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Abstract - The 1232 family of standards were developed to 
provide standard exchange formats and software services 
for  reasoning systems used in system test and diagnosis. 
The exchange formats and services are based on a model of 
information required to support test and diagnosis. The 
standards were developed by the Diagnostic and 
Maintenance Control (D&MC) subcommittee of IEEE 
SCC20. The current efforts by the D&MC are a combined 
standard made up of the 1232 family, and a standard on 
Testability and Diagnosability Metrics, P1522. The 1232 
standards describe a neutral exchange format so one 
diagnostic reasoner can exchange model information with 
another diagnostic reasoner. In  addition, software 
interfaces are defined whereby diagnostic tools can be 
developed to process the diagnostic information in a 
consistent and reliable way. The objective of the Testability 
and Diagnosability Metrics standard is to provide notionally 
correct and mathematically precise definitions of testability 
measures that may be used to either measure the testability 
characteristics of a system, or predict the testability of a 
system. The end purpose i s  to provide an unambiguous 
source for  definitions of common and uncommon testability 
and diagnosability terms such that each individual 
encountering it can know precisely what that term means. 
This paper describes the 1232 and PI522 standards and 
details the recent changes in the information models, 
restructured higher order services and simplified 
conformance requirements. 

INTRODUCTION 

Tools such as Computer Aided Design (CAD), Computer 
Aided Manufacturing (CAM), and Automatic Test Equipment 
(ATE) are generating large collections of product data. One 
characteristic of product data is object-like structure. Product 
databases are large due to the complexity of the products 
themselves and the detail of the information. Product 
databases are often difficult to maintain because “corporate 
knowledge” often evaporates as the product transitions from 
design to manufacturing, from manufacturing to the market, 
and finally to repair. Product description at one phase of the 
lifecycle must be useable by tools at subsequent phases to 
avoid re-entering data. Information is expensive to obtain. 
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Each phase of the product cycle has unique information needs 
and makes unique information contributions. Better decision- 
making requires better information in a timely manner. Data 
mining warehousing, XML, information systems, all add 
value. This trend has been accelerating and now touches our 
everyday lives. Do you have a grocery club card? 

The Artificial Intelligence Exchange and Service Tie to All 
Test Environments (AI-ESTATE) standards are product 
information exchange standards for test and diagnosis. The 
original standards, the 1232 series, developed a means of 
exchange of information between diagnostic reasoners. As the 
information models for the 1232 standards were developed, it 
became apparent that these models could be used for 
standardizing testability and diagnosability metrics. 

IEEE Std 1232-1995 defines the architecture of an AI- 
ESTATE-conformant system and has been published as a 
“full-use” standard;. However, this standard was published 
before the vision of AI-ESTATE was fully developed. IEEE 
Std 1232.1-1997 defines a knowledge and data exchange 
standard and was published as a “trial-use” standard. Trial- 
use indicates that it is preliminary in nature, and the standards 
committee is seeking comments from organizations 
attempting to implement or use the standard. In 1998, IEEE 
Std 1232.2-1998 was approved. This standard formally 
defines a set of standard software services to be provided by a 
diagnostic reasoner in an open-architecture test environment. 
Since IEEE Std 1232.2-1998 is also a trial-use standard, 
comment and feedback are solicited. These standards were 
developed using information modeling. Five information 
models addressing static and dynamic aspects of the 
diagnostic domain were developed. The IEEE 1232 AI- 
ESTATE series of standards also provide the foundation for 
precise and unambiguous testability and diagnosability 
metrics. 

As systems became more complex, costly, and difficult to 
diagnose and repair, initiatives were started to address these 
problems. The objective of one of these initiatives, testability, 
was to make systems easier to test. Early on, this focused on 
having enough test points in the right places. As systems 
evolved, it was recognized that the system design had to 
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include other characteristics to make the system easier to test. 
As defined in MIL-STD-2165, testability is “a design 
characteristic which allows the status (operable, inoperable, 
or degraded) of an item to be determined and the isolation of 
faults within the item to be performed in a timely manner.” 
[l]. The purpose of MIL-STD-2165 was to provide uniform 
procedures and methods to control planning, implementation, 
and verification of testability during the system acquisition 
process by the Department of Defense (DoD). It was to be 
applied during all phases of system development-from 
concept to production to fielding. MIL-STD-2165, though 
deficient in some areas, provided useful guidance to 
government suppliers. Further, lacking any equivalent 
industry standard, many commercial system developers have 
used it to guide their activities although it was not imposed as 
a requirement. 

A VISION FOR TEST AND DIAGNOSIS 
STANDARDS 

Diagnosis 

The vision of AI-ESTATE standards is to provide an 
integrated, formal view of diagnostic information as it exists 
in diagnostic knowledge bases and as it is used (or generated) 
in diagnostic systems. We assert that the whole purpose of 
testing is to perform diagnosis [2]. In justifying this 
assumption, we rely on a very general definition of diagnosis, 
derived from its Greek components ( 6 ~ a  yLyVWCTK&Wv) 
meaning, “to discern apart.” Given such a broad definition, 
all testing is done to provide information about the object 
being tested and to differentiate some state of that object from 
a set of possible states. 

In support of this vision, the Diagnostic and Maintenance 
control (D&MC) committee has been working on combining 
the existing 1232 standards into a single, cohesive standard. 
This “unified” standard provides formal specifications of all 
of the information models (both for file exchange and for 
diagnostic processing), from which the service specifications 
are then derived. The architectural framework is retained at 
the conceptual level to emphasize that a wide variety of 
implementation models are possible that still support standard 
exchange of information as long as the definition of that 
information is clear and unambiguous. Thus, in a sense, the 
models define the architecture, and the implementation is left 
entirely to the implementer. 

With this vision in mind, we expect AI-ESTATE to play a 
central role in any test environment (thus the “All Test 
Environments” part of the name). To date, the focus of the 
standards has been the development of specifications 
supporting diagnosis in the traditional sense of the word (i.e., 
fault isolation). The broader AI-ESTATE vision involves 
tying diagnostic information to explicit product behavior 

descriptions, assessments of the ability of testing to satisfy its 
requirements, and maturation of the diagnostic process 
through test and maintenance information feedback. 

Testability and Diagnosability 

In 1997, the AI-ESTATE committee began to work on a new 
standard to take over where the canceled MIL-STD 2165 left 
off. The military standard focused on specifying the essential 
elements of a testability program and explained the elements 
needed to define a testability program plan. In addition, MIL- 
STD 2 165 contained the “definition” of several testability 
metrics, and included a testability checklist to be used to 
determine overall system testability. The approach being 
taken to develop this new standard involves defining 
testability and diagnosability metrics based on standard 
information models. The updated models in the combined 
1232 standard provide a solid basis for the development of 
testability and diagnosability metrics. 

THE AI-ESTATE ARCHITECTURE 

According to IEEE Std 1232-1995, the AI-ESTATE 
architecture is “a conceptual model“ in which “AI-ESTATE 
applications may use any combination of components and 
intercomponent communication” 131. Another “view” of the 
AI-ESTATE architecture is provided by IEEE Std 1232.2- 
1998. IEEE Std 1232.2-1998includes explicit definitions of 
information services to be provided by a diagnostic reasoner, 
where the services “can be thought of as responses to client 
requests from the other components of the system 
architecture” [4]. More specifically, “each of the elements 
that interface with the reasoner will interact through [an] 
application executive and will provide its own set of 
encapsulated services to its respective clients” [4]. Figure 1 
illustrates this architecture. 

Although not necessarily obvious from the standards 
themselves, these two “views” of the AI-ESTATE 
architecture present an interesting dichotomy. Specifically, 
the architecture standard provides a concept of AI-ESTATE 
that permits any communication mechanism to be used 
between components of a test environment in support of the 
diagnostics provided by that environment. The service 
specification, on the other hand, seems to cast the 
communication mechanism in the form of a client-server 
architecture. We note that the service specification did not 
intend to require a client-server approach but presented this 
as an example architecture that fits within the component 
orientation. 

We note that the intent of AI-ESTATE is to provide a formal, 
standard framework for the exchange of diagnostic 
information (both static and dynamic) in a diagnostic 
environment. This exchange occurs at two levels. At the first 
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level, model data and knowledge are exchanged through a 
neutral exchange format, as specified by IEEE Std 1232.1- 
1997 [ 5 ] .  At the second level, specified by IEEE Std 1232.2- 
1998 [4] information is exchanged as needed between 
software applications within the diagnostic environment. This 
information includes entities from a model or information on 
the current state of the diagnostic process. 

To facilitate encapsulation of the information and the 
underlying mechanisms providing that encapsulation, AI- 
ESTATE assumes the presence of an “application executive.” 
We emphasize that this application executive need not be a 
physically separate process but can be identified as a “view” 
of the process when it involves the communication activity. In 
the following sections, we will provide a more detailed 
discussion of the exchange and service elements of the 
architecture. 

Data and Knowledge Exchange 

IS0 10303-1 1 (EXPRESS) and IS0  10303-21 (STEP 
Physical File Format) are used to define information models 
and exchange formats for diagnostic knowledge [6, 71. These 
two international standards are being maintained by the STEP 
(Standard for the Exchange of Product model data) 
community. The current approach to static information 
exchange within AI-ESTATE is to derive the exchange 
format from the formal information models as specified in the 
IS0 standards. 

The purpose of information modeling is to provide a formal 
specification of the semantics of information that is being 
used in an “information system.” Information models identify 
the key entities of information to be used, their relationships 
to one another, and the “behavior” of these entities in terms 
of constraints on valid values [8]. The intent is to ensure that 
definitions of these entities are unambiguous. 

IEEE 1232.1 was published as a “trial-use” standard to 
provide a period for people to study it, attempt to implement 
it, and provide feedback to the AI-ESTATE committee on the 
ability of the standard to satisfy the stated requirements. Since 
publication, comments have been received to indicate that 
ambiguity still exists in the information models. Because of 
the concern that the information models are still ambiguous, 
the models have undergone close examination and 
modification. 

Diagnostic Services 

The approach taken to defining services in AI-ESTATE has 
been based on the traversal (i.e., the following of the 
relationships defined between model entities to access 
specific pieces of information in the models) of the 
information models. The “simplest” services involve 
traversing the models defined in IEEE 1232.1 (i.e., the 
exchange models); however, these models provide little 
functionality in terms of actual diagnosis. 

In IEEE 1232.2, a novel use of information modeling was 
applied in that a dynamic information model was specified to 
support dynamic services. This model, called the “dynamic 
context model” (DCM) relied on dynamically creating 
entities that populate the model during a diagnostic session. 
In fact, as suggested by “dcm.session” and “dcm.step” in the 
model shown in Figure 2, a diagnostic session is modeled as a 
sequence of steps instantiated from the set of possible values 
specified in the static model. Details of how the service 
specification is expected to be implemented can be found in 
19, 101. 

One of the concerns raised by a member of the AI-ESTATE 
committee was whether the standard specifies a set of 
services or simply an Application Programming Interface. 
The claim was that the service specification must include a 
behavior specification as well and that this can only be 
accomplished by defining a set of baseline behaviors, perhaps 
through some sort of test bed. 

The committee observed that there are different opinions over 
the difference between a service specification and an API 
specification. Many, in fact, took issue with the claim that 
they were different. Further, it was determined that including 
test cases to specify standard behavior was not desirable due 
to the wide variety of diagnostic approaches using common 
diagnostic knowledge. Rather, it was believed that it was 
more important for the information itself to be standardized 
and the specific behavior to be left to the implementation. 
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Figure 2 Dynamic Context Model 

In the original definition of the services, the list was limited 
to the set of “primitive accessor” services corresponding to 
elements in the information models. Recently, the services 
have been redefined to provide a naming convention covering 
the primitives in the models (thus reducing the number of 
services to be defined from over 400 to approximately 160). 
In addition, two new classes of services have been added: 
utility services and higher-order services. The utility services 
provide methods for determining if “optional” model 
attributes exist and for countinglindexing elements within 
aggregate attributes (i.e., sets and lists). The higher-order 
services provide convenient methods for performing 
reasoning within the AI-ESTATE framework. These services 
include, for example, apply-test-outcome puts an outcome to 
the active test associated with the current step in the DCM. It 
then spawns the inference process within the attached 
reasoner. When the inference is complete, it proceeds to put 
inferred outcomes for related tests and diagnoses within the 
current step. As an option, it may also update the current 
hypothesis (if the reasoner is capable of generating a 
hypothesis). 

Conformance 

The published standards provide very strict rules for 
conformance. Specifically, data exchange must 
conform to the published models. No subsets are 
permitted (except by dropping optional attributes), 
and extensions must be handled via the EXTEND 
schema. In addition, all services must be specified 
(i.e., no extensions and no subsets). 

Currently, the D&MC is debating about a more 
manageable and flexible approach to conformance. 
The current proposal requires an application to 
include a conformance “matrix” with associated 
documentation to identify those areas claiming to be 
conformant. 

To claim minimal conformance to IEEE Std 1232 for 
model development, a conformance matrix containing 
at least the following must be provided. The core 
model elements of the common element model 
(CEM) plus at least one of either the Fault Tree 
Model (FTM), Diagnostic Inference Model (DIM) or 
Enhanced Diagnostic Model (EDIM). Further for 
each Enhanced Model Element the capability of the 
application to either read or write the element must be 
specified. 

To claim minimal conformance to IEEE Std 1232 for 
the application runtime environment (i.e., services), a 
conformance matrix containing at least the following 
must be provided. The Core Primitive Services for 

the CEM and DCM and at least one of the Fault Tree Model 
(FI’M), Diagnostic Inference Model (DIM) or Enhanced 
Diagnostic Model (DIM). The Enhanced Primitive Services 
for the CEM and DCM must be specified. The Core Higher- 
Order Services for the DCM are required. The Enhanced 
Higher-Order Services must be specified. 

TESTABILITY AND DIAGNOSABILITY 
METRICS 

Testability has been broadly recognized as the “-ility” that 
deals with those aspects of a system that allow the status 
(operable, inoperable, or degraded) or health state to be 
determined. Early work in the field primarily dealt with the 
design aspects such as controllability and observability. 
Almost from the start this was applied to the manufacturing of 
systems where test was seen as a device to improve 
production yields. The concept slowly expanded to include 
the aspects of field maintainability such as false alarms, 
isolation percentages, and other factors associated with the 
burden of maintaining a system. 
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In the industry, many terms such as test coverage and 
Fraction of Fault Detection (FFD) are not precisely defined or 
have multiple definitions. Further, each diagnostic tool 
calculates these terms differently and therefore the results are 
not directly comparable. Some measures, such as false alarm 
rate, are not measurable in field applications. Other measures 
such as Incremental Fault Resolution, Operational Isolation, 
and Fault Isolation Resolution appear different, but mean 
nearly the same thing. 

Lacking well-defined testability measures, the tasks of 
establishing testability requirements, and predicting and 
evaluating the testability of the design are extremely difficult. 
This in turn makes effective participation in the design for 
testability process difficult. These difficulties will be greatly 
diminished by the establishment of standard testability 
metrics. An immediate benefit will come with a consistent, 
precise, and measurable set of testability attributes that can be 
compared across systems, tools, and within iterations of a 
system’s design. 

As we strive to establish concurrent engineering practices, the 
interchange between the testability function and other 
functions becomes even more important. To create integrated 
diagnostic environments, where the elements of automatic 
testing, manual testing, training, maintenance aids, and 
technical information work in concert with the testability 
element, we must maximize the reuse of data, information, 
knowledge, and software. Complete diagnostic systems 
include Built-In-Test (BIT), Automatic Test Equipment 
(ATE), and manual troubleshooting. It would be desirable to 
be able to predict and evaluate the testability of systems at 
these levels. 

It is not an accident that the P1522 standard contains both the 
words testability and diagnosability. The distinction is not 
always easy to maintain, especially in light of the expansion 
of the use of the testability term. Diagnosability is the larger 
term and encompasses all aspects of detection, fault 
localization, and fault identification. Testability is a design 
characteristic of the system. The boundary is fuzzy and often 
it is not clear when one term applies and the other does not. 
The P1522 standard is meant to encompass both aspects of 
the test problem. Because of the long history of the use of the 
testability term, we will seldom draw a distinction. However, 
the use of both terms is significant in that testability is not 
independent of the diagnostic process. The writing of test 
procedures cannot and should not be done separately from 
testability analyses. To do so, would be meeting the letter of 
the requirements without considering {he intent. 

The objective of the P1522 standard is to provide notionally 
correct, inherently useful, and mathematically precise 
definitions of testability metrics and characteristics. It is 
expected that the metrics may be used to either measure or 

predict the testability of a system, . Notionally correct means 
that the measures are not in conflict with intuitive and 
historical representations. Beyond that, the measures must be 
either measurable or predictable. The former may be used in 
the specification and enforcement of acquisition clauses 
concerning factory and field-testing, and maintainability of 
complex systems. The latter may be used in an iterative 
fashion to improve the factory and field-testing and 
maintainability of complex systems. The most useful of all 
are measures that can be used for both. Because of the last 
point, the emphasis will be on measurable quantities 
(metrics). 

Things that can be enumerated by observation and folded into 
the defined figures-of-merit will be developed into metrics. 
However, a few measures are inherently useful on the design 
side even if they are not measurable in the field and they are 
defined in a separate section in P1522. The end purpose is to 
provide an unambiguous source for definitions of common 
and uncommon testability and diagnosability terms such that 
each individual encountering the metric can know precisely 
what that metric measures. 

Testability and Diagnosability Metrics and the 
1232 Standards 

Metrics are a measure of some identifiable quantity. The 
metrics of P1522 are derived from information obtained from 
the information models in IEEE 1232. The very basic 
information, the primitives, is counts of something. The 
number of faults, components, and functions are obtainable 
from the information services of the 1232 models. For 
example, a testability analysis tool would ask for the total 
number of faults and then ask for the number of faults 
detected. The tool would then calculate the fraction of faults 
detected. This example is extremely simplified. 

In the revised CEM, each diagnosis has a criticality. This 
relationship allows the testability analysis tool to generate 
metrics that are based on Failure Effects Mode and Criticality 
Analysis (FEMCA). Adding this information to the previous 
example would generate the fraction of catastrophic faults 
detected. A further variation on this would be to determine 
the percentage of failed components that would lead to a 
catastrophic failure detected by Built-in-Test (BIT). 

Metrics Issues 

MIL-STD-2165 defined Fraction of Faults Detected (FFD) 
two ways. The first is the fraction of all faults detected by 
BITExtemal Test Equipment (ETE). The second is the 
fraction of all detectable faults detected by BITETE [l]. 
False alarms were excluded from the definition. From these 
two variations grew many others. As noted in 
“Organizational-Level Testability” [ 1 11 FFD has been 
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defined as: Fraction of all faults detected or detectable by 
BITETE, Fraction of all detectable faults detected or 
detectable with BITETE, Fraction of all faults detected 
through the use of defined means, Percentage of all faults 
automatically detected by BITETE, Percentage of all faults 
detectable by BITETE, Percentage of all faults detectable 
on-line by BITETE, Percentage of all faults and out-of- 
tolerance conditions detectable by BITETE, and Percentage 
of all faults detectable by any means. 

One problem with traditional metrics is that they are 
“overloaded.” Overloaded in this case means that due to 
“common understanding” of the terms, fine variations are not 
specified. Consequently, users of the term do not necessarily 
know the implications of a precise definition. Discussions of 
overloaded terms go on at length, in part because everyone in 
the discussion has brought along a lot of mental baggage. 
Often, progress is only made when a neutral term is chosen 
and the meaning is built from the ground up. This 
overloading is so severe, for example, that there was no 
definition of FFD in System Test and Diagnosis [2], the 
authors preferring to use Non-Detection Percentage (NDP). 
FFD is the negative of NDP and is equal to 1-NDP. 

Even the number of faults counted in the field requires a more 
precise definition. The “overloaded” version is simply a 
count of all the things that failed. The quantity of all faults, as 
usually defined in the industry, is different. The quantity of 
faults detected by BITETE, and the quantity of faults 
detected exclude the occurrence of false alarms. Intermittent 
faults are classified as a single fault. Temporary faults, those 
caused by external transients of noise, are not classified as 
faults. 

Another aspect of the challenge is that many metrics sound 
different but are not. For example, Ambiguity Group 
Isolation Probabilities, Fault Isolation Resolution, Isolation 
Level, and System Operational Isolation Level mean nearly 
the same thing. 

OTHER PRODUCT DATA APPLICATIONS 

Ties to Maintenance Feedback 

In 1993, a Project Authorization Request (PAR) was 
submitted to the IEEE for new standards project related to 
specifying information and services for test and maintenance 
information feedback. The Test and Maintenance Information 
Management Standard (TMIMS) project was approved by the 
IEEE in early 1994. The focus of this project was to define 
exchange and service standards (similar to AI-ESTATE) 
which support the test and diagnostic maturation process. In 
1998, due to a lack of progress, the TMIMS PAR was 
cancelled. The revised AI-ESTATE models make 
development of the TMIMS standard achievable. 

AI-ESTATE continues to require definition of exchange and 
service standards related to test and maintenance information. 
In 1998, shortly after the cancellation of the TMIMS PAR, 
the D&MC committee decided to include test and 
maintenance information in its scope. The approach will be 
consistent with AI-ESTATE (i.e., the definition of 
information models and EXPRESS-level services derived 
from traversing the models). The starting point for the new 
models will be the dynamic context model in IEEE 1232.2. 
By keeping track of the sequence of events during a 
diagnostic session, much of the historical information is 
identified and captured that can be used for later diagnostic 
maturation. 

As a result of ongoing work by members of the D&MC, a 
proposal for a new information model addressing TMIMS 
issues is in preparation. The model begins with a 
representation of the information contained within IEEE Std 
1545 [12] . This standard captures parametric test 
information. The TMIMS information includes parametrics, 
test events, maintenance events, and explicit ties to AI- 
ESTATE. The Dynamic Context Model defined in AI- 
ESTATE is forming the foundation for capturing a diagnostic 
session and will be the primary starting point for any 
connections to the historical data. 

Ties to Product Descriptions 

Through the 1990s, the IEEE has been developing a family of 
standards under the umbrella of “A Broad Based 
Environment for Test” (ABBET) [13,14]. An early 
architecture of ABBET, based on information modeling, 
presented ABBET as five layers: 1) product description, 2) 
test requirements/strategy, 3) test methods, 4) test resources, 
and 5) instrumentation. Since then, standards for the “lower 
layers” of ABBET (i.e., layers 3-5) have been defined; 
however, it has long been recognized that the major benefit 
from standardization will come from the “upper layers” (i.e., 
layers 1 and 2). 

AI-ESTATE satisfies many of the requirements related to 
layer two of ABBET (however, AI-ESTATE has never been 
considered part of the ABBET family). Further, a recent 
proposal for a new information model-based standard, called 
the Test Requirements Model (TeRM), will address specific 
concerns of test requirements [15, 161. Standards for the 
product description layer have always been problematic due 
to issues related to the revelation of intellectual property. In 
mid-2000, a PAR will be presented to the IEEE to cover the 
TeRM work. With the combination of TeRM, AI-ESTATE, 
and TMIMS, it is anticipated that intellectual property can be 
hidden from information provided in standard form while still 
supporting the test engineer fully. 
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CONCLUSION REFERENCES 

Reasoning system technology has progressed to the point 
where electronic and other complex systems are employing 
artificial intelligence as a primary component in meeting 
system test and verification requirements. This is giving rise 
to a proliferation of AI-based design, test, and diagnostic 
tools. Unfortunately, the lack of standard interfaces between 
these reasoning systems has increased the likelihood of 
significantly higher product life-cycle cost. Such costs arise 
from redundant engineering efforts during design and test 
phases, sizeable investment in special-purpose tools, and loss 
of system configuration control. 

The AI-ESTATE standards promise to facilitate ease in 
production testing and long-term support of systems, as well 
as reducing overall product life-cycle cost. This will be 
accomplished by facilitating portability, knowledge reuse, 
and sharing of test and diagnostic information among 
embedded, automatic, and stand-alone test systems within the 
broader scope of product design, manufacture, and support. 
AI-ESTATE was first conceived in 1988 as a standard for 
representing expert-system rule bases in the context of 
maintenance data collection. Since that time, AI-ESTATE has 
evolved to be embodied in three published standards related 
to the exchange of diagnostic information and the interaction 
of diagnostic reasoners within a diagnostic environment. The 
three standards have been recommended for inclusion on the 
US DoD ATS Executive Agent’s list of standard satisfying 
requirements for ATS critical interfaces. In looking to the 
next generation, AI-ESTATE is expanding to address issues 
of testability, diagnosability, maintenance data collection, and 
test requirements specification. 

Further information on the AI-ESTATE standards and the 
activities of the D&MC can be found at: 
httrJ://grouper.ieee.org/ErouDs/l232/. 
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