
Univariate Skeleton Prediction
in Multivariate Systems Using

Transformers

Giorgio Morales(B) and John W. Sheppard

Gianforte School of Computing, Montana State University, Bozeman, MT, USA
giorgiomorales@ieee.org, john.sheppard@montana.edu

Abstract. Symbolic regression (SR) methods attempt to learn mathe-
matical expressions that approximate the behavior of an observed sys-
tem. However, when dealing with multivariate systems, they often fail to
identify the functional form that explains the relationship between each
variable and the system’s response. To begin to address this, we pro-
pose an explainable neural SR method that generates univariate symbolic
skeletons that aim to explain how each variable influences the system’s
response. By analyzing multiple sets of data generated artificially, where
one input variable varies while others are fixed, relationships are modeled
separately for each input variable. The response of such artificial data sets
is estimated using a regression neural network (NN). Finally, the multi-
ple sets of input–response pairs are processed by a pre-trained Multi-Set
Transformer that solves a problem we termed Multi-Set Skeleton Pre-
diction and outputs a univariate symbolic skeleton. Thus, such skeletons
represent explanations of the function approximated by the regression
NN. Experimental results demonstrate that this method learns skele-
ton expressions matching the underlying functions and outperforms two
GP-based and two neural SR methods.

Keywords: Symbolic regression · Transformer networks · Symbolic
skeletons · Multivariate regression · Explainable artificial intelligence

1 Introduction

Symbolic regression (SR) aims to identify mathematical equations or symbolic
expressions that capture the underlying relationships and dynamics of the stud-
ied phenomena [18]. One of the main advantages of the expressions learned by an
SR model is that they are interpretable by humans and allow for the identifica-
tion of cause-effect relationships between the inputs and outputs of a system [10].
These techniques not only capture the behavior of empirical data into analytical
equations but also reduce the computational complexity during the inference
phase, and have more powerful extrapolation ability than black-box models [22].

A limitation of existing SR approaches lies in their primary focus on minimiz-
ing prediction errors rather than distilling the underlying equations that govern
the system dynamics [4]. Consequently, the generated equations may exhibit

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14948, pp. 107–125, 2024.
https://doi.org/10.1007/978-3-031-70371-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70371-3_7&domain=pdf
http://orcid.org/0000-0003-2911-8558
http://orcid.org/0000-0001-9487-5622
https://doi.org/10.1007/978-3-031-70371-3_7


108 G. Morales and J. W. Sheppard

high complexity, effectively approximating the observed data but failing to cor-
respond to the underlying equations [18]. This limitation poses challenges when
performing out-of-sample inference, where generalization may be ineffective.

SR methods are often based on population-based algorithms, especially
genetic programming (GP) [24]. Nevertheless, a notable drawback of GP-based
SR methods is that they suffer from slow computation. Their computational
inefficiency is related to the inherent complexity of the search space and the
expensive iterative calls to numerical optimization routines after each genera-
tion [24]. In addition, these methods do not consider past experiences, as they
require learning each problem from scratch. As such, the obtained models do not
benefit from additional data or insights from different equations, hindering their
capacity for improvement and limiting their generalization capabilities [4,17].

In response to these limitations, recent advancements have seen the emer-
gence of neural SR methods as a promising alternative. These methods may
utilize general-purpose pre-trained models that generate symbolic expressions
through a straightforward forward pass and, possibly, a single call to a numeri-
cal optimization routine [4,17,29]. Thus, neural SR methods offer a substantial
time speedup compared to GP-based approaches. However, there remains a gap
in prediction accuracy between the two paradigms [17].

Although recent neural SR methods may achieve low prediction errors when
dealing with multivariate systems, they struggle to represent the dependency of
the system’s response and each independent variable correctly. As a first step
in addressing this, our proposed method aims to generate univariate symbolic
skeletons that estimate functional relationships for each variable with respect
to the response. A symbolic skeleton expression is an abstract representation
of a mathematical expression that captures its structural form without setting
specific numerical values. In other words, we propose to generate univariate
skeletons that constitute mathematical “explanations” describing the interaction
between each independent variable and the system’s response.

Given a multivariate regression problem that can be expressed in terms of
a mathematical equation, our method identifies univariate symbolic skeleton
expressions for each variable. The skeleton prediction process begins by training a
regression model, such as a neural network (NN), that approximates the system’s
function. This regression model is used to estimate the response of multiple
randomly generated sets of points where only the variable of interest is allowed
to vary while the remaining variables are held fixed. We then define a novel
Multi-Set Transformer model, which is pre-trained on a large dataset of synthetic
symbolic expressions, that receives as inputs the sets generated by the NN and
is used to find the univariate skeletons.

Contributions. We hypothesize that our method will generate univariate skele-
tons that are more similar to those corresponding to the underlying equations
in comparison to other SR methods. The generated skeletons represent expla-
nations of how each variable is related to the system’s response. Thus, from an
explainability standpoint, producing more faithful univariate skeletons means



Univariate Skeleton Prediction in Multivariate Systems Using Transformers 109

that we can offer better explanations about the system’s behavior. In addition,
the generated skeletons may be taken as building blocks to be used to estimate
the overall function of the system. Our main contributions are summarized as:

– We introduce a method that learns univariate symbolic skeletons that explain
the functional form between each independent variable and the system’s
response using regression NNs and pre-trained transformer models.

– We introduce a new SR problem called Multi-Set symbolic skeleton predic-
tion (MSSP). It receives multiple sets of input–response pairs, where all sets
correspond to the same functional form but use different equation constants,
and outputs a common skeleton expression.

– We present a novel transformer model called “Multi-Set Transformer” to solve
the MSSP problem. The model is pre-trained on a large dataset of synthetic
symbolic expressions.

2 Related Work

SR is commonly tackled using GP-based methods. Such methods evolve a pop-
ulation of tree-like individuals using operations like selection, crossover, and
mutation to improve their fitness over multiple generations. Each individual
represents a symbolic expression that maps the inputs and the output, and its
fitness function determines how well it fits the data set being modeled. Variations
of this approach attempt to design improved operators and fitness functions to
reduce the complexity of the search [12,24].

Two significant challenges of GP for SR are code growth (i.e., bloat) and
the huge search space [1]. Code growth leads to computationally expensive evo-
lution of large programs and hinders their generalization ability [8]. The huge
search space is attributed to the variability in program lengths permitted dur-
ing the evolutionary process. This allows for the generation of multiple solution
trees representing mathematically equivalent functions [9]. However, GP tends to
generate a greater number of large solution trees compared to smaller ones [20].
The high complexity of large solutions entails poor generalization performance.
In most GP-based methods, the program fitness is determined by its overall out-
put and not by the intermediate outputs of its subexpressions. Thus, a program’s
subexpressions are optimized indirectly. Arnaldo et al. [2] pointed out that the
indirect optimization approach may result in suboptimal fitness optimization
because it does not focus on evolving and learning suitable building blocks.

Furthermore, Martius and Lampert [22], Sahoo et al. [26], and Werner et
al. [31] proposed the use of NN architectures whose units represent conventional
mathematical operators. The objective is to reduce the prediction error and
gradually prune irrelevant parts of the network until a simple equation can be
extracted from the network. However, similar to the case of GP-based meth-
ods, the learned expressions tend to be large and, as a consequence, difficult to
explain. Another limitation is that each problem is learned from scratch.



110 G. Morales and J. W. Sheppard

As a recent alternative, a few methods based on large language models have
been proposed. Biggio et al. [4] introduced the use of pre-trained transformer
models for SR. A dataset of multivariate equations is generated to pre-train a
model based on a Set Transformer [21], and this transformer acts as a general-
purpose model to predict the symbolic skeleton from a corresponding set of
input-output pairs. The skeleton’s constants are then fit using a non-convex
optimizer, such as the BFGS algorithm [11].

Kamienny et al. [17] pointed out that the loss function minimized by the
BFGS algorithm can be highly non-convex and the correct constants of the
skeletons are not guaranteed to be found. They avoided performing skeleton pre-
diction as an intermediary step and proposed an end-to-end (E2E) transformer
model that estimates the full mathematical expression directly. The learned con-
stants can then be refined using a non-convex optimizer. Experiments showed
that E2E performs better than previous NN-based methods. Since previous
methods have shown scalability issues when dealing with equations having many
variables, Chu et al. [6] proposed a method that decomposes multi-variable SR
into a sequence of single-variable SR problems, combined in a bottom-up manner.
The process involves learning a data generator using NNs from observed data,
generating variable-specific samples with controlled input variables, applying
single-variable SR, and iteratively adding variables until completion.

3 Multivariate Skeleton Prediction

Consider a system whose response y ∈ R is sensitive to variables x = {x1, . . . , xt}
(x ∈ R

t). The underlying function that maps the feature value space and
the response value space is denoted as f : X t → Y, such that y = f(x) =
f(x1, . . . , xt). In addition, let κ(·) represent a skeleton function that replaces
the numerical constants of a given symbolic expression by placeholders ci; e.g.,
κ(3x2+e2x−4) = c1 x2+ec2 x+c3. We assume f can be expressed as a mathemat-
ical expression with unary (e.g., sin, cos, and log) and binary operators (e.g.
+, −, ∗, and /). We aim to obtain the univariate skeletons ê(x1), . . . , ê(xt) that
describe the functional form between each variable and the system’s response.
In the following, we lay out the steps proposed in this method.

3.1 Neural Network Training

The underlying function f can be approximated based on observed data using
any regression model. Let X = {x1, . . . ,xNR

} be a data set with NR samples,
where each sample is denoted as xj = {xj,1, . . . , xj,t}, and y = {y1, . . . , yNR

}
is the set of corresponding target observations. A NN regression model, whose
compute function is denoted as f̂(·;θNN ) (θNN represents the weights of the
network), is constructed to capture the association between X and y. Thus,
a target estimate for a given input xj is computed as ŷj = f̂(xj ,θNN ) or,
simply, ŷj = f̂(xj). The parameters θNN of the network ŷ are obtained
by minimizing the mean squared error of the predictions; that is, θ∗

NN =



Univariate Skeleton Prediction in Multivariate Systems Using Transformers 111

Fig. 1. x1 vs. y curves when x2 = 4.45, 0.2, and 1.13.

argminθNN

1
NR

∑NR

j=1(ŷj − yj)2. Note that we selected an NN to generate the
function f̂ due to its ease of training and high accuracy; however, other regres-
sion methods could be applied.

3.2 Multi-set Symbolic Skeleton Prediction

We tackle the SR problem by decomposing it into single-variable sub-problems.
To do so, we deviate from the Symbolic Skeleton Prediction (SSP) problem
that has been explored previously by existing research [4,25,29]. We explain
the rationale behind this decision through the use of an example: Consider the
function y = x1/log(x2

1 + x2). We analyze the relationship between x1 and y.
Similar to the work presented by Chu et al. [6], the variables that are not being
analyzed are held fixed. Figure 1 depicts that the function’s behavior differs when
using three different x2 values. As such, conventional SSP solvers may produce
expressions with different functional forms depending on the fixed values of the
variables not currently under analysis.

What is more, the fixed values of the remaining variables could project the
function into a space where the functional form is not easily identifiable, which
could be worsened due to the limited range of values that the analyzed variable
can take. Therefore, the SSP problem would benefit from the injection of addi-
tional context data. When analyzing the variable xv, we could use multiple sets
of input–response pairs, each of which is constructed using different fixed values
for the variables x \ {xv}. The key idea is to process the information from these
sets simultaneously to produce a skeleton that is common to all input sets. We
refer to this problem as Multi-Set Symbolic Skeleton Prediction (MSSP).

More formally, assume we are given a data set of NR input–response pairs
(X,y) where X ∈ R

NR×t and y ∈ R
NR×1. Suppose we analyze the relation-

ship between the v-th variable of the system, xv (i.e., v ∈ [1, . . . , t]), and
the response variable y. We construct a collection of NS sets, denoted as
D = {D(1), . . . ,D(NS)}. Each set D(s) comprises n input–response pairs such
that D(s) = (X(s)

v , f(X(s))) = (X(s)
v ,y(s)), where X(s) ∈ R

n×t, y(s) ∈ R
n, and

X(s)
v denotes the v-th column of X(s) (i.e., the data corresponding to the xv

variable). X(s) is constructed in such a way that each of the variables in x\{xv}
are assigned random values and held fixed for all samples.

X(s) can be constructed by selecting n samples from X that meet the criterion
that the variable xv is allowed to vary while the variables in x \ {xv} are fixed.



112 G. Morales and J. W. Sheppard

In this case, the set y(s) is known as it is the corresponding set of observed
response values of X(s). Conversely, if the set X is not large enough, X(s) can
be generated artificially using the regression model, and the corresponding set
of response values would be obtained as y(s) = f(X(s)). Since f is not known
a priori, the black-box model f̂ that has been trained to approximate f (i.e.,
f̂(x) ≈ f(x)) is used to estimate the response of X(s) (cf. Sect. 3.1).

Since the variables in x\{xv} have been fixed to constant values to construct
each set D(s), the underlying function that explains the relationship between
X(s)

v and y(s) could be expressed solely in terms of variable xv. As such, the
underlying function of the s-th set is denoted by f (s)(xv). It is important to note
that functions f (1)(xv), . . . , f (NS)(xv) have been derived from the same function
f(x) and only differ in their coefficient values due to the selection of different
values for the variables in x\{xv} for each constructed set. Thus, if we apply the
skeleton function κ(·) to functions f (1)(xv), . . . , f (NS)(xv), they should produce
the same target symbolic skeleton e(xv), in which the constant values have been
replaced by placeholders; i.e., e(xv) = κ

(
f (1)(xv)

)
= · · · = κ

(
f (NS)(xv)

)
.

Then, the collection D is fed as an input to the MSSP problem. The objective
is to generate an skeleton ê(xv) that characterizes the functional form of all input
sets, and approximates the target skeleton e(xv); i.e., ê(xv) ≈ e(xv). For the sake
of generality, we define the MSSP problem as follows:

Definition 1. The input of the Multi-Set Symbolic Skeleton Prediction (MSSP)
problem consists of a collection of NS sets, denoted as D = {D(1), . . . ,D(NS)}.
Each set D(s) comprises n input–response pairs such that D(s) = (X(s)

v ,y(s)),
where X(s)

v ∈ R
n and y(s) ∈ R

n. The underlying function of the s-th set is
denoted by f (s); i.e., y(s) = f (s)(X(s)

v ). The underlying functions of all input
sets are assumed to share a common unknown symbolic skeleton, denoted as e.
Thus, the objective of the MSSP problem is to generate a symbolic skeleton ê ≈ e
that characterizes the functional form of all input sets D.

Multi-set Transformer. Our method for solving the MSSP problem draws
inspiration from the Set Transformer [21], which is an attention-based neural
network that is derived from the transformer model [30]. The Set Transformer
is designed for set-input problems and, as such, it is capable of processing input
sets of varying sizes and exhibits permutation invariance. We propose a Multi-
Set Transformer that presents modifications to address the limitations of the Set
Transformer and adapt it to the specific requirements of the proposed research.
Details about the differences between the Set Transformer and our Multi-Set
Transformer are given in the Supplementary Materials1.

Let the s-th input set be denoted as D(s) = (X(s)
v ,y(s)) = {(x(s)

v,i , y
(s)
i )}ni=1.

The first step involves arranging D(s) in a manner analogous to the input struc-
ture of the Set Transformer, which consists of a matrix where each row represents
a din-dimensional element of the input set. S(s) ∈ R

n×din denotes the s-th input

1 Please visit https://github.com/NISL-MSU/MultiSetSR for the supplementary file.

https://github.com/NISL-MSU/MultiSetSR


Univariate Skeleton Prediction in Multivariate Systems Using Transformers 113

of our proposed Multi-Set Transformer such that its i-th row, s(s)i , consists of
the concatenation of the input value x

(s)
v,i and its corresponding output y

(s)
i ; i.e.,

s(s)i = [x(s)
v,i , y

(s)
i ]. Hence, S(s) is defined as a matrix with din = 2 columns.

Our Multi-Set Transformer comprises two primary components: an encoder
and a decoder. The encoder maps the information of all input sets into a unique
latent representation Z. To do so, an encoder stack φ transforms each input set
S(s) into a latent representation z(s) ∈ R

d (where d is context vector length or
the “embedding size”) individually. Our encoder, denoted as Φ, comprises the
use of the encoder stack φ to generate NS individual encodings z(1), . . . , z(NS),
which are then aggregated into a unique latent representation:

Z = Φ(S(1), . . . ,S(NS),θe) = ρ(φ(S(1),θe), . . . , φ(S(NS),θe)),

where ρ(·) is a pooling function, θe represents the trainable weights of the
encoder stack, and z(s) = φ

(
S(NS),θe

)
. We define φ as a stack of � induced

set attention blocks (ISABs) [21] to encode high-order interactions among the
elements of an input set in a permutation-invariant way. ISAB is a multi-head
attention layer with low complexity (O(mn)) that acts as a universal approxi-
mator of permutation invariant functions. Furthermore, we include a pooling by
multi-head attention (PMA) layer [21] in φ to aggregate the features extracted
by the ISAB blocks, whose dimensionality is n × d, into a single d-dimensional
latent vector. Finally, the function ρ(·) that is used to aggregate the latent rep-
resentations z(s) is implemented using an additional PMA layer.

The decoder ψ generates sequences conditioned on the representation Z gen-
erated by Φ. This objective is aligned with that of the transformer decoder [30]
and, thus, the same architecture is used for our model. ψ consists of a stack
of M identical blocks, each of which is composed of three main layers: a multi-
head self-attention layer, an encoder–decoder attention layer, and a position-wise
feedforward network. Let ê = {ê1, . . . , êNout

} denote the output sequence pro-
duced by the model, which represents the skeleton as a sequence of indexed
tokens in prefix notation. Each token in this sequence is transformed into a
numerical index according to a pre-defined vocabulary that contains all unique
symbols. During inference, each element êi is generated auto-regressively; that
is, ψ produces a probability distribution over the elements of the vocabu-
lary: σ (ψ (Z,θd|ê1, . . . , êi−1)) = P (êi|ê1, . . . , êi−1,Z), where θd represents the
weights of ψ. This distribution is obtained by applying a softmax function σ(·) to
the decoder’s output. êi is thus selected as the token with the highest probability.

Multi-set Transformer Training. We train our model on a large dataset of
artificially generated MSSP problems. Let Db = {D1, . . . ,DB} denote a training
batch with B samples, each of which represents a collection of NS input sets;
i.e., Dj = {D(1)

j , . . . ,D(NS)
j } (j ∈ [1, . . . , B]). In addition, Eb = {e1, . . . , eB} is

the corresponding set of target skeletons, each of which represents a sequence of
variable length; i.e., ej =

{
ej,1 . . . , ej,Nj

}
and Nj = |ej |. The function computed

by the model is denoted as g(·), and Θ denotes its weights. Note that Θ = [θe,θd]



114 G. Morales and J. W. Sheppard

contains the weights of the encoder and the decoder stacks. Given an input set
collection Dj , g(Dj ,Θ) computes the estimated skeleton êj with length Nout, j .
g(·) is trained to generate estimated skeletons so that êj ≈ ej .

During training, the model is provided with past elements of the target
skeleton sequence as inputs for generating subsequent tokens. Hence, the nor-
malized probability distribution produced by the decoder ψ for the i-th ele-
ment of the predicted skeleton sequence of the j-th sample would be expressed
as P (êj,i|ej,1, . . . , ej,i−1,Zj). In cases where êj and ej differ in length, we use
padding and masking to ensure that the loss is only calculated for valid tokens.
Thus, our optimization objective is defined as the cross-entropy loss between the
padded target and predicted skeleton sequences, which is calculated using their
corresponding probability distributions over the set of possible tokens:

L = − 1
B

B∑

j=1

T∑

i=1

ωj,iP (ej,i) log P (êj,i|ej,1, . . . , ej,i−1,Zj),

where wj,i is 0 for padding positions and 1 otherwise, and Tj is the length of the
j-th sequence. Hence, the optimization problem is expressed as: Θ = argminΘ L.

We generate a training dataset of expressions stored in prefix notation. The
generation process is explained in Section B of the Supplementary Materials
(see footnote 1). Our method differs from the generation method used by Biggio
et al. [4] and Lample et al. [19]. Their approach generates several expressions that
contain binary operators exclusively and, thus, are limited to simple expressions
such as ê(x) = c1x. Conversely, we use a method that builds the expression
tree recursively in preorder, which allows us to enforce certain conditions and
constraints effectively. That is, we forbid certain combinations of operators and
set a maximum limit on the nesting depth of unary operators within each other.

The training routine of the Multi-Set Transformer g takes as inputs the set of
pre-generated expressions, denoted as Q. The skeleton ej and its associated data
collection Dj , corresponding to the j-th expression in Q, are generated using a
function called generateSets(Q[j], NS , n) (Algorithm 1). The estimated skele-
tons êj are obtained processing the input Dj and target ej through the network
g using a teacher forcing strategy. L(EB , ÊB) represents the loss function while
update(g, L) encompasses the conventional backpropagation and stochastic gra-
dient descent processes used to update the weights of model g.

Algorithm 1 describes the function generateSets, which takes as input a
pre-generated expression ex. Function getConstants(ex) returns c, the list of
constant placeholders in ex, and nc = |c|. Function selectConstants(ex, c, nf )
retrieves an expression with nf constant placeholders selected randomly (2 ≤
nf ≤ nc). Then, we generate the underlying functions f (s) corresponding to
each of the NS sets using the function sampleConstants(ex), which sam-
ples the values of each constant in ex from a uniform distribution U(−10, 10)
independently. The n input points X(s)

v are then sampled using the func-
tion sampleSupport(n) from a uniform distribution U(−xlimit, xlimit), where
xlimit ∼ U(1, 10) (i.e., the domain range is randomly sampled each time). The



Univariate Skeleton Prediction in Multivariate Systems Using Transformers 115

Algorithm 1. Multi-Set Transformer Data Generation
1: function generateSets(ex, NS , n)
2: c, nc ← getConstants(ex)
3: ex ← selectConstants(ex, c, nf = randInt(2, nc))
4: D, s, e ← [ ], 1, κ(sampleConstants(ex))
5: while s ≤ NS do
6: X

(s)
v ← sampleSupport(n)

7: X
(s)
v , f (s), __ ← avoidNaNs(X(s)

v , sampleConstants(ex))
8: if s > 1 and κ(f (s)) �= e then
9: continue � Verify that all sets correspond to the same skeleton

10: y(s) ← f (s)(X
(s)
v )

11: D.append((X(s)
v ,y(s)))

12: s ← s + 1

13: return D, e

function avoidNaNs(X(s)
v , f (s)) may modify the coefficients in f (s) or sample

additional X(s)
v values to avoid undefined results (see Section B of the Supple-

mentary Materials (see footnote 1)).

Univariate Symbolic Skeleton Prediction. Suppose we are currently ana-
lyzing the v-th variable, xv. As an MSSP, we generate NS artificial sets of points
{X̃(1), . . . , X̃(NS)} where the variable xv is allowed to vary while the variables
x\{xv} are fixed to random values. Specifically, the s-th artificial set is denoted
as X̃(s) = {x̃(s)

1 , . . . , x̃(s)
n }. The value of the v-th dimension of the j-th sample

is obtained by sampling from the distribution U(xmin
v , xmax

v ) whose lower and
upper bounds, xmin

v and xmax
v , respectively, are calculated from the observed

data. The values assigned to the remaining dimensions are sampled indepen-
dently using similar uniform distributions; however, the same value is shared
across all samples (i.e., x̃(s)

1,k = x̃(s)
2,k = · · · = x̃(s)

n,k, ∀k ∈ [1, . . . , t] and k 	= v).
Our approach requires processing data sets where the variables not under

analysis are held constant. However, it is not always possible to find subsets
of data that meet this condition for all variables in real-world datasets. Even
when such subsets exist, they may not be sufficiently large. Thus, we generate
sets of data X̃(s) with the desired behavior and estimate their response using
a regression model that has been trained on observed data. Then, our method
derives univariate skeletons based on multiple sets of input-estimated response
pairs. It is important to use a prediction model that learns a function f̂ that
is as close as possible to f so that it accurately estimates how the real system
would respond to the artificial inputs in X̃(s). As a consequence, our analysis
can be regarded as an explainability method that generates univariate symbolic
skeletons as explanations of the function approximated by the regression model.

The response of the samples in X̃(s), ỹ(s), is estimated using the network f̂

as ỹ(s) = f̂(X̃(s)). In addition, D̃(s)
v = (X̃(s)

v , ỹ(s)) denotes the set of n input–
response pairs and is used to analyze the relationship between the system’s



116 G. Morales and J. W. Sheppard

response and the v-th variable. The collection of NS sets D̃v = {D̃(1)
v , . . . , D̃(NS)

v }
is then fed into the pre-trained Multi-Set Transformer g so that the estimated
skeleton obtained for variable xv is calculated as ẽ(xv) = g(D̃v,Θ). This process
is repeated for all the variables of the system to obtain their corresponding
symbolic skeleton expressions with respect to the system’s response.

3.3 Performance Evaluation

Typically, SR methods are evaluated on benchmark datasets such as the Feyn-
man SR Benchmark (FSRB) [28]. Their performance is compared based on the
mean squared error (MSE) achieved by the learned expressions on a subset
of the available data. Note that a function that was learned by minimizing
the prediction error with respect to the system’s response does not necessar-
ily correspond to the underlying functional form; e.g., f(x) = cos(− x

10 )2 and
f̂(x) = −0.0093x2+0.9983 produce an MSE lower than 4×10−5 when x ∈ [−5, 5].
As such, conventional evaluation approaches may not align with our objectives.

Instead of minimizing prediction error, our method produces a set of uni-
variate skeletons aiming to describe the functional form between each variable
and the system’s response. We argue that an expression with minimum predic-
tion error can be produced as a consequence of identifying the correct functional
form. To the best of our knowledge, no previous work has addressed the problem
of testing how well the learned expression’s functional form (i.e., its skeleton)
matches the system’s underlying functional form. Thus, we present a method to
test the similarity between the underlying skeleton corresponding to the variable
xv, represented as e(xv) = κ(f(x), xv), and the estimated skeleton ê(xv). The
function κ(·, xv) replaces the numerical constants of a given symbolic expres-
sion with the placeholder labeled with the suffix c. In addition, it considers the
remaining variables x \ xv as constants as they are irrelevant when describ-
ing the functional form between xv and the system’s response. For example, if
f(x) = 3x2

1 +
√

x2 + 1/e2 x3 , then κ(f(x), x1) = c1 x2
1 + c2.

We assign random numerical values to the coefficients of skeleton e(xv)
using the sampleConstants routine (Algorithm 1) in order to obtain a function
ftarget(xv). Let fest(xv) = setConstants(ê(xv), c) denote the function obtained
when replacing the nc constant placeholders in ê(xv) with the numerical values
in a given set c = [c1, . . . , cnc

]. If the functional form of ê(xv) is mathemat-
ically equivalent to that of e(xv), then there exists a set of values c so that
the difference between ftarget(xv) and fest(xv) is zero for all values of xv. The
optimal set c∗ is found as: c∗ = argminc

∑
xv∈Xtest

v
|ftarget(xv)− fest(xv)|, where

Xtest
v is a test set of Ntest elements whose elements are drawn from a distribu-

tion U(2xmin
v , 2xmax

v ). Note that the domain of Xtest
v is larger than that used

for training (i.e., [xmin
v , xmax

v ]). If the estimated skeleton matches the system’s
underlying functional form, it should do so regardless of the variable domain.

The coefficient fitting problem is solved using a simple genetic algorithm
(GA) [14]. The individuals of our GA are arrays of nc elements that represent
potential c sets. The population size is set to 500 and the optimization algo-
rithm is stopped when the change of the objective function after 20 generations



Univariate Skeleton Prediction in Multivariate Systems Using Transformers 117

Table 1. Equations used for experiments

Eq. Underlying equation Reference Domain range

E1 (3.0375x1x2 + 5.5 sin(9/4(x1 − 2/3)(x2 − 2/3)))/5 [15] [−5, 5]2

E2 5.5 + (1 − x1/4)
2 +

√
x2 + 10 sin(x3/5) – [−10, 10]2

E3 (1.5e1.5x1 + 5 cos(3x2))/10 [15] [−5, 5]2

E4 ((1 − x1)
2 + (1 − x3)

2 + 100(x2 − x2
1)

2 + 100(x4 − x2
3)

2)/10000Rosenbrock-4D [−5, 5]4

E5 sin(x1 + x2x3) + exp (1.2x4) –
x1 ∈ [−10, 10], x2 ∈ [−5, 5],

x3 ∈ [−5, 5], x4 ∈ [−3, 3]

E6 tanh(x1/2) + |x2| cos(x2
3/5) – [−10, 10]3

E7 (1 − x2
2)/(sin(2π x1) + 1.5) [31] [−5, 5]2

E8 x4
1/(x

4
1 + 1) + x4

2/(x
4
2 + 1) [27] [−25, 25]2

E9 log(2x2 + 1) − log(4x2
1 + 1) [27] [0, 5]2

E10 sin(x1 ex2) [3] x1 ∈ [−2, 2], x2 ∈ [−4, 4]

E11 x1 log(x4
2) [3] [−5, 5]2

E12 1 + x1 sin(1/x2) [3] [−10, 10]2

E13
√

x1 log(x2
2) [3] x1 ∈ [0, 20], x2 ∈ [−5, 5]

is less than 10−5. We utilize tournament selection, binomial crossover, and gener-
ational replacement. We selected this configuration as it demonstrated effective
optimization results across all experiments utilized in this work.

If ê(xv) and e(xv) are not equivalent, the error r =
∑

xv∈Xtest
v

|ftarget(xv) −
setConstants(ê(xv), c∗)| is greater than 0. We use r as a performance metric
that indicates the closeness between ê(xv) and e(xv) given the sampled values
of the constants of e(xv). Note that if ê(xv) and e(xv) are similar, the error r
should be low regardless of the sampled values of the constants of e(xv). Thus,
for the sake of generality, we repeat this process 30 times; that is, we sample 30
different ftarget(xv) functions and solve 30 optimization problems. Finally, we
report the mean and the standard deviation of the 30 resulting error metrics.

4 Experimental Results

A training dataset2 consisting of one million pre-generated expressions (|Q| =
106) has been created to train the Multi-Set Transformer. These expressions
allow up to one nested operation and contain a maximum of five unary operators.
We also generated an independent validation set consisting of 105 expressions.
For the model architecture, due to the high computational expense associated
with training a single model, we used a one-factor-at-a-time approach to choose
the following hyperparameters: the number of ISAB encoder blocks � = 3, the
number of decoder blocks M = 5, an embedding size d = 512, and the number
of heads h = 8. In addition, we set the number of input sets to NS = 10 and the
number of input-response pairs in each input set to n = 3000. Future work will
examine the impact of altering the values of NS and n on the final performance.

2 The code and datasets are available at https://github.com/NISL-MSU/MultiSetSR.

https://github.com/NISL-MSU/MultiSetSR


118 G. Morales and J. W. Sheppard

4.1 Experiments with Synthetic Data

We assessed the performance of the skeletons generated by our Multi-Set Trans-
former using ten synthetic SR problems generated by equations inspired by previ-
ous works and equations proposed in this work, as reported in Table 1. Note that
previous works used narrow domain ranges for all variables (e.g., [−1, 1]) while
we used extended ranges (e.g., [−5, 5] and [−10, 10]) to increase the difficulty of
the problems. We adapted the benchmark equations proposed by Bertschinger
et al. [3] (i.e., E10–E13) to a multivariate setting.

In all cases, the training datasets consisted of 10,000 points where each vari-
able was sampled using a uniform distribution. For the estimated response func-
tions, f̂ , we trained feed-forward NNs with varying depths: three hidden layers
for problem E2; five hidden layers for problems E1, E4, E5, and E7; and four
hidden layers for the other cases. Each layer consisted of 500 nodes with ReLU
activation. We used 90% of the samples for training and 10% for validation.

We compared the skeletons produced by the Multi-Set Transformer (MST) to
the ones extracted from the expressions generated by three other methods: two
GP-based methods (PySR [7] and TaylorGP [12]) and two neural SR methods
(NeSymReS [4] and E2E [17]). For NeSymReS and E2E, we used the pre-trained
models available online. NeSymReS, E2E, and the Multi-Set Transformer were
trained using vocabularies with the same unary and binary operators: +,×, /,
abs, acos, asin, atan, cos, cosh, exp, log, pow2, pow3, pow4, pow5, sin, sinh,
sqrt, tan, tanh. Thus, PySR and TaylorGP were executed using the same set
of operators. Our experimentation with the GP-based methods involved a maxi-
mum of 10,000 iterations, though convergence was consistently achieved in fewer
iterations across all cases. Population sizes of 100, 200, 500, and 1000 were tested,
with no discernible advantage observed beyond a size of 500.

The compared methods produce multivariate expressions, from which the
skeleton variable corresponding to variable xv is obtained using the skeleton
function κ(·, xv). NeSymReS could not be executed on E4 and E5 because its
model was trained using expressions limited to three variables. Table 2 shows
the target and estimated skeletons corresponding to each variable for problem
E2. The skeletons obtained for the other problems are presented in Section C
of the Supplementary Materials (see footnote 1). We also evaluated skele-
ton performance using the method described in Sect. 3.3. We set the size of the
test sets to Ntest = 3000. Using Ntest > 3000 did not vary the obtained results.
Table 3 reports the rounded mean and the standard deviation of the error met-
rics obtained after 30 repetitions of the proposed evaluation. The bold entries
indicate the method that achieved the lowest mean error r and that its differ-
ence w.r.t. the values obtained by the other methods is statistically significant
according to Tukey’s honestly significant difference test performed at the 0.05
significance level.



Univariate Skeleton Prediction in Multivariate Systems Using Transformers 119

Table 2. Comparison of skeleton prediction results for problem E2

Method x1 x2 x3

PySR c1 + |c2 + |c3 + x1|| c1 c1 + c2 x3

TaylorGP c1 + c2 x1 c1 + c2 x2 c1 + c2 x3

NeSymReS c1 + c2 x1 c1 + exp(exp(c2 x2)) c1 + c2 x3

E2E c1 + c2 x1 + c3(c4 + c5 x1)
2 c1 + c2 (c3 + c4 x2) c1 + c2 x3 + c3(c4 + c5 cos(c6 + c7 x3))

MST c1 + c2(c3 + c4 x1)
2 c1

√
c2 x2 + c3 + c4 c1 + c2 sin(c3 x3 + c4)

Target e(x) c1 + (c2 + c3 x1)
2 c1

√
x2 + c2 + c3 c1 + c2 sin(c3 x3)

4.2 Analysis of Nitrogen Fertilizer Response Curves

In the previous section, we performed experiments based on synthetic datasets.
Recall that the objective of this work is to demonstrate that our method
can explain the relationship between each system’s variable and the system’s
response. To do so, datasets with known underlying functions are needed. How-
ever, in this section, we show the applicability of our approach in a real-world
application.

In precision agriculture, crop yield prediction is a critical task with a signif-
icant societal impact [13]. Let y(i, j) represent the observed yield at a field site
with coordinates (i, j). Furthermore, let x(i, j) represent a set of multiple covari-
ate factors, such as the nitrogen (N) fertilizer rate applied, and other topographic
and meteorological features. It describes the state of the field at position (i, j),
and potentially its neighboring areas. The underlying yield function of the field
is denoted as f(·) and y(i, j) = f(x(i, j)). Thus, the early crop yield prediction
problem consists of generating predicted yield values ŷ(i, j) using a prediction
model f̂(·), such that ŷ(i, j) = f̂(x(i, j)) and ŷ(i, j) ≈ y(i, j).

In practice, f is a complex multivariate system with unknown functional
form. Nevertheless, tasks like N-rate optimization, which allows for profit maxi-
mization and environmental impact maximization [13], do not require estimating
the full functional form of f(x(i, j)). Instead, N-rate optimization only analyzes
the functional relationship between the N-rate variable and the predicted yield
values. This relationship is typically represented using N fertilizer-yield response
(N-response) curves, which depict the estimated crop yield values for a specific
field site in response to various admissible fertilizer rates.

The experiments presented in this section aim to estimate the functional form
of N-response curves for a winter wheat dryland field called “Field A”, discussed
in a previous work [23]. Traditionally, N-response curves are fitted employing a
single parametric function for the entire field [5,16]. However, previous work [23]
demonstrates that the N-response functional form varies within the field, which
can be clustered into regions known as management zones (MZs) based on the
fertilizer responsivity of the field sites (i.e., the shape of the approximated N-
response curves). For details about the dataset, the generation of approximated
N-response curves, and the clustering method, please see [23].



120 G. Morales and J. W. Sheppard

Table 3. Skeleton evaluation performance comparison

Eq. Var. PySR TaylorGP NeSymReS E2E MST

E1 x1 1.4 ± 0.8 1.4 ± 0.8 0.9 ± 0.7 0.2 ± 0.4 0.01 ± 0.02

x2 1.5 ± 0.9 1.5 ± 0.9 1.3 ± 0.8 1.5 ± 0.9 0 ± 0

E2 x1 303.5 ± 167.3 310.0 ± 170.1 310.0 ± 170.10 ± 0 0 ± 0

x2 5.4 ± 5.0 4.2 ± 5.3 4.6 ± 5.0 4.2 ± 5.3 0.02 ± 0.03

x3 1.7 ± 1.0 1.7 ± 1.0 1.7 ± 1.0 0.01 ± 0.020 ± 0

E3 x1 2×1012 ± 5×1012 939.4 ± 1419.9 1.9 ± 1.2 0.8 ± 1.8 0.8 ± 1.8

x2 1.3 ± 1.0 1.3 ± 1.0 0.8 ± 0.8 0 ± 0 0 ± 0

E4 x1 4576.2 ± 2695.7 4581.5 ± 2697.4 – 2.3 ± 3.6 1.1 ± 0.7

x2 79.6 ± 41.3 80.2 ± 40.8 – 0 ± 0 0 ± 0

x3 3995.5 ± 2815.6 4304.6 ± 2843.7 – 2.0 ± 4.0 1.0 ± 0.9

x4 74.5 ± 48.0 75.5 ± 47.0 – 0 ± 0 0 ± 0

E5 x1 0.6 ± 0.05 0.6 ± 0.05 – 0 ± 0 0 ± 0

x2 1.5 ± 1.0 1.5 ± 1.0 – 1.5 ± 1.0 0 ± 0

x3 0.6 ± 0.05 0.6 ± 0.05 – 0.6 ± 0.05 0 ± 0

x4 2.7 ± 1.2 487.4 ± 461.9 – 0.6 ± 0.8 0.6 ± 0.8

E6 x1 0.8 ± 0.08 0.8 ± 0.08 0.3 ± 0.01 0.04 ± 0 0 ± 0

x2 16.8 ± 12.2 16.8 ± 12.2 13.8 ± 11.1 1.3 ± 0.9 0 ± 0

x3 2.9 ± 1.3 1.9 ± 0.7 1.6 ± 0.9 1.6 ± 0.9 0 ± 0

E7 x1 29.5 ± 1.0 1.8 ± 2.0 1.8 ± 2.0 1.1 ± 1.3 0 ± 0

x2 63.6 ± 43.8 1.6 ± 1.0 42.4 ± 24.7 0 ± 0 0 ± 0

E8 x1 0.02 ± 0.01 0.04 ± 0.01 0.8 ± 1.2 0.02 ± 0.02 0 ± 0

x2 0.02 ± 0.01 0.04 ± 0.01 0.9 ± 1.3 0.02 ± 0.01 0 ± 0

E9 x1 271.3 ± 446.8 239.8 ± 428.2 375.1 ± 485.50 ± 0 0 ± 0

x2 0 ± 0 0.2 ± 0.09 2.7 ± 1.7 0.05 ± 0.01 0 ± 0

E10 x1 0 ± 0 0.6 ± 0.2 0 ± 0 0 ± 0 0 ± 0

x2 0 ± 0 0.4 ± 0.06 0 ± 0 0 ± 0 0 ± 0

E11 x1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

x2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

E12 x1 21.8 ± 13.1 0 ± 0 0 ± 0 0 ± 0 0 ± 0

x2 0 ± 0 2.4 ± 1.5 2.5 ± 1.6 0 ± 0 0 ± 0

E13 x1 0 ± 0 0.8 ± 0.5 0.7 ± 0.6 0.7 ± 0.8 0 ± 0

x2 0 ± 0 0 ± 0 3.8 ± 3.5 0 ± 0 0 ± 0

Figure 2 depicts Field A clustered into four MZs. The figure also shows fifty
example response curves selected randomly from each MZ. Due to their shape
similarity, we assume that all sites within an MZ share the same functional form.
Consider that an N-response curve is a set of input–response pairs (N-rate Nr vs.



Univariate Skeleton Prediction in Multivariate Systems Using Transformers 121

Fig. 2. MZs for Field A and corresponding N-response curves [23].

relative yield ry). Thus, the problem of estimating the functional form of the N-
response curves of an MZ can be posed as an MSSP. To do so, we select NS = 10
random field sites within an MZ and feed their corresponding N-response curves
into the pre-trained MST model to obtain a univariate skeleton.

Table 4. Comparison of skeleton prediction results for Field A

Method MZ Functional Form r̄ Method MZ Functional Form r̄

Quadratic-plateau 1 c1 + c2 (min(Nr, c3) + c3)
2 0.0680 Quadratic-plateau 3 c1 + c2 (min(Nr, c3) + c3)

2 0.0879
Exponential c1(1 − exp(c2 + c3 Nr)) + c4 0.2303 Exponential c1(1 − exp(c2 + c3 Nr)) + c4 0.1965
MST c1 + c2(Nr − log(c3 + c4 Nr)) 0.0489MST c1 + c2 Nr + c3 cos(c4 + c5 Nr) 0.0479
Quadratic-plateau 2 c1 + c2 (min(Nr, c3) + c3)

2 0.0725 Quadratic-plateau 4 c1 + c2 (min(Nr, c3) + c3)
2 0.0615

Exponential c1(1 − exp(c2 + c3 Nr)) + c4 0.1825 Exponential c1(1 − exp(c2 + c3 Nr)) + c4 0.2249
MST c1 + c2 tanh(c3 + c4 Nr) 0.0495MST c1 + c2 Nr + c3 cos(c4 + c5 Nr) 0.0237

Table 4 shows the skeletons derived by the MST for each MZ. The process
was repeated multiple times for each MZ, with different random sites selected
as inputs for the MSSP problem in each iteration, resulting in the generation of
equivalent skeletons. Furthermore, we evaluated the suitability of the obtained
skeletons for each MZ and compared them to two traditional N-response models:
quadratic-plateau [5] and exponential [16]. For each method and field site, we fit
the skeleton’s coefficient values to minimize the distance to the corresponding
N-response curve, following a similar procedure as the one described in Sect. 3.3.
We report the average error r̄ obtained considering all sites within each MZ.
Results indicate that different MZs may be modeled using different functional
forms, unlike traditional approaches that assume one for the entire field.

5 Discussion

Our method involves training a feedforward NN, which is then used to solve an
MSSP problem for each system’s variable using a Multi-Set Transformer. This
process produces univariate skeletons that describe the functional relationship
between each variable and the system’s response. After evaluation of our uni-
variate skeleton prediction method across the tested problems, we observed that
it generated skeletons that matched or were equivalent to the target skeleton



122 G. Morales and J. W. Sheppard

for all variables across all problems. For instance, for problem E11, the tar-
get skeleton for variable x2 is given by e(x2) = c1 log(x4

2), and our method
produces the skeleton êMST (x2) = c′

1 + c′
2 log(c′

3 x2
2). Notice that these skele-

tons are equivalent if c′
1 = 0, c′

2 = 2 c1, and c′
3 = 1. In addition, from the

skeleton performance evaluation shown in Table 3, we verified that our method
consistently attained lower or comparable error metrics compared to other SR
methods. These results strongly support our hypothesis that our method would
generate univariate skeletons that are more similar to those corresponding to the
underlying equations in comparison to other SR methods.

Note that E2E produced the correct skeleton for at least one of the variables
in most of the cases. Recall that E2E generated expressions that minimize the
prediction error; thus, it did not prioritize identifying the correct functional form
of the variables that do not contribute substantially to the overall error. In addi-
tion, in some cases, E2E generated skeletons that were equivalent to the target
skeletons but larger than those produced by MST. For example, in problem E4,
E2E generated the skeleton êE2E(x1) = c1 + c2|c3 + c4 x1 + c5 x2

1 + c6 x3
1 + c7 x4

1|
for variable x1, which is equivalent to the one produced by MST, êMST (x1) =
c1 + c2 x1 + c3 x2

1 + c4 x3
1 + c5 x4

1. Another advantage over the other neural SR
methods is that MST requires 24.2 million parameters while E2E requires 93.5
million. NeSymReS requires 26.4 million parameters (i.e., 2.2 million more than
MST), and Table 3 shows that it failed to identify the correct functional form in
most cases and is limited to problems with up to three variables.

It is worth pointing out that in problems E5, E6, E8, E9, and E13, some
compared methods achieved low error metrics but are not comparable to the ones
achieved by our method. For example, in problem E6, E2E generated the skeleton
êE2E(x1) = c1 + c2 atan(c3 + c4 x1) for variable x1, which does not coincide with
the functional form of the underlying skeleton e(x1) = c1+tanh(c2 x1). However,
E2E achieved low error metrics because, during the coefficient fitting process,
the GA found appropriate values for the constant that multiplies the argument
of the atan function, stretching or compressing the curve, making it resemble the
shape of tanh and minimizing the error. Hence, the skeleton generated by E2E
produced low error metrics and is considered to be similar to the target skeleton.
Conversely, the functional form of the skeleton generated by MST coincided with
that of the target skeleton exactly (i.e., êMST (x1) = c1+c2 tanh(c3 x1)) and thus
produced significantly lower error metrics.

We claim that our method can be regarded as a post-hoc explainability
method that generates univariate skeletons as explanations of the function
approximated by a black-box regression model. From an explainability perspec-
tive, the generation of more accurate univariate symbolic skeletons is crucial. By
producing skeletons that align more closely with the underlying data, we offer
transparent insights into how each variable influences the function’s response.

Finally, we applied our method to a precision agriculture problem. Given
a field that has been split into MZs, the problem consists of determining the
functional form that describes the N-response curves corresponding to all sites
within an MZ. This is modeled as an MSSP problem and the skeleton generated



Univariate Skeleton Prediction in Multivariate Systems Using Transformers 123

for each MZ is reported in Table 4. Our results show that the generated skeletons
yield lower fitting errors and, thus are more suitable when modeling the field’s
N-response curves. In future work, the function fitted for each site will serve as
a surrogate yield model that may aid in optimization tasks.

One potential limitation of our approach, as well as any neural SR method,
lies in its ability to generate skeletons whose complexity is bounded inher-
ently by the expressions produced during the pre-training phase of the Multi-
Set Transformer. For instance, we would not be able to identify the skeleton
c1 + c2 x2

2/ sin(c3 ec4 x2) as it requires eight operators, while our training set
was limited to expressions with up to seven operators. However, it is feasible
to overcome this limitation through transfer learning, so that the MST model
can be trained on more complex tasks, potentially enabling the recognition of
such complex skeletons. Another limitation is that we do not provide multi-
variate expressions as other methods do. This is because the objective of this
work lies in discerning the functional relationship between each variable and
the system’s response accurately. Future work will focus on using the generated
univariate skeletons as building blocks to produce multivariate expressions that
approximate the system’s entire underlying function. For instance, mathematical
expressions explaining the full behavior of real-world systems will be generated,
and their performance will be evaluated by comparing observed response values
with those predicted by the generated expressions.main.

6 Conclusions

Symbolic regression aims to find symbolic expressions that represent the rela-
tionships within the observed data. As such, SR represents a promising avenue
for building explainable models. By seeking to uncover mathematical equations
that represent the relationships between input variables and their response, the
resulting equations offer transparency and clear insights into model behavior.

Given a multivariate regression problem, the objective of the work reported in
this paper is to produce symbolic skeletons that describe the relationship between
each variable and the system’s response. To do so, we introduced a problem called
Multi-Set Skeleton Prediction that aims to generate a symbolic skeleton expres-
sion that characterizes the functional form of multiple sets of input–response
pairs. To solve this problem, we proposed a novel Multi-Set Transformer model,
which was pre-trained on a large dataset of synthetic symbolic expressions. Then,
the multivariate SR problem is tackled as a sequence of MSSP problems gener-
ated using a black-box regression model. The generated skeletons are regarded
as explanations of the black-box model’s function. Experimental results showed
that our method consistently produced more accurate univariate skeletons in
comparison to two GP-based SR methods and two neural SR methods.

Future work will focus on merging the generated univariate skeletons into a
multivariate symbolic expression that approximates the underlying function of
the system. This task requires us to answer questions such as how to ensure that
the skeletons generated for all variables are compatible and can be merged, or
how to find the optimal order in which to merge the skeletons.



124 G. Morales and J. W. Sheppard

Acknowledgments. This research was supported by the Data Intensive Farm
Management project (USDA-NIFA-AFRI 2016-68004-24769 and USDA-NRCS
NR213A7500013G021). Computational efforts were performed on the Tempest HPC
System, operated by University Information Technology Research Cyberinfrastructure
at MSU.

References

1. Amir Haeri, M., Ebadzadeh, M.M., Folino, G.: Statistical genetic programming for
symbolic regression. Appl. Soft Comput. 60, 447–469 (2017)

2. Arnaldo, I., Krawiec, K., O’Reilly, U.M.: Multiple regression genetic programming.
In: 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 879–
886 (2014)

3. Bertschinger, A., Davis, Q.T., Bagrow, J., Bongard, J.: The metric is the message:
benchmarking challenges for neural symbolic regression. In: Koutra, D., Plant, C.,
Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds.) ECML PKDD 2023. LNCS,
vol. 14172, pp. 161–177. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-43421-1_10

4. Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic
regression that scales. In: 38th International Conference on Machine Learning,
vol. 139, pp. 936–945 (2021)

5. Bullock, D.G., Bullock, D.S.: Quadratic and quadratic-plus-plateau models for
predicting optimal nitrogen rate of corn: a comparison. Agron. J. 86(1), 191–195
(1994)

6. Chu, X., Zhao, H., Xu, E., Qi, H., Chen, M., Shao, H.: Neural symbolic regression
using control variables. ArXiv abs/2306.04718 (2023)

7. Cranmer, M.: Interpretable machine learning for science with PySR and Symboli-
cRegression.jl. ArXiv abs/2305.01582 (2023)

8. Dignum, S., Poli, R.: Generalisation of the limiting distribution of program sizes in
tree-based genetic programming and analysis of its effects on bloat. In: 9th Annual
Conference on Genetic and Evolutionary Computation, pp. 1588–1595 (2007)

9. Ebner, M.: On the search space of genetic programming and its relation to nature’s
search space. In: 1999 Congress on Evolutionary Computation, vol. 2, pp. 1357–
1361 (1999)

10. Filho, R., Lacerda, A., Pappa, G.: Explaining symbolic regression predictions. In:
2020 IEEE Congress on Evolutionary Computation, pp. 1–8 (2020)

11. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)
12. He, B., Lu, Q., Yang, Q., Luo, J., Wang, Z.: Taylor genetic programming for

symbolic regression. In: Genetic and Evolutionary Computation Conference, pp.
946–954 (2022)

13. Hegedus, P., et al.: Towards a low-cost comprehensive process for on-farm precision
experimentation and analysis. Agriculture 13(3) (2023)

14. Holland, J.H.: Genetic algorithms. Sci. Am. (1992)
15. Jin, Y., Fu, W., Kang, J., Guo, J., Guo, J.: Bayesian symbolic regression. ArXiv

abs/1910.08892 (2020)
16. Kakimoto, S., Mieno, T., Tanaka, T., Bullock, D.: Causal forest approach for site-

specific input management via on-farm precision experimentation. Comput. Elec-
tron. Agric. 199, 107164 (2022)

https://doi.org/10.1007/978-3-031-43421-1_10
https://doi.org/10.1007/978-3-031-43421-1_10


Univariate Skeleton Prediction in Multivariate Systems Using Transformers 125

17. Kamienny, P.A., d’Ascoli, S., Lample, G., Charton, F.: End-to-end symbolic regres-
sion with transformers. In: Advances in Neural Information Processing Systems,
vol. 35, pp. 10269–10281 (2022)

18. La Cava, W., et al.: Contemporary symbolic regression methods and their relative
performance. In: Advances in Neural Information Processing Systems (2021)

19. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: International
Conference on Learning Representations (2020)

20. Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape.
In: Advances in Genetic Programming. The MIT Press (1999)

21. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set Transformer:
a framework for attention-based permutation-invariant neural networks. In: 36th
International Conference on Machine Learning, vol. 97, pp. 3744–3753 (2019)

22. Martius, G., Lampert, C.H.: Extrapolation and learning equations. ArXiv
abs/1610.02995 (2016)

23. Morales, G., Sheppard, J.W.: Counterfactual analysis of neural networks used to
create fertilizer management zones. In: 2024 International Joint Conference on
Neural Networks. Yokohama, Japan (2024)

24. Orzechowski, P., La Cava, W., Moore, J.: Where are we now? A large benchmark
study of recent symbolic regression methods. In: Genetic and Evolutionary Com-
putation Conference, pp. 1183–1190 (2018)

25. Petersen, B.K., Landajuela, M., Mundhenk, T.N., Santiago, C.P., Kim, S.K., Kim,
J.T.: Deep symbolic regression: recovering mathematical expressions from data via
risk-seeking policy gradients. In: International Conference on Learning Represen-
tations (2021)

26. Sahoo, S., Lampert, C., Martius, G.: Learning equations for extrapolation and
control. In: 35th International Conference on Machine Learning, pp. 4442–4450
(2018)

27. Trujillo, L., Muñoz, L., Galván-López, E., Silva, S.: neat genetic programming:
controlling bloat naturally. Inf. Sci. 333, 21–43 (2016)

28. Udrescu, S.M., Tegmark, M.: AI Feynman: a physics-inspired method for symbolic
regression. Sci. Adv. 6(16), eaay2631 (2020)

29. Valipour, M., You, B., Panju, M., Ghodsi, A.: SymbolicGPT: a generative trans-
former model for symbolic regression. In: Advances in Neural Information Process-
ing Systems (2022)

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems. vol. 30 (2017)

31. Werner, M., Junginger, A., Hennig, P., Martius, G.: Informed equation learning.
ArXiv abs/2105.06331 (2021)


	Univariate Skeleton Prediction in Multivariate Systems Using Transformers
	1 Introduction
	2 Related Work
	3 Multivariate Skeleton Prediction
	3.1 Neural Network Training
	3.2 Multi-set Symbolic Skeleton Prediction
	3.3 Performance Evaluation

	4 Experimental Results
	4.1 Experiments with Synthetic Data
	4.2 Analysis of Nitrogen Fertilizer Response Curves

	5 Discussion
	6 Conclusions
	References


