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Abstract

Unique areas in the Earth’s atmosphere may be influenced by
forces that differ subtly from area to area. Using an exten-
sive set of neural networks for assessing atmospheric condi-
tions introduces a situation where many (perhaps millions)
networks must be trained and maintained. We explore the ex-
tent to which deep learning using Stacked Autoencoders can
be generalized across a spatial range of the atmosphere as a
method of expanding the applicability of a network trained in
a specific area of the atmosphere to the areas that surround it.
As a prelude to exploring techniques for transfer learning, we
demonstrate that a Stacked Autoencoder is capable of cap-
turing some knowledge universal to this situation and make
approximations of the functions that determine wind vector
components.

Introduction

From a human perspective, the major factors that influence
weather conditions in one area of the Earth’s atmosphere and
those that influence weather conditions in another seem to be
the same. However, considering that the atmosphere is fluid,
that conditions vary in time, that we have no access to the
initial conditions of this fluid, and that we cannot enumerate
the myriad forces that compose these factors, prediction is
squarely in the domain of machine learning. If we assume
that consistency holds between disparate locations around
the Earth, transfer learning can be used to reduce the com-
plexity of whole-Earth models.

In transfer learning, a machine learning system uses some
information that has been learned in one setting to im-
prove generalization in another setting (Goodfellow, Ben-
gio, and Courville 2016). Here we are considering separate,
discretized areas of the Earth’s atmosphere to be these dis-
parate settings. Some consistencies that exist among these
settings are that they are all composed of atmospheric gases,
they are influenced by their own conditions and by the con-
ditions of the areas that immediately surround them, and that
this is not an entirely closed system. The differences are in
that they have differing initial conditions and that they are
affected by external forces in different ways. For example,
one area of the atmosphere may be over mountainous land
and another may be over water, thus radically changing the
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associated weather dynamics. Further, one area may receive
more solar radiation than another during the day.

Given such variation, one may be inclined to think that
each area of the Earth would need to train its own model,
resulting in a whole-Earth system that would be required to
maintain millions of models (depending on the spatial reso-
lution of each model). We seek a method whereby a fraction
of these models would be required. In this paper we discuss
experiments testing the generalization ability of representa-
tions learned by Artificial Neural Networks (ANN) over a
primary area of the Earth to areas adjacent to this primary
area. We demonstrate that the functions learned to approxi-
mate wind vector components using radiometric data can be
used to make determinations about the general trend of the
wind vectors in these peripheral areas.

In the next section we will provide background on the
problem domain. Next we will discuss the data that we are
using and motivation how this study will support research
into transfer learning. We will then discuss our approach.
Our experimental design, execution, and results will then be
explained. We will then discuss the broader implications of
our results. Finally, we discuss our conclusions and the next
steps for this research.

Background
Related Work

Stacked Autoencoders: In this work we use Stacked Au-
toencoders (Ackley, Hinton, and Sejnowski 1985). Autoen-
coders are used to create compact, reconstructible represen-
tations of data at a lower dimensionality. These representa-
tions can be stacked, using the outputs of hidden layers of
one Autoencoder to encode deeper levels in a process called
Unsupervised Pre-Training (UPT). In this way, we can cap-
ture hierarchical internal representations of (theoretically)
the most important features of the data (Erhan et al. 2010).

Deep Learning in Weather Parameter Prediction: Re-
search using deep neural networks for weather forecasting
has been increasing over the past few years. This is partially
in response to the advancement in training efficiency that
was achieved by Hinton, ef al. (2006). This is motivated by
how important weather prediction is becoming to many in-
dustries. As a domain-specific example, Singh (2016) used



deep networks to determine how much wind energy was ex-
pected given the wind speed, humidity, and generation time.

Earlier, Dalto, Matusko, and Vasak (2015) used deep net-
works for ultra-short-term wind forecasting. Their study
demonstrated that deep neural networks benefit from an in-
telligent reduction in the number of input variables, allow-
ing network training to complete in a reasonable time. They
used Partial Mutual Information-based Input Variable Selec-
tion, which is a technique for determining how much redun-
dancy is captured in the input variables, and selected vari-
ables that were most separate from each other. Similar to our
approach, they used separate networks for orthogonal wind
vector components, not considering the vertical dimension at
all. They used pre-trained Stacked Denoising Autoencoders
as their network model.

Narejo and Pasero (2017) performed “meteonowcasting,”
(i.e., predicting conditions of the present or very near fu-
ture) using multilayer pre-trained Restricted Boltzmann Ma-
chines. They used a method based on Mutual Information
to determine the relevancy of atmospheric parameters at the
prior time step to the current or future prediction of these
parameters. The previous temperature and time of day were
found to be quite useful for determining the temperature in
the current time or near future. Each of these atmospheric
parameters was treated separately, and the collection of pa-
rameters and topology of the networks used differed with
each parameter they were trying to predict.

Most recently, the usefulness of Stacked Autoencoders
with UPT for wind vector determination from radiometric
data was demonstrated by McAllister and Sheppard (2017).
The focus of this work was on demonstrating that UPT could
be deployed efficiently in this problem space, thereby filling
a gap in the capabilities of Numerical Weather Prediction
(NWP) systems that work off of radiometric data. Their re-
sults showed that Stacked Autoencoders could be used to
estimate wind vectors based on this data to a high level of
accuracy and much more efficiently than standard NWP sys-
tems. The results in this paper extend this work, demonstrat-
ing the extent to which trained networks can generalize to
nearby regions in space.

Transfer Learning: Transfer learning is the act of en-
abling a learner to use information from a model that was
trained in one domain as a way to bootstrap training in an-
other, related domain (Pan and Yang 2010; Weiss, Khosh-
goftaar, and Wang 2016). One of the motivations for transfer
learning is that data may not be available for a domain for
which one wishes to make predictions. So the idea is to train
on a domain in which there is plentiful data that is somehow
related to the domain of interest. We assert that another mo-
tivation for using transfer learning is when there exists an
extremely large number of domains that differ in subtle but
important ways. Such a set of domains could be manifest as
many geographic points on the globe that each have different
forces influencing the conditions in their respective areas.
Hu, Zhang, and Zhou (2016) used transfer learning for
short-term wind speed prediction. They were addressing the
problem where data for wind speeds over new wind farms
was unavailable. The authors trained deep Autoencoders in

areas that varied with respect to terrain, weather, and topog-
raphy and still were able to produce models that learned ab-
stractions that predicted wind speed in new farm areas effec-
tively.

Problem Strategy

In our experiments, we attempt to determine current wind
vector values using only radiometric data. Radiometers are
unable to measure wind directly, but we assert that radio-
metric readings still provide information about wind vec-
tors that can be used to train associated predictive models.
The wind vector data we use comes from a separate wind-
oriented model over the same region at the same spatial and
temporal resolution as the radiometric data we use for train-
ing. This wind vector data is used as ground truth for our
models.

In predicting wind vectors, we want to know the extent to
which the knowledge encoded in a neural network trained in
one geographical area can be leveraged in making accurate
predictions about conditions in another area. In each loca-
tion around the Earth, weather conditions are all described
by the same number and type of dimensions. This means
that we are ensured of the ability to describe different lo-
cations using the same parameters. This is why we hypoth-
esize the ability to transfer knowledge geographically; the
consistency in parameters for each area allows us to feed the
trained model with data from different regions.

Data

As was done in McAllister and Sheppard (2017) we used
a dataset created by Zhang and Gasiewski (2016) using an
NWP simulator called the Weather Research and Forecast-
ing Model (WRF). This dataset was created to support devel-
oping models from higher spatial and temporal resolutions
than are currently available. The simulation used measure-
ments of the East Coast of the United States during 24 hours
of Hurricane Sandy in 2012. Specifically, the data is within
an area bounded in the southwest at 26.4902°N, 81.6064°E
and in the northeast at 41.2117°N, 60.3809°E (Figure 1).
Actual radiometric and wind measurements were taken at a
far lower spatial and temporal resolution during this storm.
WREF was used to interpolate measurements between these
basis measurements so the simulated dataset has a spatial
resolution of Skm and a temporal resolution of 15 minutes.

For our study, we focused on the four points shown in
Figure 1. Location 1 is an area that was in the eye of the
storm for the duration of the simulation. Location 2 was in an
area that was relatively unaffected. Strong rain bands were
occurring in Location 3, and Location 4 had already been hit
by the storm. Table 1 shows the latitudes and longitudes of
these locations.

The data was provided in the form of point clouds, which
are collections of points that exist in some spatial coordi-
nate system. To make deep learning possible, we needed
to bin these points spatially into discrete cells so that each
data point in one cell would be representative of the con-
ditions in that cell at that time. We used a Discrete Global
Gridding System (DGGS) as the spatial binning mechanism
(Sahr, White, and Kimerling 2003). Each data point in the
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Figure 1: The barometric pressure variation across the datas-
pace.

Name Latitude | Longitude
Location 1 37.07 -73.79
Location 2 38.34 -62.63
Location 3 30.69 -75.65
Location 4 28.14 -64.49

Table 1: Latitude and longitude of the locations of interest
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Figure 2: The 21 3D DGGS Cell Lattice

point clouds was given a GIS Point designation on the globe,
which allowed the data to be discretized into the DGGS us-
ing spatial queries. Each DGGS cell has 15km resolution in
our model.

Radiometers are capable of obtaining vertical soundings
of the atmospheric parameters. Therefore, our simulation in-
cluded 60 vertical levels of readings, which we discretized
into 10 levels.

Approach
Cell Lattices

Figure 2 depicts our view of the space surrounding a given
center cell for which we want to predict the wind vector
components. This 21 cell lattice includes the 7 cells above

Figure 3: 7 Cells Representing One DGGS Level

the center cell, the 6 cells surrounding the center cell on the
same level, and the 7 cells below the center cell. When train-
ing, we used measurements for representative points from
all of these cells in the previous time slice (including wind
vector information), as well as the wind vector components
from the current time slice for the center cell as ground truth.
In a second experiment, we just use radiometric data (no
wind vectors) from the previous time slice.

The focus of this study is on determine whether we can
transfer the knowledge from a model trained on one DGGS
cell to a neighboring cell. This situation is depicted in Figure
3, which limits the process in one layer!. The idea is that we
have trained a network for cell 0 using the information cap-
tured from the cell O and its surrounding cells. We then shift
to a neighboring cell, such as cell 1 (in gray). For this cell,
we use the network trained for cell O together with the mea-
surements from the previous time slice in cells surrounding
cell 1 (outlined in bold). We repeat this process, determining
wind vector components in cells 2 through 6 as well.

We call the collection of all of these cells, along with their
data, the super lattice for cell 0. Thus, the super lattice in-
cludes all of the cells surrounding cell 0 which we call the
center lattice, as well as all of the cells surrounding cells 1
through 6 as center cells. Working in the space of the super
lattice provides a sense of the ability of the network trained
for cell O to generalize to the neighboring cells, thus indicat-
ing a degree to which the trained network can be used in for
transfer learning.

Our deep learning architecture consists of a four-layer
Stacked Autoencoder, trained using greedy unsupervised
pre-training. We used the same architecture and parameters
discussed in McAllister and Sheppard (2017) in these exper-
iments.

Experiments
Overview
Our experiments proceeded using the following steps:
1. For a location of interest, instantiate the super lattice.

2. Pre-train the Stacked Autoencoder layers using the data
from the center lattice.

3. Fine-tune the Stacked Autoencoder using the data from
the center lattice.

"Even though we have limited the presentation to one layer,
the actual experiments considered the measurements over all three
layers surrounding the target cell.



Reading Source Reading Name
Temperature

Pressure

Cloud Density

Radiometry Measurements Rain Density

Ice Density

Snow Density
Graupel Density
Wind u (East/West)
Wind v (North/South)
Wind w (Up/Down)

Wind Speed

Table 2: Features for Each Data Point

4. Use the trained Stacked Autoencoder to predict the wind
vector components for each of the peripheral cells.

Super Lattice: Table 2 shows the data available for each
cell in the super lattice. The top section of the table
shows what measurements are available through passive mi-
crowave radiometry and the bottom portion shows what is
available using other instruments (dropsondes, direct obser-
vation, etc.). We conducted experiments for data that in-
cluded the wind vector components for the previous time
step for all of the cells in the super lattice, as well as data
that did not include these wind vector components. This ap-
proach allowed us to examine the ability of networks trained
using only radiometric data to predict wind vectors and to
assess the need for the wind vector data when moving to
neighboring cells. The data that included the wind vectors
from the previous time step had 231 dimensions and for the
data without wind vectors had 168 dimensions.

Pre-Training and Fine Tuning: Our Stacked Autoen-
coders had 150, 140, 130, and 120 neurons per hidden layer
when proceeding from input to output. As mentioned, the
input layer consisted of 231 or 168 neurons depending on
whether or not prior wind vectors were included. These lay-
ers were pre-trained using the training data from each cross
validation fold. Following pre-training, the Stacked Autoen-
coder layers were fine-tuned using backpropagation.

Each wind vector component (u, v, and w) was trained
with a separate network. We did this because, according to
Gasiewski (2017), these three components should be treated
as if they are independent. Preliminary experiments where
we combined all components into a single network sup-
ported this recommendation.

Generalization: Once we trained our networks on the
center lattice, we used each network to predict the current
values of the wind vectors using data from the 20 neighbor-
ing lattices, using the 20 peripheral cells as the center cells.
To the best of our knowledge, we are the only ones using
this data in this manner. Therefore, we are unable to compare
our results directly to similar methods reported in the litera-
ture. Therefore, our comparison focused more on the poten-
tial dependence on prior wind vector information in gener-
alizing predictive power in different geographic regions.

Results

We used the root mean squared error (RMSE) as our perfor-
mance measure, which was the same performance measure
used in (McAllister and Sheppard 2017). Table 3 shows the
average RMSE of predictions for all three vector compo-
nents for all cells surrounding the center cell (six surround-
ing azimuths above and below) for Location 3. This location
is interesting because it lies directly in the rain band area
south of the eye of the hurricane. Table 4 shows the coeffi-
cient of determination values (R?) for the six cells surround-
ing the center cell at the same elevation, where we calculated
R? as follows:

Zz(y7 - f1)2
Zz(yl —9)?

where f; is the ith predicted value from the neural net, y;
is the ¢th target (observed) value, and ¥ is the mean target
(observed) value over the range of prediction.

The results for the peripheral cell at azimuth 1 at the
medium elevation for Location 3 in Figure 1 are represented
in Figure 4. The first column of charts shows the results of
the predictions made for the data that included wind vectors
from the previous time slice, and those on the right did not
include wind vectors from the previous time slice. The first
row depicts predictions for the « component, the second for
the v component, and the third for the w component. This lo-
cation, azimuth, and relative elevation was chosen because
it was representative of the results obtained over the entire
dataspace of peripheral cells.

R*=1-

Discussion

For the locations studied, we found that our Stacked Au-
toencoders produced approximations of wind vectors that
generally mimic what was happening in reality. We inten-
tionally chose cells that were adjacent to the training cell
to allow us to deviate spatially from the training space in a
gradual manner. This is based on an assumption of local-
ity that we made with regard to atmospheric dynamics—
the forces that cause the atmosphere to behave the way it
does—differ more as one moves further away from the ini-
tial training point (Collins et al. 2013). If this is true then
the networks so trained will be unable to capture a general
model of the atmosphere when trained on any single area;
however, we may be able to identify conditions under which
generalization and transfer would be feasible.

The network trained on the center cell performed best at
the middle elevation. The conditions in the cells above and
below the center cell were different, but we were generally
able to approximate the shape of the functions of the wind
vectors in those areas. The average RMSE for the cells in the
layers above and below the level depicted in Figure 4 were
significantly higher than for the cells at the same level as the
cell upon which we trained the network. We may infer from
this that there is an altitude-based sensitivity to the predictive
capabilities to networks trained in this manner, though this
conclusion will have to be tested using much larger datasets.



u Component v Component w Component
Level | With Wind | Without Wind | With Wind | Without Wind | With Wind | Without Wind
High 97.345 65.290 16.704 7917 0.003 0.002
Mid 0.492 0.345 0.205 0.162 0.001 0.001
Low 55.841 53.823 4.600 1.369 0.005 0.003
Table 3: Average RMSE by Level for the Cells Around Location 3
Level | Azimuth u Component v Component w Component
With Wind | Without Wind | With Wind | Without Wind | With Wind | Without Wind
Azimuth 1 0.989 0.993 0.984 0.985 0.817 0.658
Azimuth 2 0.993 0.995 0.988 0.992 0.866 0.769
Mid Az@muth 3 0.989 0.992 0.984 0.988 0.823 0.736
Azimuth 4 0.992 0.993 0.986 0.991 0.853 0.797
Azimuth 5 0.993 0.995 0.987 0.991 0.726 0.627
Azimuth 6 0.989 0.993 0.982 0.983 0.810 0.729

Table 4: Coefficient of Determination (R?) of Deep Networks for the Mid Level Around Location 3

Conclusions and Future Work

Based on the results of these experiments, we believe that
we are able to apply deep learning with Stacked Autoen-
coders to capture important generalizations about the state
of the atmosphere with respect to radiometric data and wind
vectors. We have confirmed that these generalizations are
capable of producing approximations for wind vector values
in closely adjacent areas, thus suggesting the potential to be
able to apply deep learning in NWP without the need for
massive numbers of spatially distinct models. How versatile
and transferable these generalizations are will be a subject
of future research.

We intend to focus the next steps of our research on de-
termining what useful generalizations are captured when the
networks are trained on one area and applied in a variety of
novel situations. Among these situations will be locations
that are further apart and the same locations in a different
dataset depicting a different storm system (or no storm sys-
tem). This investigation will also include an analysis of the
effectiveness of pre-training on a primary region of interest
and fine-tuning on the target region of interest of interest.
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Figure 4: Predicted vs Actual plots for the peripheral cell at azimuth 1 at the middle elevation for Location 3. The magnitude of
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error over the range of the predictions is shown by the shaded region between the plots.




