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Abstract 

In this paper, we investigate the application of data mining 
to existing techniques for quality control/anomaly detection 
on weather sensor observations. Specifically we adapt the 
popular Barnes Spatial interpolation method to use time-
series distance rather than spatial distance to develop an 
online algorithm that uses readings from similar stations 
based on current and historical observations for 
interpolation and we demonstrate that this new algorithm 
exhibits less model error than the Barnes Spatial 
interpolation-based method. We focus on interpolation, 
which is a basis for this popular quality control method and 
other related methods, and examine a dataset of over 233 
million temperature observations from California and 
surrounding areas. Our approach shows improved 
performance as indicated by mean squared error reduced by 
approximately one half for predicted values versus reported 
values.  

 Introduction   

With the advancement of computing and communication 

capability, the near-real-time information available from 

weather station sensors has increased dramatically in 

recent years and will continue to increase. These stations 

range from those maintained meticulously by the National 

Weather Service at airports nationwide to personal weather 

stations operated and maintained by individuals at their 

homes. The quality and accuracy of readings from these 

sensors can vary dramatically, as no system is immune to 

failure or mis-calibration. It may be desirable for certain 

applications, including basic assessment of conditions, to 

use as much of the sensor information available as 

possible.  

 There are many challenges associated with the problem 

of quality control (anomaly detection) for weather sensors 

because the types and sources of error are many. An error 

source may be a faulty sensor, but the error may not 
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become apparent for some time if the readings drift slowly 

away from expected values. A sensor may be buried in 

snow or ice, reporting the temperature of the snow or ice 

rather than the ambient air temperature. A controller may 

have faulty logic and produce incorrect output. A weather 

station may have incorrect metadata associated with it and 

report an incorrect location while the readings its sensors 

produce are otherwise valid.  

 There are a number of automated quality control 

techniques that have been applied to assess the quality of 

individual sensor readings. Many of the more advanced 

techniques are geo-spatial in nature, based on spatial and 

temporal consistency assumptions, as well as an implicit 

assumption that most sensors provide accurate readings. 

Interpolation methods using readings in a geographically-

defined neighborhood can be used to compute expected 

readings, and expected readings can then be compared to 

actual readings. In the event of a large deviation between 

actual and expected, a reading will be flagged as failing 

quality control or suspect of failing. General shortcomings 

include the challenge of selection of suitable tolerance 

levels and other parameters or bounds to determine outliers 

and the consequential balance of false positives (accurate 

readings classified as inaccurate) and false negatives 

(inaccurate readings classified as accurate). 

 We hypothesize that given historical data from stations 

and sensors, existing techniques can be enhanced using 

only the historical sensor data and data mining techniques 

to give better results in terms of mean-squared error (MSE) 

for interpolation of values.  We hypothesize specifically 

that grouping stations based on similarity of sensor time-

series and weighting observations from these stations 

accordingly results in lesser error when interpolating to 

predict the value at given station. We focus our attention in 

this study on temperature sensor readings, although the 

methods investigated should generalize to other weather 

sensor reading types that exhibit some degree of spatial 

and temporal consistency.  

 In this paper we present background, our approach, 

results, conclusions and future work. 



Background 

The WeatherShare system (http://www.weathershare.org/) 

was developed by the Western Transportation Institute at 

Montana State University in partnership with the 

California Department of Transportation (Caltrans) to 

provide a single, all-encompassing source for road weather 

information throughout California. Caltrans operates 

approximately 170 Road Weather Information Systems 

(RWIS) along state highways, thus their coverage is 

limited. With each deployment costing in the neighborhood 

of $100,000, it is unrealistic to expect pervasive coverage 

of the roadway from RWIS alone. WeatherShare 

aggregates weather data from other third-party aggregation 

sources such as NOAA’s Meteorological Assimilation 

Data Ingest System (MADIS) (http://madis.noaa.gov/), 

along with Caltrans RWIS to present a unified view of 

weather data from approximately 2,000 stations within 

California. A primary benefit of the system is far greater 

spatial coverage of the state, particularly roadways, when 

compared to the Caltrans RWIS network alone. A 

secondary benefit of the system is the ability to compare 

RWIS readings with those of other nearby sensors to assess 

accuracy. Formal, automated quality control procedures 

have been implemented in the WeatherShare system to 

assess sensor accuracy for not only Caltrans RWIS, but 

also all other sensor readings stored in the system. (Richter 

et al. 2009)  

 The WeatherShare system has not fully achieved the 

secondary goal of increasing Caltrans ability to assess 

RWIS sensor accuracy in an efficient manner guided by 

automated procedures. This shortcoming stems from both 

limitations in implemented procedures, as well as 

unrealized potential to deliver this information through an 

easy to use and informative interface.  

 MADIS is an online database of real time and archived 

weather data including sensor readings from nearly 40,000 

stations in North America, including Hawaii and Central 

America.  For the meteorological surface dataset, MADIS 

implements three levels of automated quality control. The 

“Level 1” quality control checks are also referred to as 

“validity checks” or “range checks”. They check that a 

sensor reading is within a range of predetermined values 

indicating the “tolerance limits” of that sensor reading 

type. The range for air temperature is given as [-60° F, 

130° F]. There are three “Level 2” quality control checks: 

“internal consistency,” “temporal consistency,” and 

“statistical spatial consistency.”  

 The Level 3 quality control check is referred to as the 

“spatial consistency” or “buddy” check, and is a variant of 

the Optimal Interpolation (OI), technique (Belousev et al 

1968). For a given station and observation, an interpolated 

value is determined for that station using neighboring 

stations and excluding the station being analyzed. If the 

difference between the actual value and the interpolated 

value is “small,” then the station is considered to be in 

agreement with its neighbors and it passes the spatial 

consistency check. However, if the difference is not small, 

then the interpolation and analysis is repeated with one of 

the neighboring observations removed. If the removal of 

the neighbor results in a small difference between the 

interpolated and observed value, then the observation is 

flagged as “good” and the neighboring observation is 

flagged as “bad”.  

 The Clarus initiative (http://www.clarusinitiative.org/) 

was established in 2004 by USDOT Federal Highway 

Administration Road Weather Management Program and 

the Intelligent Transportation Systems Joint Program 

Office to “reduce the impact of adverse weather conditions 

on surface transportation users.” Specifically, Clarus was 

built to collect atmospheric and pavement observations 

from state-owned road weather information systems in 

near real time. 

 The Clarus System (http://www.clarus-system.com/) 

provides ESS data from participating states and Canadian 

provinces. At present, there are 38 participating states and 

4 participating provinces. Data is available for California 

and it is provided by Caltrans to the Clarus system in the 

same manner that it is provided to WeatherShare. Current 

data is provided via an online graphical user interface, and 

archived data is also available for download. Clarus 

implements nine quality control algorithms including a 

Barnes Spatial Test (Pisano et al. 2007). The Barnes 

Spatial Test is based on the Barnes Spatial Interpolation 

Scheme (Barnes 1964), which uses a Gaussian filter to 

interpolate values over a two dimensional area using 

known readings within that area.  

 The Barnes Interpolation Scheme is used as a basis for 

the Barnes Spatial Quality Control test, as applied by the 

Oklahoma Mesonetwork (Shafer et al. 2000), which uses 

one pass of the Barnes Interpolation Scheme to estimate 

values for each observation. The Barnes Interpolation 

Scheme does not account for elevation. Since it was 

developed in Oklahoma, its application to areas with little 

variation in terrain may be reasonable. However, its use 

may be limited in areas with mountain terrain. 

 There are other notable approaches to modeling weather 

sensor data for the purposes of quality control and anomaly 

detection. The Utah Mesonet (Mesowest) uses linear 

regression (Split et al) to incorporate elevation into an 

interpolation model and subsequent quality control checks 

for temperature, dewpoint and pressure. PRISM 

(Precipitation-elevation Regressions on Independent 

Slopes Model), developed at Oregon State University, 

accounts for elevation and general topographic impact on 

weather variation, creating a grid of estimated precipitation 

using station readings that fall within topographically-

similar facets (Daly et al. 1994). 

http://www.weathershare.org/
http://madis.noaa.gov/


Our Approach 

For our experiment, we investigated air temperature 

observations only. Data were used from MADIS covering 

a rectangular region that includes all of California and 

portions of Oregon, Nevada, Idaho and Arizona. We 

restricted our attention to stations for which their locations, 

including elevation, were consistent throughout the entire 

period for which data was available. Note that locations of 

many individual stations changed over time. This is a 

consequence either of stations being mobile in nature, 

including ship-based maritime stations, as well as stations 

for which locations were not and may still not be reported 

accurately. We used temperature data from July 2001 

through December 2010. 

 Table 1 shows quality control descriptors associated 

with each sensor reading in the MADIS data set. The 

dataset provides additional detail indicating which tests 

were applied and which resulted in failure for the reading. 

 
Table 1: MADIS Quality Control Descriptors 

B subjective bad 

C coarse pass, passed level 1 

G subjective good 

Q questioned, passed level 1, failed level 2 or level 3 

S screened, passed level 1 and level 2 

V verified, passed level 1, level 2 and level 3 

X Rejected/erroneous, failed level 1 

Z preliminary, no quality control check 

  

 Although not an emphasis of this study, we pre-

processed data using a [-60° F, 130° F] range check, in 

conformance to that used for MADIS. It is recognized that 

such preliminary checks and filters are key to the 

performance of the more advanced (Level 3) spatial 

checks. In effect, this pre-processing removed all 

observations having an "X" quality control descriptor. 

There were some observations in the data set having 

quality control descriptors other than "X" which also failed 

this range test and these were removed also. 

 None of the techniques documented so far in this paper 

are perfect, and there may be room for improvement in 

each. In this project, we selected one of these methods, the 

Barnes Spatial Interpolation Scheme, for comparison and 

prospective enhancement using data mining techniques. In 

general, California offers an ideal setting for the evaluation 

of quality control procedures because of its geographic and 

meteorological diversity. California includes coastal areas, 

mountains, deserts, rain forests, and both the highest and 

lowest points in the contiguous 48 states. While the Barnes 

Spatial Interpolation Scheme is widely applied, it is also 

susceptible to the challenges of varying terrain. 

For our work, we represent a temperature observation   

as a 3-tuple   (     )  (        ), consisting of the 

station, time and the value (° F) of the observation. Since 

the time and frequency of observations vary from station to 

station, we adopt a convention for interpolation at time   of 

using the most recent reading  (     ) from any given 

station   at time   and within a time cutoff  :  

 
 (     )            {                }. 

 

For the experiments presented here we use   
          . We compute the distance between two 

stations  (     ), as the great circle distance between the 

stations. 
 The Barnes Spatial Interpolation Scheme uses a 

Gaussian filter to interpolate values over a two dimensional 

area using known readings within that area. Using our 

notation and conventions from above, then the value 

interpolated to correspond to an observation   is: 
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is the set of stations for which there are observations within 

the time cutoff   and within a distance cutoff  . We use 

           as the distance cutoff. The parameter k 

determines the shape (wide versus narrow) of the filter. 

Guidance is given in selecting k by using the equation 
  

  
       , where r is the radius of influence and 

    is the desired influence. Selection of E=4 results in 

approximately 98 percent influence (         ). We use 

the corresponding value      (   )⁄ . 

Note that our objective here for quality control 

assessment is not the interpolation over the entire area of 

interest but rather interpolation at the location of each 

observation to compare the interpolated value against the 

actual value of the observation. If the interpolated value 

deviates greatly from the actual value, then the actual value 

may be flagged as suspect. Further note that Barnes applied 

multiple iterations of interpolation to improve the fit of the 

model to the underlying data. We follow the convention of 

others in using a single iteration of interpolation for quality 

control assessment. 

 Background information appears to be a key to dealing 

with diversity of terrain and climate in some methods. The 

PRISM system, while using a very simple model at grid 

point level, makes extensive use of background 

information to improve its accuracy, including the 

incorporation of human intervention and tuning. As a 



whole, it is a rather complex model. We believe that with 

the ever increasing number and distribution of 

environmental sensors, there is an opportunity to develop 

comparable models based solely on historical data for the 

purpose of quality control. We further believe that such an 

approach is advantageous because it does not require a 

domain expert for development, interpretation or tuning. 

 Given basic assumptions of spatial and temporal 

consistency, and given some reasonable assumption about 

the trusted operation of a high proportion of sensors in a 

probabilistic sense or perhaps a lesser number of trusted 

stations and sensors distributed throughout a region, the 

generation of such models should be dependent only on the 

amount of historical data available and the spatial 

distribution and density of the sensors. We believe that 

with nearly 2,000 stations in California, there is sufficient 

density for application in a large portion of the state. 

Further, we recognize that the number of available stations 

will increase over time, particularly if data from unofficial, 

personal weather stations is used.  

 We believe such an approach can be advantageous over 

the other methods that make extensive use of background 

information and also over methods that make assumptions 

related to uniform spatial consistency. For these methods, 

the naïve assumptions of uniform spatial proximity might 

be replaced with time-series distance to indicate 

(dis)similarity of stations based on historical data. Further, 

stations can be grouped based on this same time-series 

distance or (dis)similarity measure to form a radius-based 

or nearest neighbor-based grouping, per station, as is used 

by the Barnes Spatial and Optimal Interpolation methods, 

respectively. 

 Time series distance can be computed in many different 

ways. In our experiment, we implemented an online 

approach, which continually updates the time series 

distance between stations as new observations are reported 

by using the sum-of-squares difference between each 

observation and the most recent observations from other 

stations. We define the time series distance   between 

stations    and    at time   as: 
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where      
 {              } is the set of all 

observations from station    at or prior to time  . 

 Using this measure, we developed a new method called 

Time-Series-Distance-Filter Interpolation (TSDFI) as a 

variation of the Barnes Spatial method by replacing the 

station to station distance measure   with  . Then the 

interpolated value  ( ) corresponding to an observation   

is: 
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   is the filter and  
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is the set of stations for which there are observations within 

the time cutoff   and within a time series distance cutoff  . 
We use        corresponding to a station-to-station root-

mean-squared error of 5.     (   )⁄  is computed 

accordingly. 

 Both the Barnes Spatial method and our new TSDFI 

method use Gaussian Filters to interpolate values, creating 

a model of reported data. Both were implemented in an 

online fashion, with the dataset processed chronologically, 

modeling each sensor value in the dataset. The error of 

reported versus predicted was recorded for each sensor 

value and subsequently aggregated as mean-squared-error 

for comparison.  

Results 

Over 233 million temperature observations from 2001-

2010 and the corresponding predicted values using Barnes 

Spatial (Barnes) and the Time Series Distance Filter 

Interpolation (TSDFI) methods were analyzed. The TSDFI 

method had an overall mean-squared error of less than half 

that of Barnes over the entire data set.  The mean-squared 

error for TSDFI is consistently less than that for Barnes 

Spatial over time by nearly a factor of two. Figure 1 shows 

peaks and troughs in the MSE for both methods, with 

peaks occurring in proximity to June of each year and 

troughs in proximity to December. Further investigation is 

necessary to determine if this is a consequence of normal 

seasonal variability in the underlying data and whether 

there is a need to account for such variability in the 

models. For instance, should there be separate summer and 

winter models? 

 The mean-squared errors for the Barnes and TSDFI 

methods yield promising results when grouped by 

observations according to the MADIS quality control 

descriptors. Recall that all readings flagged with quality 

control descriptor X, rejected/erroneous, were removed 

prior to application of the interpolation methods. For those 

readings that passed all three levels of MADIS quality 

control, labeled V, Table 2 shows that the mean-squared 

error for TSDFI is very small, and approximately one-third 

that of the Barnes Spatial method. For those flagged Q for 



questionable, having failed level 2 or level 3 in MADIS, 

the MSE for the TSDFI method is very high and 

comparable to that of Barnes Spatial. This is not 

problematic since the high MSE is attributable to 

questionable and likely erroneous sensor readings rather 

than model error, and would be indicative of such readings. 

Results corresponding to other MADIS quality control 

descriptors show similar results and appear to indicate that 

the TSDFI method may discriminate valid versus 

erroneous readings relatively well. 
 

 
Figure 1: MSE (°F2) Over Time for Barnes versus TSDFI. The 

MSE for TSDFI is approximately half that for Barnes. 

Table 2: MSE for Barnes versus TSDFI by MADIS QC 

Indicator. The MSE for TSDFI is less than that for Barnes in 

every case and less than one fourth that for Barnes for verified 

(V) readings. 

  

Barnes TSDFI 

 

Count MSE MSE 

B 300 55.82 60.54 

C 439,630 109.88 51.57 

G 206,873 23.01 15.52 

Q 13,709,191 246.13 158.28 

S 21,337,164 38.93 16.32 

V 197,415,497 25.86 8.01 

Z 28,862 49.12 22.42 

 Overall 40.17 17.70 

 

 By comparing TSDFI error to Barnes Spatial error for 

individual stations, we can speculate on reasons for large 

differences, including those that may be attributable to 

quality control problems for stations. Most stations have 

modest MSE values (less than 100) for both Barnes and 

TSD. There are some that have large MSE for both. See 

Figure 2 and Figure 3.  

  

 
Figure 2: Plot of Barnes Spatial and TSDFI Mean-Squared 

Errors by Station. The MSE for TSDFI is less than that for 

Barnes with very few exceptions. Note some large errors for 

both methods. 

  
Figure 3: Collapsed Plot of Barnes Spatial and TSDFI Mean-

Squared Errors by Station. The MSE for TSDFI is less than 

that for Barnes with very few exceptions. Note that most of the 

data for TSDFI has a MSE less than 20. 

 Consider station F2988, for which the reported location 

is 37.07°N, 119.03°W. MADIS reports an elevation near 

zero for this station, which is odd since the 

latitude/longitude corresponds to a point in the Sierra 

Nevada mountain range. The MSE for Barnes Spatial for 

this station is 89.321. The MSE for TSDFI for this station 

is 1.513. This indicates that other stations in proximity to 

this station do not match it well while there are other 

stations which are better matches. This seems to indicate 

that the reported station location is incorrect. However, 

there are only 22 readings for this station, and this 

discrepancy may simply be a consequence of lack of data. 

For station SCNC1, the MSE for Barnes Spatial is 

5,155.291 and the MSE for TSDFI is 5,097.405. This 

station is located on San Clemente Island, which is over 60 

miles off the California coast. While there are several other 

stations located on San Clemente Island, there are very few 

additional stations in proximity. Either this station is 



problematic in general or there are not enough stations in 

proximity for comparison using either method. In fact, the 

"closest" station in terms of time series distance is station 

F1426, which is located at Camp Pendleton, north of San 

Diego and over 60 miles away. 

Conclusions and Future Work 

The TSDFI method shows sufficient promise to merit 

subsequent research and development into a related 

method for anomaly detection. TSDFI reduces overall 

model error in comparison to Barnes Spatial by grouping 

stations based on similarity of sensor time series and 

weighting them accordingly rather than by using spatial 

distance. Intuitively this approach should not be prone to 

problems of over-fitting, which could mask sensor error. 

The results presented used parameters for Barnes Spatial 

that are cited in other efforts but that have not been 

optimized, and arbitrary parameter value choices for 

TSDFI. There is further room for improvement by 

optimizing parameters for these models, including the 

potential to vary parameters on a per-station basis. And, it 

would be worthwhile to investigate a hybrid method that 

combines both time-series distance and spatial distance. 

Elevation might also be accounted for directly using 

similar approaches. 

 It would also be desirable to investigate varying time 

periods for both time series distance calculation and 

prediction. In our investigation we used data from June 

2001 through December 2010. It is important to determine 

how much data is necessary to develop a model that is 

applicable year-round and to subsequent years. We suspect 

that seasonal patterns will have an impact on performance. 

 We believe that these techniques should be applicable to 

other sensor reading types – wind and precipitation, for 

example. These reading types will certainly exhibit 

behavior different than temperature, although some degree 

of spatial and temporal consistency will still be assumed. 

Such readings may not be available from as many stations 

as for temperature and we note that not all stations offer 

the same suite of sensor types. Such challenges present 

further opportunity. It would be beneficial to investigate 

combining different sensor type readings to better 

characterize similarities between stations, and subsequently 

analyze individual readings for their validity. 

 Finally we note that ensemble methods may be 

applicable. Prior work indicates motivation for each of the 

models discussed relative to the original area in which it 

was applied – Barnes Spatial was developed in Oklahoma, 

which is relatively flat; Optimal Interpolation is said to be 

more robust than Barnes Spatial in that it forces 

comparison with stations in all directions; the regression 

techniques used by Mesowest and PRISM incorporate 

elevation into their models to account for the impact of 

terrain; and, PRISM incorporates other information to 

create “facets” containing related stations. It may be the 

case that an ensemble of several or all of these approaches 

would be more accurate. We believe, though, that a 

technique similar to the one we present in this study could 

be equally effective given sufficient historical data and 

spatial coverage. 
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