
Factored Performance Functions with Structural
Representation in Continuous Time Bayesian Networks

Liessman Sturlaugson and John W. Sheppard
Computer Science Department

Montana State University
Bozeman, MT 59717

{liessman.sturlaugson, john.sheppard}@cs.montana.edu

Abstract
The continuous time Bayesian network (CTBN) is a
probabilistic graphical model that enables reasoning
about complex, interdependent, and continuous-time
subsystems. The model uses nodes to denote subsys-
tems and arcs to denote conditional dependence. This
dependence manifests in how the dynamics of a sub-
system change based on the current states of its parents
in the network. While the original CTBN definition al-
lows users to specify the dynamics of how the system
evolves, users might also want to place value expres-
sions over the dynamics of the model in the form of per-
formance functions. We formalize these performance
functions for the CTBN and show how they can be fac-
tored in the same way as the network, allowing what
we argue is a more intuitive and explicit representation.
For cases in which a performance function must involve
multiple nodes, we show how to augment the structure
of the CTBN to account for the performance interaction
while maintaining the factorization of a single perfor-
mance function for each node.

Introduction
Many problems in artificial intelligence require reasoning
about complex systems. One important and difficult type
of system is one that changes through time. Temporal mod-
eling and reasoning present additional challenges in repre-
senting the system’s dynamics while efficiently and accu-
rately inferring the system’s behavior through time. Con-
tinuous time Bayesian networks (CTBNs) were introduced
by Nodelman, Shelton, and Koller (2002) as a temporal
model capable of representing and reasoning about finite-
and discrete-state systems without committing to a uniform
discretization of time, as found with dynamic Bayesian net-
works (Murphy 2002).

Since then, the CTBN has found use in a wide vari-
ety of applications. For example, they have been used
for inferring users’ presence, activity, and availability over
time (Nodelman and Horvitz 2003); robot monitoring (Ng,
Pfeffer, and Dearden 2005); modeling server farm fail-
ures (Herbrich, Graepel, and Murphy 2007); modeling so-
cial network dynamics (Fan and Shelton 2009); model-
ing sensor networks (Shi, Tang, and You 2010); building

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intrusion detection systems (Xu and Shelton 2008; 2010;
Xu 2010); predicting the trajectory of moving objects (Qiao
et al. 2010); diagnosing cardiogenic heart failure and antic-
ipating its likely evolution (Gatti, Luciani, and Stella 2011;
Gatti 2011), and reasoning about complex reliability models
(Cao 2011; Sturlaugson and Sheppard 2014).

While most of these applications are concerned with the
most probable state of the system at certain times, we can
see the advantage of moving beyond this and also estimat-
ing user-specified values on how the system behaves. Users
may have complex valuations on how and when failures oc-
cur, intrusions are detected, diagnoses are made, etc. We
introduce factored performance functions into the CTBN to
support this idea.

Background
Before we describe these factored performance functions,
we must formally define the CTBN, discuss the representa-
tion of the instantiations of the network, and review prior
work in CTBN inference that allows a user to estimate arbi-
trary functions over the behavior of the network.

Continuous Time Bayesian Networks
The CTBN can be thought of as a factored Markov pro-
cess. The Markov processes upon which CTBNs are built
are each finite, discrete-state, continuous-time, and homo-
geneous with respect to time. As we will see, they are non-
homogeneous with respect to states, which allows interde-
pendence between the Markov processes and which yields
conditional Markov processes. Another way of looking at
the CTBN is to view it as modeling a complete system, in
which each conditional Markov process is modeling a sub-
system. Thus, we use “conditional Markov process” and
“subsystem” interchangeably in this paper.

Formally, let X be a set of Markov processes
{X1, X2, . . . , Xn}. A continuous time Bayesian network
N over X consists of two components. The first compo-
nent is an initial distribution denoted P 0

X over X that can
be specified as a Bayesian network. This distribution P 0

X
is only used for determining the initial state of the process
(the initial state of each Xi). The second component is a
continuous-time transition model that describes the evolu-
tion of the process from its initial distribution. The transition
model is specified as:

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

512

Figure 1: Example CTBN.

• A directed graph G in which the processes X ∈ X map to
the nodes of G,

• A set of conditional intensity matrices (CIMs) AX|Pa(X)

associated with X ∈ X for each possible state instantia-
tion of Pa(X), which denotes the parents of X in G.
Each intensity matrix AX|Pa(X) is constrained such that

ai,j ≥ 0 (i 6= j) and ai,i ≤ 0. The entry ai,j (i 6= j) gives
the transition intensity of node X transitioning from state i
to state j. The entry ai,i controls the amount of time that
X spends in state xi before transitioning, called the sojourn
time. The sojourn times are exponentially distributed with
parameter ai,i.

Noting that the diagonal entries are non-positive, the
probability density function of X to remain in state xi is
given by |ai,i| exp(ai,it), with t being the amount of time
spent in state xi. In other words, the probability of remain-
ing in state xi decreases exponentially with respect to time.
The expected sojourn time for state xi is 1/ |ai,i|. Each row
is constrained to sum to zero,

∑
j ai,j = 0 ∀ i, meaning that

the transition probabilities from state xi can be calculated as
ai,j/ |ai,i| ∀ j, i 6= j. Furthermore, for conditional intensity
matrices, the expected sojourn times and transition probabil-
ities of X can change depending on the states of Pa(X).

Figure 1 shows the example CTBN from Nodelman, Shel-
ton, and Koller (2002) for modeling the effects of a drug on
a patient. Here the nodes Pain and Drowsy will be abbre-
viated as P and D, respectively. Each node has two states:
{in-pain, pain-free} for P and {drowsy, non-drowsy} for D.

Although the CTBN’s name attempts to draw parallels be-
tween itself and Bayesian networks (BNs), the two models
are fundamentally different. The nodes of a BN are con-
ditional random variables, while the nodes of a CTBN are
conditional Markov processes. Even the temporal version of
a BN, the dynamic Bayesian network, still only represents
state transition probabilities between discrete time-slices,
whereas the CTBN encodes both state transitions and ex-
ponentially distributed sojourn times between transitions.

The graph G of the CTBN and the associated conditional
intensity matrices define the behavior of the system as a set
of interdependent subsystems. In reasoning about the sys-
tem, we want to move from general defined behavior of the
system to specific instances and reason about how the spe-
cific instances are evolving through time. A description of a
specific instance of the system is called a trajectory and can
be thought of as a data structure for recording the state tran-

sitions and their corresponding transition times. Trajectories
are used for representing partial observations about the sys-
tem, which can be used as evidence, and they are also used as
the samples for sample-based CTBN inference algorithms.

Trajectories
Formally, let Xt be the probability distribution of the states
of X at time t, and let ts and te be the start time and end
time of an observation, respectively, such that ts < te. Let
x be a particular state of X . The tuple 〈ts, te, x〉 represents
an observation of the network such that Xt = x for ts ≤
t < te. The tuple could be read as “from time ts to time
te, the state of X was observed to be x.” A trajectory of X ,
denoted σ[X], is defined as a sequence of observations of
X . If ts = 0 for the first observation and if, for every pair of
adjacent observations 〈〈ts, te, x〉, 〈t′s, t′e, x′〉〉 in σ[X], te =
t′s, and x 6= x′, then σ[X] is called a complete trajectory of
X . Otherwise, σ[X] is called a partial trajectory of X . A
complete trajectory has no “gaps” in the observation. That
is, the state of X is known from t = 0 until t = te of the
last observation. The full set of trajectories σ[X1]∪σ[X2]∪
· · ·∪σ[Xn] over all of the nodes of a CTBN will be denoted
as σ.

Inference
Exact inference in CTBNs can be done by combining all of
the conditional intensity matrices into a single, full joint in-
tensity matrix in which the states are the Cartesian product
of the states of all of the nodes (Nodelman, Shelton, and
Koller 2002). The forward-backward algorithm for Markov
processes is then performed on this single matrix. Be-
cause the size of this matrix is exponential in the number
of nodes, this process is infeasible for most real-world net-
works. Instead, we must rely on approximation algorithms
for all but the simplest networks. Examples developed for
CTBNs include expectation propagation (Nodelman, Koller,
and Shelton 2005), importance sampling (Fan, Xu, and Shel-
ton 2010), Gibbs sampling (El-Hay, Friedman, and Kupfer-
man 2008), and mean-field variational methods (Cohn et al.
2009).

As mentioned earlier, sometimes the user may not be in-
terested in querying P (Xt|e) specifically, i.e., the expected
behavior of the network. Instead, the user may place differ-
ent values on particular behaviors of the network and want
to calculate the expected value of a given instantiation of the
system. In other words, the user has a function f over the be-
havior the network and wants to compute the expected value
of f given the evidence,E(f |e). This query is different from
(although related to) the calculation of P (Xt|e). While G
may show X and Y to be independent in their behavior,
there may be a dependence between X and Y in f because
of how the user values their mutual behavior. Whereas the
CTBN allows us to factor a complex system X into interde-
pendent subsystems in order to tractably estimate P (Xt|e),
we would like to factor f into a set of functions such that we
can also tractably estimate E(f |e).

Importance sampling is able to estimate E(f |e) for arbi-
trary functions f defined over complete trajectories of the
system. This algorithm serves as our underlying method as

513

we seek to factor f . We now briefly review importance sam-
pling before turning to our specific contributions.

Importance Sampling
The importance sampling algorithm (Fan, Xu, and Shel-
ton 2010), a particle-based approximate inference algorithm,
takes a partial trajectory e as evidence and samples a pro-
posal distribution P ′ that conforms to the evidence to fill in
the unobserved intervals to generate a complete trajectory.
Because the sampler draws from P ′ to force the sampling
to conform to the evidence, each sample is weighted by the
likelihood of the evidence, calculated as

w(σ) =
P (σ, e)

P ′(σ)
,

with the cumulative weight as

W =
∑
σ∈S

w(σ).

From a set of i.i.d. samples S, we can approximate the con-
ditional expectation of a function f given the evidence e as:

Ê(f |e) =
1

W

∑
σ∈S

w(σ)f(σ)

Factored Performance Functions
A performance function measures user-specified
cost/reward values over the behavior of the system.
Thus, this function f can be used to represent a “global”
performance function defined over the behavior of the
whole system all at once. But this means that f must be
passed the entire sample σ. While this allows f to be
fully general and discern arbitrary behaviors of the system,
this also means that the evaluation of f must be specially
implemented for each function and for each network.
Because the state-space of σ is exponential in the number
of conditional Markov processes, simply enumerating f
over all the states of network is infeasible. A representation
such as a lookup table over even just the relevant states
of the network would also be difficult for a user to define
by hand and subsequently difficult for others to interpret.
We would like to find a way to factor f to make it more
manageable and understandable while retaining as much
of its expressive power as possible. To do this, we move
into the novel contributions of this paper, introducing
performance functions local to each node and showing how
to incorporate dependence in the performance functions by
augmenting the structure of the CTBN with what we call
performance synergy nodes.

Whereas the global performance function f places a value
on the behavior of the network as a whole, we want to factor
f according to the nodes in the network by assigning each
node X its own performance function fX . Each fX is re-
sponsible for the value placed on the behavior of a single
node in the network. Furthermore, f is also defined over
all the transitions of a single node. While this may be use-
ful in some cases, the value we place on certain states of a
node will not be dependent on the state of the node several

states ago. Therefore, we also factor each performance func-
tion with respect to time. Instead of defining fX(σ) over a
full sample σ, we define fX(ts, te, Xt) to be over the obser-
vations 〈ts, te, Xt〉 in σ[X]. The performance of the entire
network can now be factored as

f(σ) =
∑
X∈X

 ∑
〈ts,te,Xts 〉∈σ[X]

fX(ts, te, Xts)

 .

The factored performance function fX is able to represent
such things as fixed and variable costs over the states of
X . For example, consider a performance function for some
node X with states x0 and x1. Let ∆t = te − ts. Then
suppose

fX(ts, te, Xts) =

{
c1 + c2∆t if Xts = x0
0 if Xts = x1

,

in which c1 and c2 are two constants representing dollars and
dollars per hour, respectively, and the time is in hours. This
performance function means that the system incurs a fixed
cost of c1 every time it enters state x0 and accrues a variable
cost of c2 for every hour it remains in state x0.

Each performance function is now responsible for calcu-
lating the performance of a single node in the network. The
factorization of f also allows for greater flexibility in gener-
ating the set of samples D. If the performance function f is
defined (non-zero) for only a subset of nodes X′ ⊂ X, the
sampling algorithm only needs to record⋃

X∈X′

σ[X]

for each sample σ, instead of every transition of every node
in X.

We can further generalize performance functions by not-
ing that a network is not restricted to a single performance
function f . We could define an entire family of performance
functions F = {f1, f2, . . . , fm} for a single CTBN. Each
performance function gives one “view” of the network. For
example, we could define F to represent competing metrics,
such as quantity vs. quality, and measure the trade-offs in-
curred by the current instance of the system. Moreover, we
can evaluate F with a single set of samples S, regardless of
the size of F .

Performance Synergy Nodes
The factorization of f into a single fX for each node of the
CTBN could be too restrictive for encoding the desired per-
formance function. We now show how to augment the struc-
ture of the CTBN to make the performance functions more
expressive while still preserving the factorization of f onto
single nodes. First, we show how the performance function
could be too restricted. Suppose that the performance func-
tions for P and D from Figure 1 is defined as:

fP (ts, te, Pts) =

{
2∆t if Pts = pain-free
0 if Pts = in-pain

,

fD(te, ts, Dt) =

{
∆t if Dts = non-drowsy
0 if Dts = drowsy

.

514

In other words, we have f = 3∆twhen the Pain and Drowsy
subsystems are in states pain-free and non-drowsy simulta-
neously. But suppose a user values being non-drowsy and
pain-free at the same time twice as much as the sum of the
values of being non-drowsy and pain-free separately, and the
user wants the following performance function defined over
P and D together to be:

f{P,D}(ts, te, {Pts , Dts}) =
6∆t if Pts = pain-free ∧Dts = non-drowsy
2∆t if Pts = pain-free ∧Dts = drowsy
∆t if Pts = in-pain ∧Dts = non-drowsy
0 if Pts = in-pain ∧Dts = drowsy

In this case, f = 6∆t instead of 3∆t when pain-free and
non-drowsy. The performance function fP∪D does not fac-
tor into fP and fD as before. This introduces the concept of
performance synergy between nodes. Formally, we define
performance synergy to be the case in which, for two nodes
X and Y , their joint performance function f{X,Y } cannot be
factored into fX and fY such that, for all x ∈ X and y ∈ Y ,

f{X,Y }({x, y}) = fX(x) + fY (y).

Suppose, on the other hand, that f{X,Y } is able to be fac-
tored partially into fX and fY such that the above equality
holds for at least one state x ∈ X and one state y ∈ Y . Then
all other states x′ ∈ X and y′ ∈ Y for which the equality
does not hold exhibit either positive or negative performance
synergy.

Individual states x ∈ X and y ∈ Y exhibit positive per-
formance synergy if and only if

f{X,Y }({x, y}) > fX(x) + fY (y).

Likewise, individual states x ∈ X and y ∈ Y exhibit nega-
tive performance synergy if and only if

fX∪Y (x ∪ y) < fX(x) + fY (y).

Note that the synergy introduced here is not in terms of prob-
abilities, as in additive and product synergy of qualitative
probabilistic networks (Druzdzel and Henrion 1993), but in
terms of performance functions. Performance synergy im-
plies that the performance of multiple nodes is dependent.
Synergy occurs at the state level, and nodes can exhibit both
positive and negative synergy at the same time. To account
for synergy in the performance functions while maintaining
the factorization of f , we add performance synergy nodes
into the network. A synergy node is set as the child of all
nodes contributing to the synergy. For the P and D synergy
example, we add a synergy node PD+ (denoting positive
synergy) as a child of P and D. The augmented section of
the network is shown in Figure 2, and the conditional inten-
sity matrices for PD+ are given in Table 1. The combina-
tion of∞ and 0 force the synergy node to transition imme-
diately to the active (inactive) state and remain there for as
long as the logical expression is satisfied (unsatisfied). In
practice,∞ is simulated by a sufficiently large value that al-
lows near-instantaneous transitions, as compared to the other
transitions times. Finally, we set the performance function
of PD+ as

APD+|Pts=pain-free,Dts=non-drowsy

inactive active
inactive −∞ ∞
active 0 0
APD+|Pts=pain-free,Dts=drowsy

APD+|Pts=in-pain,Dts=non-drowsy

APD+|Pts=in-pain,Dts=drowsy

inactive active
inactive 0 0
active ∞ −∞

Table 1: Conditional intensity matrices of PD+.

Figure 2: Positive synergy node for pain-free and non-
drowsy.

fPD+(ts, te, PD
+
ts) =

{
3∆t if PD+

ts = active
0 if PD+

ts = inactive

Borrowing the idea from (Cao 2011), the CIMs of PD+

act as a logical expression over the states of the parents
P and D. Whenever P is pain-free and D is non-drowsy,
the synergy node PD+ immediately switches to active and
yields an additional 3∆t in performance. This yields the
desired performance function with the factorization as f =
fP + fD + fPD+ . Thus, f is still factored onto individ-
ual nodes. Furthermore, the synergy node PD+ provides
a graphical representation of the performance function. We
can see at a glance in Figure 2 that the performance functions
of P and D are dependent. Furthermore, we can define the
synergy for pain-free and non-drowsy as its own value, in-
stead of having to define it in the function f{P,D}, in which
the synergistic effect of pain-free and non-drowsy is less ob-
vious.

Experiments
We demonstrate the use of the synergy node concept on a
real-world reliability model adapted from (Cao 2011) that
describes the uptime of a vehicle system. The model, shown
in Figure 3, consists of three subsystems: chassis (CH),
powertrain (PT), and electrical (EL). The chassis is com-
prised of four components, each having their own failure and
repair rates: suspension (SU), brakes (BR), wheels and tires
(WT), and axles (AX). Likewise, the powertrain subsystem is
comprised of three subsystems: cooling (CO), engine (EG),
and transmission (TR).

515

Figure 3: CTBN for fleet of vehicles with synergy node.

Figure 4: Performance estimates of the brute force and syn-
ergy node approaches.

For our experiments, we have a fleet of vehicles. Each
vehicle model can incorporate its own evidence, e.g., repair
and usage history. We want to calculate a synergistic mea-
sure of performance across the entire fleet, represented in the
node V +. We compare the use of the synergy node with the
brute force approach, i.e., of evaluating a performance func-
tion defined over all of the Vehicle nodes at once. Therefore,
the network for the brute force approach does not include
the V + node. For the synergy node approach, the V + node
becomes active when all vehicles are running, otherwise it
remains inactive. Suppose that the performance function for
V + is defined as

fV +(ts, te, V
+
ts) =

{
∆t if V +

ts = active ∧∆t ≥ 40

0 if otherwise

In other words, additional performance is gained when all of
the vehicles are running simultaneously for at least 40 hours.
The performance gained is proportional to the amount of
time that all of the vehicles are running until the next repair.

We varied the fleet size from 2 to 16 vehicles and queried
the expected performance over 2000 hours of operation
starting with all vehicles in running condition. We simu-
lated ∞ in the CIMs of V + as 1010. We used importance
sampling to generate 10,000 samples for each fleet size and
for the brute force and synergy node approaches. We com-

Figure 5: Average number of transitions per sample of the
brute force and synergy node approaches.

Figure 6: Average number of draws from an exponential or
multinomial distribution per sample of the brute force and
synergy node approaches.

pared accuracy of the performance estimate, average number
of transitions, and average number of times the sampler must
draw from an exponential or multinomial distribution. Be-
cause we only needed to save the trajectories for the Vehicle
nodes, the average number of transitions per sample dictates
how many times the performance function must be evalu-
ated. Because each sample is a series of sojourn times and
transitions, the number of times the sampler draws from an
exponential or multinomial distribution is the driving factor
in the complexity of creating the samples.

The performance estimates of the brute force approach
and the synergy node approach is shown in Figure 4. As
the graph shows, the synergy node is able to return an esti-
mate consistent with the brute force approach. The average
relative error between the two approaches is less than 1%.

The average number of transitions per sample of the brute
force approach and the synergy node approach is shown in
Figure 5. Note that we did not record transitions for all of
the nodes, only the nodes contributing to the performance
function. In other words, the brute force approach used
σ = ∪iσ[Vehiclei] for fleet size i, while the synergy node
approach used σ = σ[V +]. As the graph shows, the num-
ber of transitions increases linearly for the brute force ap-
proach, as expected. For the synergy node approach, on the

516

other hand, the curve behaves logarithmically. This is be-
cause, as the number of vehicles increases, the proportion of
time that all are running simultaneously decreases. There-
fore, the number of transitions between the states of the syn-
ergy node decreases. This also means that the sample path
for the synergy node takes fewer evaluations to estimate the
performance.

Finally, the average number of times the sampler must
draw from a distribution is shown in Figure 6. As the graph
shows, the addition of the synergy node does increase the
complexity of generating each sample; however, the com-
plexity is not greatly increased, as the curve suggests only a
small, constant-factor increase.

Conclusions
In this paper, we formalize factored performance functions
for the CTBN. Existing CTBN inference algorithms sup-
port estimating arbitrary functions over the behavior of the
network, but by factoring these functions onto the nodes
of the network, we can achieve a representation of perfor-
mance that we argue is more easily understood and imple-
mented. Furthermore, to support more complex interactions
in which the performance function cannot be factored in a
straightforward manner, we show how to maintain a factor-
ization by augmenting the structure of the CTBN with syn-
ergy nodes. We argue that such complex performance infor-
mation is more easily understood in terms of the synergistic
relationship between nodes. We show a real-world example
in which the synergy node is able to capture the performance
evaluation between multiple nodes without a significant in-
crease in complexity and without degrading accuracy.

As future work, we intend to demonstrate other scenarios
that use synergy nodes, as well as families of performance
functions, on a wider variety of real-world networks.

References
Cao, D. 2011. Novel models and algorithms for systems
reliability modeling and optimization. Ph.D. Dissertation,
Wayne State University.
Cohn, I.; El-Hay, T.; Friedman, N.; and Kupferman, R.
2009. Mean field variational approximation for continuous-
time Bayesian networks. In Proceedings of the Twenty-Fifth
Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-09), 91–100. Corvallis, Oregon: AUAI
Press.
Druzdzel, M., and Henrion, M. 1993. Efficient reasoning in
qualitative probabilistic networks. In In Proceedings of the
11th National Conference on Artificial Intelligence (AAAI–
93, 548–553.
El-Hay, T.; Friedman, N.; and Kupferman, R. 2008. Gibbs
sampling in factorized continuous-time Markov processes.
In Proceedings of the Twenty-Fourth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI-
08), 169–178. Corvallis, Oregon: AUAI Press.
Fan, Y., and Shelton, C. 2009. Learning continuous-time
social network dynamics. In Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence,
UAI ’09, 161–168.

Fan, Y.; Xu, J.; and Shelton, C. R. 2010. Importance sam-
pling for continuous time Bayesian networks. The Journal
of Machine Learning Research 99:2115–2140.
Gatti, E.; Luciani, D.; and Stella, F. 2011. A continuous
time Bayesian network model for cardiogenic heart failure.
Flexible Services and Manufacturing Journal 1–20.
Gatti, E. 2011. Graphical models for continuous time in-
ference and decision making. Ph.D. Dissertation, Università
degli Studi di Milano-Bicocca.
Herbrich, R.; Graepel, T.; and Murphy, B. 2007. Structure
from failure. In Proceedings of the 2nd USENIX workshop
on Tackling computer systems problems with machine learn-
ing techniques, 1–6. USENIX Association.
Murphy, K. P. 2002. Dynamic Bayesian networks: repre-
sentation, inference and learning. Ph.D. Dissertation, Uni-
versity of California.
Ng, B.; Pfeffer, A.; and Dearden, R. 2005. Continuous
time particle filtering. In International Joint Conference on
Artificial Intelligence, volume 19, 1360.
Nodelman, U., and Horvitz, E. 2003. Continuous time
Bayesian networks for inferring users’ presence and activ-
ities with extensions for modeling and evaluation. Technical
report.
Nodelman, U.; Koller, D.; and Shelton, C. 2005. Expec-
tation propagation for continuous time Bayesian networks.
In Proceedings of the Twenty-First Conference Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI-05),
431–440. Arlington, Virginia: AUAI Press.
Nodelman, U.; Shelton, C.; and Koller, D. 2002. Continuous
time Bayesian networks. In Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence (UAI),
378–387.
Qiao, S.; Tang, C.; Jin, H.; Long, T.; Dai, S.; Ku, Y.; and
Chau, M. 2010. PutMode: prediction of uncertain tra-
jectories in moving objects databases. Applied Intelligence
33(3):370–386.
Shi, D.; Tang, X.; and You, J. 2010. An intelligent sys-
tem based on adaptive CTBN for uncertainty reasoning in
sensor networks. Intelligent Automation & Soft Computing
16(3):337–351.
Sturlaugson, L., and Sheppard, J. W. 2014. Sensitivity anal-
ysis of continuous time Bayesian network reliability models.
Submitted to SIAM/ASA Journal on Uncertainty Quantifica-
tion.
Xu, J., and Shelton, C. 2008. Continuous Time Bayesian
Networks for Host Level Network Intrusion Detection. In
Daelemans, W.; Goethals, B.; and Morik, K., eds., Machine
Learning and Knowledge Discovery in Databases, volume
5212 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg. 613–627.
Xu, J., and Shelton, C. 2010. Intrusion detection us-
ing continuous time Bayesian networks. J. Artif. Int. Res.
39(1):745–774.
Xu, J. 2010. A Continuous Time Bayesian Network Ap-
proach for Intrusion Detection. Ph.D. Dissertation, Univer-
sity of California.

517

