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Abstract

We propose a technique of training models for feature
extraction using prior expectation of regions of impor-
tance in an instrument’s timbre. Over a dataset of train-
ing examples, we extract significant spectral peaks, cal-
culate their ratio to fundamental frequency, and use k-
means clustering to identify a set of windows of spec-
tral prominence for each instrument. These windows are
used to extract amplitude values from training data to
use as features in classification tasks. We test this ap-
proach on two databases of 17 instruments, cross evalu-
ate between datasets, and compare with MFCC features.

Introduction
Musical instrument classification is an important task nec-
essary to music search, genre identification, and automatic
score transcription. While there have been many approaches
to recognize individual instruments, the majority of these are
not extensible to the more complex case of identifying in-
struments present in polyphonic mixtures.

This paper presents an approach for feature extraction that
is designed to be scalable to the task of instrument recog-
nition within polyphonic mixtures. Over a large dataset of
instruments, we extract significant peaks and cluster the ra-
tios of these peaks into a spectral signature that informs
which harmonic locations contain spectral energy. We use
these locations as spectral filters to perform feature extrac-
tion for a classification task. We evaluate this feature extrac-
tion scheme on two datasets using four classifiers. We com-
pare our feature extraction scheme to the commonly used set
of Mel Frequency Cepstral Coefficients (MFCC) features.

Related Work
Although many studies have explored the recognition of mu-
sical instruments playing isolated notes, no dominant learn-
ing strategy nor feature extraction technique has emerged.

A variety of supervised classification techniques have
been explored, including k-nearest neighbors, support vec-
tor machines, decision trees, Gaussian mixture models,
Bayesian networks, linear discriminant analysis, and neural
networks (see Herrera-Boyer, Peeters, and Dubnov 2003 for
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review). Additional studies have explored various spectral,
temporal, and cepstral features for instrument recognition
(see Deng, Simmermacher, and Cranefield 2008 for review).

Many of the techniques attempted in solo instrument clas-
sification are not practical for classification of real music
performances in which multiple instruments often play at
the same time. The task of recognizing instruments present
in polyphonic mixtures is a more complex task as the har-
monics of the instruments are interleaved in both time and
frequency. Unfortunately, many of the feature extraction ap-
proaches attempted for single instrument classification are
not extensible to the polyphonic mixture task.

Essid, Richard, and David (2006) created a system that
does not require source separation but uses hierarchical clus-
tering to build a taxonomy of instruments playing simulta-
neously, achieving 53% accuracy on a dataset of jazz record-
ings. These experiments train on fixed combinations and are
not extensible to unseen combinations of instruments.

Most approaches to instrument recognition in polyphonic
music attempt a form of source separation. In an attempt
to minimize source interference, Kitahara et al. (2007) used
linear discriminant analysis to minimize the weight of fea-
tures most affected by overlapping partials in polyphonic
mixtures of sounds. On a dataset of mixtures of five instru-
ments, the authors achieved 84% accuracy for duets, 77% for
trios, and 72% for quartets. Leveau et al. (2008) decomposed
signals into a mid-level representation to train a dictionary of
prototypical atoms based on solo instrument examples. The
authors model signals as the composition of various pitch
and instrument specific atoms using an optimization process,
achieving between 56% and 87% accuracy in a single instru-
ment recognition task over a dataset of five instruments.

Another approach, inspired by computational auditory
scene analysis, uses sinusoidal modeling and dimensionality
reduction to build prototypical spectro-temporal envelopes
of different instruments. One study used a graph partitioning
algorithm to cluster these envelopes and classify a set of six
instruments, ranging from 83% accuracy in the single instru-
ment case to 56% for four instrument mixtures (Martins et
al. 2007). Another study modeled these envelopes as Gaus-
sian processes and used Euclidean distance to the prototypes
as a classification metric, achieving 94.9% accuracy for sin-
gle instruments and 54% for four instrument mixtures on a
set of five instruments (Burred, Robel, and Sikora 2010).
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Design Goals
Many of the classification approaches and feature extraction
techniques for instrument recognition cannot be extended to
the recognition of instruments in polyphonic mixtures. We
identify the following design criteria needed to extend an ap-
proach to multi-label classification of polyphonic mixtures.
In this work, we design a feature extraction scheme with ex-
tensibility to multilabel classification and we evaluate our
scheme on the single instrument classification task.

Scalability
The goal of the identifying instruments present in poly-
phonic mixtures is a multi-label classification problem. One
approach is to train on all possible mixtures of instruments
as single classes, taken by Essid, Richard, and David (2006).
This method, however, suffers from the combinatorial explo-
sion of labels needed to classify and it is not feasible to train
models with every possible combination of instruments.

The task of polyphonic identification lends itself naturally
to binary relevance (BR) classification, a decomposition ap-
proach in which a single classifier is trained for each instru-
ment in order to identify the presence of that instrument in
a signal, independent of any other instruments that may be
present (Luaces et al. 2012). The strength of BR classifica-
tion for polyphonic mixture identification is that it only re-
quires training models on single instrument data yet allows
extensibility to unseen combinations of those instruments.

In this work, we cluster models for each instrument that
inform the locations in the harmonic spectra most often con-
taining significant spectral energy. We use these instrument-
specific signatures to filter strategic windows in each exam-
ple’s spectra and extract amplitude values as features. For
each instrument we then train a binary classifier.

Generalizability
Arguing that many approaches cannot generalize to new
data, Livshin and Rodet (2003) identified five different mu-
sical instrument datasets that shared a common subset of
seven instruments and performed cross database evaluations.
The authors received results ranging from 20% accuracy in
the worst case up to 63% in the best, with an average accu-
racy of 42%, demonstrating the poor generalization abilities
of common classification techniques across databases.

In this work, we compare cross dataset performance on
two common datasets. These datasets feature multiple per-
formers, instrument manufacturers, articulations, dynamic
levels, and cover the range of each musical instrument.

Practicality
Timbre perception and recognition relies on both the har-
monic content of the musical partials and the fine timing
of the envelope of each harmonic. The attack of an in-
strument sound and the differences in the fine-timing of
the envelopes of individual partials are of particular impor-
tance in both perception and algorithmic recognition of tim-
bre. Many classification approaches exploit this valuable in-
formation, as does the human auditory system (Fuhrmann,
Haro, and Herrera 2009).

The literature has focused on single instrument classifi-
cation in which the datasets contain examples of the entire
length on an instrument sample, including the attack and the
decay. An approach that relies on the time differences of the
instrument’s envelopes may not scale well to situations in
which signals contain only part of an instrument’s note.

In this work, we will ignore any timing information and
instead focus on identifying locations of harmonic content
most useful in discriminating between musical instruments.

Feature Extraction
Our feature extraction scheme relies on spectral features in
order to estimate source separation. Except in cases of in-
terfere caused by overlapping partials, musical partials are
generally well separated in the frequency domain (Figure 1).

Figure 1: Overlapping spectra of a Clarinet (261 Hz) and a
Violin (440 Hz).

Our approach discovers locations of harmonic content,
normalized by the fundamental frequency, that are dominant
across a large set of examples for each instrument. The loca-
tions are used as spectral filters to extract amplitude values
in the location strategic to the instrument, and these values
are used as features in classification.

Signal Processing
First, a high pass filter with a cutoff of 20 Hz is applied
to each file to eliminate low-frequency noise. Next, a Fast
Fourier Transform (FFT) with a single time window the en-
tire length of the recording transforms the waveforms to
the frequency domain. The resulting spectral magnitudes are
scaled by 10 · log 10 dB to convert from a linear scale to a
Power/Frequency scale.

Spectral Threshold
Spectral peak detection is necessary to detect and extract
the harmonics in the spectra. For each example, we define
a frequency-dependent threshold and identify all spectral
peaks that exceed it. We use a variable frequency-dependent
threshold to capture the amplitudes of higher harmonics, de-
spite the roll-off found at higher frequencies.

We employ the thresholding strategy presented by Every
and Szymanski (2006). First, a smoothed amplitude enve-
lope E is calculated for each example by convolving the
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spectra F with a moving Hamming window h of length
256 + 1 samples in which each value of Ej is set to be
the weighted average of the window with center point j. We
choose an odd-length window for symmetry.

The frequency-dependent threshold for each frequency
bin j is calculated as

Êj = eth · (Ej)c (1)
where c is a constant [0.5, 1) that determines the flatness
of the envelope shape and eth is a frequency independent
threshold height. The parameter eth is defined as

eth = b · | F |1−c (2)
where F is the average amplitude across all frequency bins
and b is a positive scalar that raises the mean above the noise
floor. We choose c = 0.5 to produce a flatter envelope and a
value of b = 4 in all our experiments. An example spectrum
with threshold Ê is shown in Figure 2.

Figure 2: Amplitude spectrum (solid) overlaid with thresh-
old (dotted) of a Clarinet playing A4 (440 Hz). For readabil-
ity, the depicted spectrum is limited to the first 5 kHz.

Spectral Peak Identification
For each example, we extract peaks in all spectral bins that
exceed the threshold, Fj > Êj , for all frequency bins j up
to the Nyquist limit, and save the corresponding frequency
in the vector p. The amplitude value in bin Fj is discarded
because we are interested in identifying the ratios of these
spectral peak locations to the fundamental frequency and we
must detect the fundamental frequency f0 for each audio file.
Since we are training on files containing only single instru-
ments, we employ a näive f0 finding algorithm in which a
frequency bin j is considered to correspond to f0 if

argmin
j
{∀k ∈ (1, 32) : Fj−k < Fj > Fj+k

∧ Fj > Ê(j)}
(3)

In other words, f0 corresponds to the frequency value for the
lowest frequency bin j that contains the highest amplitude
value Fj within a localized window of 32 samples and also
exceeds the threshold Ê(j). For each peak p ∈ p, its ratio to
f0 is calculated as r = p/f0. Any ratio r > 64 is discarded
and the rest are saved in a vector of ratios r.

Signature Clustering
k-means is a common clustering algorithm that partitions a
set of n observations into k discrete clusters so that every
observation is assigned to the cluster with the nearest mean
(Bottou and Bengio 1995). We use k-means to inform the
locations of Gaussian clusters at various harmonics for each
instrument.

Over the two datasets and for each instrument, the ra-
tios r are extracted. These vectors are concatenated into a
single one-dimensional vector, with duplications permitted.
This vector is passed to a k-means clusterer. We used a fixed
number of clusters k, which we vary experimentally, and
ran k-means until convergence. To reduce convergence time
of the algorithm, we seed the initial k clusters with values
[2 . . . k+1] to correspond to our expectation that most clus-
ters will contain means near integer ratios of the fundamen-
tal.

Figure 3: Histogram of spectral peaks (solid) overlayed with
clusters learned (dotted) for the set of Clarinet examples in
the RWC dataset. For clarity, only the clusters with ratios
ranging from 2 up to 20 are shown.

For each cluster, we extract the mean and standard de-
viation. This set of cluster means and standard deviations
are saved for each instrument and will be used to determine
the location of the harmonics for feature extraction on an
instrument-specific basis. Cluster density information, illus-
trated in Figure 3 as a histogram around ratios, is not used in
these experiments. This valuable information will be used in
future work to prune clusters.

Feature Extraction
The set of clusters learned from k-means is used as a spectral
filter to decide the specific locations from which to extract
amplitude information. We extract a single amplitude value
for each cluster. For each example, f0 is identified using the
method described above. Given a cluster ci with mean cµi
and standard deviation cσi , we identify a window wi cor-
responding to bins containing the frequencies in the range
[((ciµ − ciσ) · f0) . . . ((ciµ + ciσ) · f0)]. This is a window
centered on the ratio corresponding the the cluster mean and
ranging one standard deviation on either side. Next a Gaus-
sian window wgi with the standard deviation of cσi is applied
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to shape wi, ŵi = wgi · wi. The largest amplitude value
present in this window, max(ŵi), is extracted as a feature.

Experiments
To evaluate our proposed clustering scheme for feature ex-
traction, we compare two datasets with four different al-
gorithms. We also compare these results with the common
MFCC feature set with the same set of algorithms.

Datasets
All note signals are taken from the Real-World Computing
(RWC) (Goto et al. 2003) and University of Iowa Musi-
cal Instrument Samples (MIS) (Fritts 1997) datasets. These
datasets consist of musical instruments playing scales. For
our experiments we used the set of 17 instruments common
to both datasets, shown in Table 1. For each instrument, the
RWC database features two or three different performers, of-
ten on instruments by different manufacturers. Both datasets
contain notes played at three dynamic levels: piano, mezzo-
forte, and fortissimo. These datasets also contain up to three
different articulations per instrument. In addition to those
shown in Table 2, both datasets contain Marimba (MB) ex-
amples performed with hard, medium, and soft mallets. The
Guitar (GU) examples are played with both nail and finger
in the RWC dataset. All string instruments contain examples
of the notes played on each string.

The original sound files are downsampled to a 44.1 kHz
sampling rate, 16-bit per sample, single channel waveform.
The audio utility SoX 1 was used to detect silence and splice
the recordings into individual files, each representing an iso-
lated musical note. The datasets are then batch normalized
to the range [0,1] using the audio utility normalize.2 Within
each dataset and for each instrument, the loudest gain in any
of the files is scaled to a value of one and the other files are
adjusted accordingly, preserving the relative dynamic levels
between instrument examples. We clipped the files to two
seconds and added a 10 ms fade-in to the beginning and a
10 ms fade-out to the end of the sample.

Algorithms
For our experiments, we compare several different classifiers
common in musical instrument recognition. We demonstrate
our feature extraction approach with two Bayesian classi-
fiers, k-nearest neighbors, and a support vector machine.

A Bayesian network is a probabilistic graphical model
that represents the conditional dependencies of a set of ran-
dom variables through a directed acyclic graph, providing
a compact representation of joint probability distributions
over these variables. A trained classifier can determine the
class label of an unseen example that has the highest proba-
bility of explaining the values of the example’s features.

We use two different Bayesian network structures. Näive
Bayes (NB) is a common model that assumes conditional
independence between the features, given the class label. In

1http://sox.sourceforge.net/
2http://normalize.nongnu.org/

Family Instrument RWC MIS

Brass

French Horn (FH) 655 96
Trumpet (TR) 607 212
Trombone (TB) 856 82
Tuba (TU) 540 71

Woodwind

Flute (FL) 657 227
Clarinet (CL) 1080 139
Soprano Sax (SS) 889 192
Alto Sax (AS) 891 192
Oboe (OB) 593 104
Bassoon (BS) 1079 122

String

Violin (VN) 1344 266
Viola (VA) 1259 241
Violoncello (VC) 1316 352
Contrabass (CB) 1385 264
Guitar (GU) 2817 343

Percussion Marimba (MB) 871 529
Piano (PN) 2424 206

Total 19,263 3638

Table 1: List of 17 instruments common the MIS and RWC
datasets and the number of examples in each dataset.

previous work, we have shown the utility of modeling de-
pendencies between frequency features in instrument clas-
sification (Donnelly and Sheppard 2013). In our second
Bayesian network (BN), each feature ai is conditionally de-
pendent on the previously feature ai−1 as well as the class
and are ordered accordingly the ratio window from which
they were extracted (Figure 4).

Figure 4: Structure of Bayesian network (BN) with depen-
dencies between frequency features.

The k-nearest neighbors algorithm (k-NN) is a common
instance-based learning algorithm that predicts a previously
unseen example’s class based on the k closest training ex-
amples in the feature space. Based on preliminary testing,
we use a value of k = 1 in all experiments.

A support vector machine (SVM) is a model determines
the largest margin separating two classes of data in the fea-
ture space and uses this discriminant to classify new exam-
ples. We examined several different kernels for this task and
we used a polynomial kernel of degree 2 in all experiments.

Experimental Design
Within each dataset, we construct binary datasets for each
instrument. For an instrument i with n examples, we use
these as the positive examples with class label i. We then
choose a random instrument j where j 6= i and choose an
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Instrument NO ST VI SP NV PE
FH M,R R
TR M,R R M,R
TB M,R R R
TU M,R R
FL M,R R M,R
CL M,R R R
SS M,R R M,R
AS M,R R M,R
OB M,R R R
BS M,R R R
VN M,R R R
VA M,R R R
VC M,R R R
CB M,R R R
PI M,R R R

Table 2: List of articulations present in the RWC (R) and
MIS (M) datasets. NO = Normal, ST = Staccato, VI = Vi-
brato, SP = Spiccato, NV = No Vibrato, and PE = Pedal.

example from this instrument at random. We repeat this pro-
cess until we identify n negative examples with class label
not i. Both the positive and negative features are extracted
using the cluster signature for instrument i. Each binary
dataset is equally weighted with positive and negative exam-
ples, but the size of each BR dataset varies by instrument.

We use 10-fold cross-validation to evaluate when training
and testing on the same dataset (M/M, R/R). In the cross
dataset experiments (M/R, R/M), we train models on one
dataset and test on the other.

For performance evaluation, we report the F-measure
which reflects a weighted average of the precision and re-
call. This measure gives a sense of accuracy of each binary
class label individually. For each binary classifier, we take
the weighted F-measure between the two classes and then
average the F-Measures over the set of binary classifiers.

Results
In Table 3 we show the F-measure for each binary classi-
fier by instrument for the feature set of amplitude values ex-
tracted by a signature with 30 trained clusters. We also eval-
uate across our two datasets MIS and RWC using three dif-
ferent feature sets. We trained our signature models with 20
and 30 clusters, extracted features, and tested these features
on four algorithms. We chose 20 and 30 clusters to compare
with a baseline feature set, and we will tune the number of
clusters in future work.

For comparison, we tested using the common feature set
of the mean and standard deviation of the first 13 linear
MFCCs, a total of 26 features (Table 4). Our preset network
structure for the BN classifier is not extensible to the MFCC
feature set and was omitted.

MFCC features are commonly used in recognizing single
instrument and as expected, outperformed our approach on
all algorithms. For space limitations we cannot report all re-
sults, but on all datasets and all instruments, our feature set
approach scored better than chance, including in the cross

dataset evaluations, using only a näive feature set of only
amplitude values extracted at strategic locations in the spec-
tra.

Instr. NB BN k-NN SVM
FH 0.63 0.65 0.67 0.65
TR 0.70 0.70 0.63 0.72
TB 0.65 0.70 0.63 0.72
TU 0.79 0.87 0.80 0.86
FL 0.74 0.77 0.66 0.69
CL 0.69 0.74 0.62 0.59
SS 0.71 0.73 0.61 0.65
AS 0.68 0.70 0.61 0.60
OB 0.72 0.76 0.61 0.72
BS 0.63 0.66 0.74 0.63
VN 0.74 0.77 0.69 0.75
VA 0.72 0.72 0.65 0.62
VC 0.68 0.73 0.72 0.70
CB 0.80 0.84 0.81 0.83
GU 0.80 0.85 0.90 0.85
MB 0.83 0.84 0.87 0.84
PN 0.76 0.81 0.87 0.79

Table 3: Results of the RWC dataset with 30 features show-
ing the F-Measure for each binary classifier.

Features Algorithm M M R R
M R R M

20 Clusters

NB 0.75 0.64 0.76 0.65
BN 0.75 0.63 0.77 0.67
k-NN 0.71 0.61 0.72 0.63
SVM 0.71 0.64 0.72 0.67

30 Clusters

NB 0.73 0.63 0.72 0.64
BN 0.75 0.64 0.76 0.66
k-NN 0.72 0.61 0.71 0.63
SVM 0.70 0.66 0.72 0.68

MFCC
NB 0.86 0.58 0.80 0.71
k-NN 0.91 0.71 0.91 0.80
SVM 0.90 0.66 0.86 0.76

Table 4: Results of cross dataset experiments showing the
F-Measure averaged over the set of binary classifiers. The
top row shows the training set, M or R, and the bottom row
indicates the test set.

Discussion
Instead of using a single feature extraction scheme for all
examples, we proposed a strategy of training models for fea-
ture extraction using prior expectation of regions of impor-
tance in an instrument’s timbre. We designed this approach
with the goal of extensibility to multilabel classification of
polyphonic mixtures.

We will extend this approach to multilabel classification
in the following manner. Using only single instrument train-
ing data, we extract partials, train our signatures, extract am-
plitude features from the training data, and train and save
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a binary classifier for each instrument. Given a mixture to
label, we will extract the spectral peaks that exceed our
frequency-dependent threshold. For each instrument, we hy-
pothesize each peak in the mixture as f0, calculate the win-
dows based on the ratios of the spectral signature, and extract
amplitude features in those locations. For each hypothesized
instrument and f0 value, we will query the relevant binary
classifier for a probability of the presence of the instrument
in the signal. Repeating the process for all instrument, we
return the set of labels of the most probable instruments.

Here, we have demonstrated this approach over large
datasets of single instrument tones containing multiple ar-
ticulations, performers, and dynamic levels. Although the
MFCC feature set outperformed our approach, MFCCs are
not very robust in the presence of noise and cannot be used
as features in polyphonic mixtures without a prior attempt at
source separation (Giannoulis and Klapuri 2013), which is a
difficult problem in itself. Our approach, however, attempts
spectral separation of the sources given known regions of
spectral prominence for each instrument. In this work we
demonstrated the validity of a feature extraction approach
that relies on prior expectations of generalization of an in-
strument’s unique timbre.

Future Work
In preparation to extend this approach to multilabel clas-
sification, we will first explore taking other measurements
from our signature windows for use as features, experiment-
ing with temporal dependencies, and tuning the number and
size of our spectral clusters.

In this work, we allowed the standard deviations of the
clusters to grow unbounded. A large standard deviation re-
sults in a feature window spanning multiple musical semi-
tones. This is not ideal when extending this technique to
polyphonic mixtures as this increases likelihood of source
interference. In future work we will modify our k-means im-
plementation to bound the width of the standard deviation to
a fixed maximum. Clusters that exceed this standard devia-
tion will be split into two different clusters, allowing a vari-
able number of clusters to be learned for each instrumental
signature.

Presently, we use a fixed number of clusters and use all
learned clusters as locations for feature extraction. As illus-
trated in Figure 3, we also learn the density information for
each cluster. In bounding the standard deviation, but allow-
ing a variable number clusters, we will prune the cluster set
using only the clusters with the highest densities as feature
extraction locations. Finally, we will test statistical similar-
ity between signatures learned by different instruments to
identify and prioritize cluster locations particularly unique
to a specific instrument.
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