
Training Restricted Boltzmann Machines

with Overlapping Partitions

Hasari Tosun and John W. Sheppard

Montana State University,
Department of Computer Science, Bozeman, Montana, USA

Abstract. Restricted Boltzmann Machines (RBM) are energy-based
models that are successfully used as generative learning models as well
as crucial components of Deep Belief Networks (DBN). The most suc-
cessful training method to date for RBMs is the Contrastive Divergence
method. However, Contrastive Divergence is inefficient when the number
of features is very high and the mixing rate of the Gibbs chain is slow.
We propose a new training method that partitions a single RBM into
multiple overlapping small RBMs. The final RBM is learned by layers
of partitions. We show that this method is not only fast, it is also more
accurate in terms of its generative power.

Keywords: Restricted Boltzmann Machine, Machine Learning.

1 Introduction

The Restricted Boltzmann Machine was introduced by Hinton et al. as a parallel
network for constraint satisfaction [1]. Since computing the partition function in
the Boltzmann distribution is not tractable, training was initially inefficient, and
RBMs did not gain popularity for seventeen years until Hinton et al. developed
Contrastive Divergence, a method based on Gibbs Sampling [8]. Since then,
RBMs are used as basic components of deep learning algorithms [3,7,9]. RBMs
have also been successfully applied to classification tasks [5,10,12]. Moreover,
RBMs have been applied to many other learning tasks including Collaborative
Filtering [14].

As RBMs became popular, research on training them efficiently increased.
Tieleman modified the Contrastive Divergence method by making Markov chains
persistent [15]. Thus, the Markov chain is not reset for each training example.
This has been shown to outperform Contrastive Divergence with one step, CD-1,
with respect to classification accuracy. However, it does not address the problem
of training speed. Brekal et al. introduced an algorithm to parallelize training
RBMs using parallel Markov chains [4]. Resulting Markov chains need to share
messages and the gradient is estimated by averaging chains.

In the context of Deep Belief Networks (DBN), the DistBelief model and
data parallelization framework was developed by [6]. Here, the DBN model is
partitioned into parts. Overlapping parts then exchange messages. Moreover,
models are replicated in different computation nodes and trained on different
subsets of data to provide data parallelization.

T. Calders et al. (Eds.): ECML PKDD 2014, Part III, LNCS 8726, pp. 195–208, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



196 H. Tosun and J.W. Sheppard

In this paper, we propose a novel algorithm, RBM-Partition, for training
RBMs that splits a single RBM into multiple partitions. Each partition then
trains on a subsection of the data instance. We explore the effects of permitting
these partitions to overlap to improve training across the boundaries of the
partitions. We then investigate the generative power of model and find that
this training process improves training performance of CD-1 in terms of both
generative power and speed.

The rest of this paper is organized as follows. In Section 2 we briefly introduce
the Boltzmann Distribution and RBMs. We describe our training method in
Section 3 and show experimental results in Section 4. Finally, we discuss future
work in Section 5.

2 Restricted Boltzmann Machines

In statistical mechanics, the Boltzmann distribution is the probability of a ran-
dom variable that realizes a particular energy level (Equation 1) [11]. Here
β = 1

kT where T is temperature and k is the Boltzmann constant. In machine
learning, β is usually set to 1, except in the context of algorithms such as sim-
ulated annealing. Z is the partition function, which is generally intractable to
compute. However, when Z is computable, all other properties of the system
such as entropy, temperature, etc. can be calculated. The equation for Z, which
summarizes over the micro states of the system, is shown in Equation 2.

p(x) =
e−βE(x)

Z
(1)

Z =
∑

i

(
e−βE(xi)

)
(2)

As a type of Hopfield Network, an RBM is a generative model with visible
and hidden nodes as shown in Figure 1. There are no dependencies between
hidden nodes, or between visible nodes, thus an RBM forms a bipartite graph.
The model represents a Boltzmann energy distribution [11], where the proba-
bility distribution of the RBM with visible (x) and hidden node (h) is given in
Equation 3.

p(x,h) =
e−E(x,h)

Z
(3)

If we marginalize over the hidden variables, we obtain the probability of the

visible variables p(x) =
∑

h

(
e−E(x,h)

Z

)
. Inspired from statistical mechanics, we

write p(x) in terms of Free Energy (A) as follows:

A(x) = − log

(
∑

h

e−E(x,h)

)
(4)



Training Restricted Boltzmann Machines with Overlapping Partitions 197

Fig. 1. Restricted Boltzmann Machine

Thus, rewriting p(x) results in

p(x) =
e−A(x)

Z
(5)

The partition function, Z =
∑

x e
−A(x). The energy function of an RBM is

given in the following equation.

E(x,h) = −bx− ch− hWx.

If θ represents the model parameters, then the gradient of the log-likelihood is
calculated as in Equation 6. The gradient contains two terms that are referred
as the positive and the negative terms respectively. The first term increases the
probability of the training data by decreasing free energy while the second term
decreases the probability of a sample generated by the model. Computing the
expectation over the first term is tractable; however, for the second term it is
not. Thus, Hinton introduced the Contrastive Divergence algorithm that uses
Gibbs sampling to estimate the second term [8].

−∂ log(p(x))
∂θ

=
∂A(x)

∂θ
−
∑

x̃

p(x̃)
∂A(x̃)

∂θ
(6)

We provide a more detailed description of the CD algorithm in Section 4.
An alternative description of Contrastive Divergence algorithm is given by
Bengio [2].

CD provides a reasonable approximation to the likelihood gradient. The
CD-1 algorithm (i.e, Contrastive Divergence with one step) is usually sufficient
for many applications; for CD-k, resetting the Markov chain after each parameter
update is inefficient because the model has already changed [15,2].



198 H. Tosun and J.W. Sheppard

3 Partitioned Restricted Boltzmann Machines

We propose a training method for RBMs that partitions the network into several
overlapping subnetworks. With our method, training involves several partition
steps. In each step, the RBM is partitioned into multiple RBMs as shown in
Figure 2. In this figure, the partitions do not overlap; we discuss the version
with overlap later in this section These partitioned RBMs are trained in parallel
with a corresponding partition of training data using CD-1. In other words, the
feature vector is also partitioned, and each individual RBM is trained on a section
of that feature vector. Once all partitions are trained, we generate another set
of RBMs with fewer splits. For example, in Figure 2, we initially generate four
RBMS. In the second step, we generate two, and final training occurs on the full
RBM. It should be noted that the training process in all steps is over the same
weight vector.

The motivation behind our approach is that when RBMs are small, they
can be trained with more training epochs. However, as we reduce the number of
splits, training requires fewer epochs and therefore less time to train. The pseudo-
code for our training procedure is given in Algorithm 1. Since the details for
overlapping partitions is omitted, we added notes where overlapping partitions
will need different logic.

Fig. 2. RBM Partitions



Training Restricted Boltzmann Machines with Overlapping Partitions 199

Algorithm 1. Training with Partitions

1: partition configurations: a list of configurations that describe splits and
training instances for each training step

2: W ← Create and initialize weight vector
3: vbias← Create and initialize bias vector for visible layer
4: hbias← Create and initialize bias vector for hidden layer
5: for each configuration in partition configurations:
6: train←Training instances
7: train partitions(configuration, train, visible, hidden,W, vbias, hbias)

Algorithm 2. create rbm partitions(configuration, W, vbias, hbias)

1: //for overlapping, visible nodes and hidden nodes will increase based
2: on percentage of overlap
3: visible nodes← configuration.visible/configuration.splits
4: hidden nodes← configuration.hidden/configuration.splits
5: rbms: RBM list
6: for i in configuration.splits:
7: //Each RBM will operate on a region of the visible vector
8: and hidden vector.
9: //For overlapping partitions, vbase and hbase will change based

10: on overlap percentage
11: vbase←base index in visible vector
12: hbase←base index in hidden vector
13: rbm(i)←RBM(W, vbias, hbias, vbase, hbase, visible nodes, hidden nodes)
14: return rbms

Algorithm 3. train partitions(configuration, train, visible, hidden, W, vbias,
hbias)

1: rbm list←create rbm partitions(configuration,W, vbias, hbias)
2: for each instance in train:
3: //for overlapping, partition will change according to
4: configuration.overlap percentage
5: splits←split instance into number of configuration.splits partitions
6: for rbm in rbms list
7: rbm(i).contrastive divergence(splits(i))

Based on the intuition that neighboring RBMs may share some features
(nodes), for overlapping partitions, we define similar partitions as described
above. However, in this model, each partition has some percent of its nodes
overlap with its neighboring partitions. As shown in Figure 3, the RBMs are



200 H. Tosun and J.W. Sheppard

Fig. 3. RBM With Overlapping Partitions

sharing two hidden and two visible nodes. Since nodes are shared, partitioned
RBMs cannot be trained concurrently without some kind of message passing.
It should be noted that when trained sequentially, message passing between the
partitions is not required.

4 Experimental Results

The MNIST dataset is used for our experiments due to its wider association
with RBMs. MNIST has 60,000 training samples and 10,000 test samples of
images. Each image is 28× 28 pixels corresponding to handwritten digits from 0
to 9. Some sample images are presented in Figure 4. We measure performance of
our method using reconstruction error, which is defined to be the average pixel
differences between the original and reconstructed images (Equation 7). For each
epoch, we use a batch size of 10 images from the training samples. Thus, for 6,000
epochs, 60,000 samples are used for training. Unless stated otherwise, we use
CD-1 for all training steps. The unpartitioned RBM has 500 hidden nodes and
28× 28 = 784 visible nodes. To have a fair comparison in terms of performance,
rather using CPU time, we applied the following method. CD-1 training for one
sample is carried out as follows:

– For all hidden nodes, find the probability of hidden node hi as σ(ci +∑
j Wijxj) and sample hi1 from a binomial distribution given hi.

– For all visible nodes, find the probability of visible node xj asσ(bj+
∑

iWijhi1)
and sample xj1 from a binomial distribution given xj .

– For all hidden nodes, find the probability of hidden node hi2 as σ(ci +∑
j Wijxj1).

– Calculate the gradient:

• W = W + ε(hi1xj − h2ixj1) where ε is the learning rate.
• b = b + ε(xj − xj1)
• c = c+ ε(hi1 − hi2)

where σ(x) = 1
1+e−x . Since operations at each step of CD involves visible nodes×

hidden nodes updates, we estimate that the total number of Markov chain cal-
culations is

ChainOperations = visible nodes× hidden nodes× samples



Training Restricted Boltzmann Machines with Overlapping Partitions 201

Fewer chain operations translate into less CPU time.
We used reconstruction error to compare our algorithms. For reconstruction

error, we first obtain the binary representation of the original image and the
reconstructed image. 30 is chosen as the threshold for converting pixel values
[0-255] to binary 0 or 1. Thus, pixel values greater than or equal to 30 are set
to 1 while values less than 30 are set to 0. Then, the reconstruction error is
calculated as in Equation 7.

error =

∑
i(image(i) �= reconstructedImage(i))

total pixels
(7)

Table 1 shows the results of our first experiment where the learning rate is
set to 0.1 for all RBMs. Single RBM represents a fully connected RBM that is
used as a baseline for comparison. The training sample for each RBM is equal
to the number of epochs times the batch size (10). For instance, the Single
RBM algorithm is trained on 60,000 images. Moreover, we use each image sam-
ple once. Unless stated otherwise, for following experiments, we ran training
algorithms on samples for one iteration only—at the most, each sample is used
only once. Each RBM-X represents a step with X partitions. Samples chosen for
RBM-X are always from first N samples of total images. RBM-1 represents the
final model. For these experiments, partitions are trained sequentially. Thus, if
we train them concurrently, the total ChainOperations will be lower. As com-
pared to Single RBM, RBM-1 has significantly lower reconstruction error. The
total ChainOperations for partitioned RBMs is also less than Single RBM. In
the table, using a t-test, significant results with 99% confidence are shown in
bold. RBM-Partition after training on 20 partitions, significantly outperformed
the Single RBM. Furthermore, the total number of chain operations for RBM-
Partition is substantially less than for Single RBM.

Since we want fast convergence in the first step, in the following experiment
we varied the learning rate to enable this. Results are shown in Table 2.

Table 1. Training Characteristics

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

Single RBM 1 6000 0.1 3.85 23.52

RBM-28 28 6000 0.1 4.76 0.84
RBM-20 20 5000 0.1 4.03 0.98
RBM-15 15 4000 0.1 3.19 1.05
RBM-10 10 3000 0.1 2.67 1.18
RBM-5 5 2500 0.1 2.29 1.96
RBM-2 2 2000 0.1 2.33 3.92
RBM-1 1 2000 0.1 2.36 7.84
Total 17.77



202 H. Tosun and J.W. Sheppard

Table 2. Training Characteristics wrt Learning Rate

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

RBM-28 28 6000 0.3 3.23 0.84
RBM-20 20 5000 0.3 2.93 0.98
RBM-15 15 4000 0.3 2.66 1.05
RBM-10 10 3000 0.25 2.30 1.18
RBM-5 5 2500 0.20 2.08 1.96
RBM-2 2 2000 0.10 2.10 3.92
RBM-1 1 2000 0.10 2.10 7.84
Total 17.77

Table 3. Training Characteristics wrt Learning Rate

lr = 0.3 lr = 0.1 lr = 0.05 lr = 0.005 lr = 0.0005

Single RBM 4.43 3.85 4.22 9.40 23.15
RBM-1 3.45 2.10 1.95 1.83 1.92

Table 4. Overlapping Partitions

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

RBM-28 28 6000 0.3 3.11 0.90
RBM-20 20 5000 0.3 2.76 1.10
RBM-15 15 4000 0.3 2.50 1.18
RBM-10 10 3000 0.25 2.19 1.35
RBM-5 5 2500 0.20 1.95 2.27
RBM-2 2 2000 0.10 1.92 4.30
RBM-1 1 2000 0.10 2.08 7.84
Total 18.94

The RBM-Partition with 99% confidence outperforms the Single RBM in all
steps including the first partition, RBM-28 (with 28 partitions). Moreover, re-
construction errors are even lower compared to our previous experiment.

Using the same configuration above, we varied the learning rate (denoted lr in
the results) for the Single RBM and RBM-1. Learning rates for other RBM-X are
fixed as in the configuration given in Table 2. Reconstruction errors for different
learning rates are given in Table 3. Results demonstrate that RBM-Partition is
less sensitive to different learning rates as compared to the Single RBM with
99% confidence.



Training Restricted Boltzmann Machines with Overlapping Partitions 203

We also wanted to determine if overlapping partitions would affect the results.
We ran our experiment with 5% overlap, which means that each RBM shares
5% of its neighbor’s nodes (5% from the left neighbor and 5% from the right
neighbor). We ran overlapping partitions sequentially. As shown in Table 4,
reconstruction errors are even lower with only a modest increase in overhead in
terms of ChainOperations.

Comparing overlapping with non-overlapping RBM-Partition algorithms us-
ing the t-test, results show that the overlapping algorithm outperforms the non-
overlapping algorithm with 99% confidence in almost every stage. However, in
the last stage, the results were not significantly different, as shown in Table 5.
We hypothesize that since overlapping partitions have more connections in each
partition, they will require more training samples.

Table 5. Non-overlapping vs. Overlapping Partitions

Configuration Number of
RBMs

Epochs
(batch=10)

Learning
Rate

Overlapping
Reconstruction

Error(%)

NonOverlapping
Reconstruction

Error(%)

Overlapping
Chain

Operations
(109)

NonOverlapping
Chain

Operations
(109)

RBM-28 28 6000 0.3 3.11 3.23 0.90 0.84
RBM-20 20 5000 0.3 2.76 2.93 1.10 0.98
RBM-15 15 4000 0.3 2.50 2.66 1.18 1.05
RBM-10 10 3000 0.25 2.19 2.30 1.35 1.18
RBM-5 5 2500 0.20 1.95 2.08 2.27 1.96
RBM-2 2 2000 0.10 1.92 2.10 4.30 3.92
RBM-1 1 2000 0.10 2.08 2.10 7.84 7.84
Total 18.94 17.77

Table 6. 10-Fold Cross Validation Results

Configuration Number of

RBMs

Samples Learning

Rate

No Overlap:

Average

Reconstruction

Error (%)

Overlap:

Average

Reconstruction

Error(%)

Chain

Operations per fold

(109)

No-Overlap/Overlap

Single RBM 1 60000 0.1 4.06 21.12

RBM-28 28 60000 0.3 3.32 3.32 0.76/0.81

RBM-20 20 50000 0.3 3.07 2.92 0.88/1.00

RBM-15 15 40000 0.3 2.68 2.62 0.94/1.06

RBM-10 10 30000 0.25 2.35 2.29 1.06/1.21

RBM-5 5 25000 0.20 2.12 2.09 1.76/2.04

RBM-2 2 20000 0.10 2.15 2.08 3.53/3.88

RBM-1 1 20000 0.10 2.18 2.14 7.06/7.06

Total 16.00/17.06



204 H. Tosun and J.W. Sheppard

Original

Reconstructed

Fig. 4. Original vs. Reconstructed Images

Finally, 10-fold cross validation results are given in Table 6. Rather than
using the provided training and test data sets. we pooled all of the data and split
samples into 10 equal size subsamples. One subsample was used as the validation
data for testing and the remaining 9 subsamples were used for training. We
repeated this process 10 times. It should be noted that the numbers of samples
for partitioned RBMs are not equal (Table 6) because we wanted to keep the total
time complexity of RBM-Partition to be no worse than the Single RBM. RBM-
Partition outperforms Single RBM with 99% confidence. Moreover, overlapping
RBMs have lower average reconstruction error as compared to non-overlapping
ones.

To visually compare the original images with the some of our reconstructed
images, we present some examples in Figure 4.

Learning behavior with respect to the number of training samples is given
in Figure 5. We compare RBM-10 with RBM Single. After each training cycle
where we add 10,000 more images, we tested the algorithms on 10,000 images.
RBM-10 outperforms RBM Single with 99% confidence on all training steps.

Fig. 5. Reconstruction Error vs. Training Samples



Training Restricted Boltzmann Machines with Overlapping Partitions 205

As we described at the begining of the Section 4, so far we ran these experi-
ments for one iteration only. To see how our learning method will behave with
additional iterations, we ran RBM-Partition and Single RBM for 15 iterations.
Results are shown in Table 7. Starting with RBM-10, RBM-Partition signifi-
cantly outperforms Single RBM with 99% confidence. For RBM-Partition, on
average, the error is approximately 5 pixels out of 28 × 28 pixels, whereas it is
10 pixels for Single RBM.

The Special Database 19 dataset from the National Institute of Standards
and Technology (NIST) is the official training dataset for handprinted docu-
ment and character recognition from 3600 writers, including 810K character
images and 402K handwritten digits. Unlike the MNIST dataset, images are 128
by 128 pixels. We selected 62K images for training and testing. The dataset
consists of 62 types of images for lowercase and uppercase letters, and numbers.
Thus, in our dataset each type has 1,000 images. We used 10% for testing and
90% for training. 1-fold validation results are shown in Table 8. Based on the

Table 7. Training Iterations

Configuration Number of
RBMs

Samples Learning
Rate

Reconstruction
Error (%)

Single RBM 1 60000 0.05 1.29

RBM-28 28 60000 0.3 1.75
RBM-20 20 30000 0.3 1.45
RBM-15 15 20000 0.3 1.35
RBM-10 10 20000 0.25 1.08
RBM-5 5 20000 0.2 0.94
RBM-2 2 20000 0.1 0.75
RBM-1 1 30000 0.05 0.67

Table 8. Training Characteristics with NIST dataset

Configuration Number of
RBMs

Training
Samples

Learning
Rate

Reconstruction
Error (%)

Chain
Operations

(109)

Single RBM 1 62000 0.1 4.82 507.90

RBM-28 28 62000 0.3 3.74 19.92
RBM-20 20 50000 0.3 3.65 24.09
RBM-15 15 40000 0.3 3.70 25.19
RBM-10 10 30000 0.25 3.69 28.70
RBM-5 5 25000 0.20 3.63 47.78
RBM-2 2 20000 0.10 3.67 90.14
RBM-1 1 20000 0.10 3.74 163.8
Total 399.62



206 H. Tosun and J.W. Sheppard

Table 9. Reconstruction Error per Character

Uppercase Error Lowercase Error Number Error

A 3.93 a 3.55 0 2.95
B 6.24 b 4.14 1 1.95
C 2.8 c 2.68 2 3.55
D 5.22 d 4.49 3 4.01
E 3.34 e 2.79 4 3.67
F 3.61 f 4.14 5 4.07
G 5.68 g 5.15 6 3.35
H 4.25 h 3.35 7 3.2
I 1.47 i 1.93 8 4.49
J 4.47 j 3.2 9 3.97
K 4.89 k 4.15
L 3.08 l 1.97
M 4.26 m 4.69
N 3.64 n 2.83
O 2.58 o 2.69
P 4.62 p 3.78
Q 6.62 q 4.5
R 3.53 r 2.37
S 3.24 s 2.98
T 3.08 t 3.48
U 3.56 u 3.09
V 3.18 v 2.87
W 6.92 w 4.17
X 4.38 x 3.19
Y 3.75 y 3.37
Z 5.04 z 3.57

t-test results, RBM-Partition significantly outperforms Single RBM, again with
substantially fewer chain operations.

Finally, RBM-Partitioned reconstruction error for each character is given in
Table 9. The average reconstruction error is lowest for I, i, and 1 and it is highest
for W,Q and B.

5 Conclusions and Future Work

We showed that our RBM-Partition training algorithm with small RBM parti-
tions outperforms training full RBMs using CD-1. In addition to having superior
results in terms of reconstruction error, RBM-Partition is also faster as compared
to the single, full RBM. The reason that RBM-Partition is faster is due to having



Training Restricted Boltzmann Machines with Overlapping Partitions 207

fewer connections in each training step. However, the reasons for the superior
generative characteristics in terms of reconstruction error is not that obvious.
We hypothesize that it is because in each training step, fewer nodes are involved
and a small partition RBM settles in a low energy configuration more rapidly. As
we move to other stages with less partitions, fewer training instances are needed
to modify the energy configuration to obtain lower energy in the full network.
Furthermore, in spatial data like an image, only neighboring nodes are involved
in representing a feature. Therefore, a fully connected RBM is not optimal for
training spatial datasets.

Our algorithm also has similarities to transfer learning. Since in each stage
we learn some weights and those weights are used as a base configuration for
the next stage, in way it corresponds to feature representation transfer [13]. One
interesting direction of future work is to investigate whether other methods of
transfer learning can be used during training or not.

Moreover, our approach opens the door to many potential applications. Since
training is done on partitioned small RBMs, we believe the method will learn
multi-model data, that is data from multiple sources, more accurately. Thus,
other directions for future work include: 1) carrying out additional experiments
to demonstrate that this training method can be applied to other domains with
a high volume of features; 2) investigating if the training layers can be used
in the form of a Deep Belief Network (i.e., the process will still require parti-
tions as we described; however, instead of training each layer independently, a
layer-wise training may produce more accurate results); and 3) investigating the
discriminative power of the model by running it on classification tasks.

References

1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann
machines. Cognitive science 9(1), 147–169 (1985)

2. Bengio, Y.: Learning deep architectures for ai. Foundations and trends in Machine
Learning 2(1), 1–127 (2009)

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise
training of deep networks. In: Advances in Neural Information Processing Systems,
vol. 19, p. 153 (2007)

4. Brakel, P., Dieleman, S., Schrauwen, B.: Training restricted boltzmann machines
with multi-tempering: Harnessing parallelization. In: Villa, A.E.P., Duch, W., Érdi,
P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 92–99.
Springer, Heidelberg (2012)

5. Dahl, G.E., Adams, R.P., Larochelle, H.: Training restricted boltzmann machines
on word observations. In: Proceedings of the 29th International Conference on
Machine Learning, pp. 679–686. ACM (2012)

6. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao, M.Z., Ran-
zato, M., Senior, A.W., Tucker, P.A., et al.: Large scale distributed deep networks.
In: Advances in Neural Information Processing Systems, pp. 1232–1240 (2012)

7. Hinton, G., Salakhutdinov, R.: Discovering binary codes for documents by learning
deep generative models. Topics in Cognitive Science 3(1), 74–91 (2011)



208 H. Tosun and J.W. Sheppard

8. Geoffrey, E.: Hinton. Training products of experts by minimizing contrastive di-
vergence. Neural Computation 14(8), 1771–1800 (2002)

9. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

10. Larochelle, H., Bengio, Y.: Classification using discriminative restricted boltzmann
machines. In: Proceedings of the 25th International Conference on Machine Learn-
ing, pp. 536–543. ACM (2008)

11. Lemons, D.S.: A student’s guide to entropy. Cambridge University Press (2013)
12. Louradour, J., Larochelle, H.: Classification of sets using restricted boltzmann ma-

chines, pp. 463–470. AUAI (2011)
13. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowl-

edge and Data Engineering 22(10), 1345–1359 (2010)
14. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collab-

orative filtering. In: Proceedings of the 24th International Conference on Machine
Learning, pp. 791–798. ACM (2007)

15. Tieleman, T.: Training restricted boltzmann machines using approximations to
the likelihood gradient. In: Proceedings of the 25th International Conference on
Machine Learning, pp. 1064–1071. ACM (2008)


	Training Restricted Boltzmann Machineswith Overlapping Partitions
	1 Introduction
	2 Restricted Boltzmann Machines
	3 Partitioned Restricted Boltzmann Machines
	4 Experimental Results
	5 Conclusions and Future Work
	References




