1994. System Test and
Diagnosis, Boston, MA: Kluwer Academic Publishers.

3. IEEE Std 1232-1995. IEEE Standard for Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE): Overview and
Architecture, Piscataway, NJ: IEEE Standards Press.

IEEE Std 1232.2-1998. IEEE Trial-Use Standard for
Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE): Service Specification,
Piscataway, NJ: IEEE Standards Press.

4.

5 . IEEE Std 1232.1-1997. IEEE Trial-Use Standard for
Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE): Data and Knowledge
Specification, Piscataway, NJ: IEEE Standards Press.

6. IS0 10303-1 1: 1994. Industrial Automation Systems and
Integration-Product Data Representation and
Exchange-Part 11: Description Methods: The
EXPRESS Language Reference Manual, Geneva,
Switzerland: International Organization for
Standardization.

7. IS0 10303-21: 1994. Industrial Automation Systems and
Integration-Product Data Representation and
Exchange-Part 2 1 : Implementation Methods: Clear
Text Encoding of the Exchange Structure, Geneva,
Switzerland: International Organization for
Standardization.

Schenk, D. and Wilson, P. 1994. Information Modeling:
The EXPRESS Way, New York: Oxford University
Press.

8.

9. Sheppard, J. and Maguire, R. 1996. “Application
Scenarios for AI-ESTATE Services,” AUTOTESTCON
’96 Conference Record, New York: IEEE Press.

10. Sheppard, J. and Orlidge, L. 1997. Artificial Intelligence
Exchange and Service Tie to All Test Environments (AI-
ESTATE)-A New Standard for System Diagnostics,”
Proceedings of the International Test Conference, Los
Alamitos, CA: IEEE Computer Society Press.

11. Simpson, W., Bailey, J., Barto, K. and Esker, E., 1985
“Organization-Level Testability Prediction”, ARINC
Research Corporation Report 15 11-01-3623 Prepared for
the Rome Air Development Center.

6.B.1-7

12. IEEE Std 1545-1999. 1999. Standard for Parametric
Data Log Format, Piscataway, NJ: IEEE Standards Press.

13. IEEE Std 1226-1993. IEEE Trial-Use Standard for A
Broad Based Environment for Test (ABBET): Overview
and Architecture, Piscataway, NJ: IEEE Standards Press.

14. IEEE Std 1226.6-1996. IEEE Guide to the
Understanding of A Broad Based Environment for Test
(ABBET), Piscataway, NJ: IEEE Standards Press.

15. Shombert, L. 1998. Test Requirements Model Language
Reference Manual, Draft 0.1, Technical Report CAE-
1998-07-01, Vienna, VA: Intermetrics.

16. Shombert, L. and Sheppard, J. 1998. “A Behavior Model
for Next Generation Test Systems,” Journal of Electronic
Testing: Theory and Applications, Vol. 13, No. 3

6.B.1-8

