
Biasing Exploration towards Positive Error for Efficient Reinforcement Learning

Adam Parker
Whiting School of Engineering

Johns Hopkins University
Baltimore, MD 21218, USA

John W. Sheppard
Gianforte School of Computing

Montana State University
Bozeman, MT 59717, USA

Abstract

Efficient exploration remains a critical challenge in Rein-
forcement Learning (RL), significantly affecting sample ef-
ficiency. This paper demonstrates that biasing exploration
towards state-action pairs with positive temporal difference
error speeds up convergence and, in some challenging en-
vironments, has the potential to result in an improved pol-
icy. We show that this Positive Error Bias (PEB) method
achieves statistically significant performance improvements
across various tasks and estimators. Empirical results demon-
strate PEB’s effectiveness in bandits, grid worlds, and clas-
sic control tasks with exact and approximate estimators. PEB
is particularly effective when unbiased exploration struggles
with policy discovery.

Introduction
Reinforcement Learning (RL) enables an agent to learn
behaviors by interacting with their environment, with ap-
plications ranging from game playing (Badia et al. 2020;
Van Hasselt, Guez, and Silver 2016; Mnih et al. 2013) and
robotics (Kober, Bagnell, and Peters 2013) to healthcare (Yu
et al. 2021). In RL, an environment provides an agent with a
state, and the agent chooses an action based on this state. The
environment rewards this action (which may be delayed),
and the cycle continues. It is the agent’s job to maximize its
accumulated reward, not only in the present state but also in
all future states (Sutton 2018). Exploration of these states is
a paramount concern, as spending extra time on unproduc-
tive search undesirably slows learning. A standard method
for exploration presently is ϵ-greedy which, with some prob-
ability ϵ, takes an entirely random action. While this makes
total exploration more likely, it is far from efficient. Using
this paradigm, exploring distant states with specific precon-
ditions is challenging, if not impossible, under reasonable
time constraints.

We hypothesize that we can increase exploration’s effec-
tiveness in RL by biasing exploration towards state-action
pairs where recent outcomes have exceeded expectations.
Actions resulting in better-than-expected outcomes might
bear repeating. This idea is the intuition behind what we

Copyright © 2025 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

refer to as Positive Error Bias (PEB). PEB increases ex-
ploration effectiveness by estimating a state-action’s recent
possible overperformance and giving these actions a higher
probability of being selected during exploration.

In many of our tests, PEB shows a statistically significant
increase in early learning performance (higher total episode
reward). This result suggests agents approach reasonable
policies quicker, requiring less training to achieve satisfac-
tory performance in their environments. In particularly hard-
to-explore environments, we demonstrate that PEB finds a
policy where ϵ-greedy exploration struggles or fails com-
pletely. We also show that it is able to learn hard-to-find
optimal policies better than easier sub-optimal policies.

Background
Traditionally, reinforcement learning is posed based
upon a Markov decision process such that MDP =
⟨S,A, R,T, γ⟩ where St ∈ S is the state at a given timestep
t, At ∈ A is the action taken at that time, and R is
the reward from the environment for taking that action.
T = P (S′|S,A) is the transition distribution of transition-
ing from state S to state S′) when action A is taken, and
γ ∈ [0, 1] is a discount factor. These transitions chain for-
ward from an initial state to some terminating condition. We
refer to these terminated chains as episodes under which an
agent attempts to maximize their reward. Note there may be
no terminal state, whereby the chain will continue forever.

Watkins introduced the Q-learning method in 1989 as a
means for the agent to estimate an agent’s expected long-run
reward (denoted Q(St, At)) when taking action At in state
St and performing according to policy π thereafter (Watkins
1989). Q-Learning is a model-free method based upon the
concept of temporal difference learning (TD-Learning) that
Sutton proposed (Sutton 1988). With TD-Learning, an error
(TD-Error) is calculated based on the difference between the
current and previous estimates. If the TD-Error is positive,
this is a signal that the recent experience with a State-Action
pair overperformed relative to the present estimate. Given
that TD updates are iterative, we claim that it likely benefits
the algorithm to revisit this pair to clarify its estimate further.

Such updates are accomplished as follows:

q ← R(St, At) + γmax
a∈A

Q(St+1, a)

errtd ← q −Q(St, At)



Q(St, At) ← Q(St, At) + α(errtd).

This estimation can be kept in an exact way (e.g., a table
containing a Q value for each state-action pair) or an approx-
imate method (e.g., Neural Network, Online Random Forest,
etc.). In exact methods, each state-action pair is updated in-
dividually. In contrast, approximate methods can generalize
across similar states and actions, enabling scalability in large
or continuous environments. In this paper, we use both as
each has its own unique concerns and approaches. We show
that PEB is effective for both situations.

Just performing estimates and following best values does
not guarantee convergence to optimal performance. If an
agent hones in on an action with a small reward and does
not explore other actions, it may miss a larger reward in
another action. This concept underscores the exploration-
exploitation tradeoff. An agent must explore all possible
actions to find the optimal policy. However, endlessly ex-
ploring does not allow the agent to utilize what it knows
to achieve optimal rewards. As mentioned, ϵ-greedy is con-
ceptually simple and, on an infinite timescale, will explore
all states infinitely but may explore inefficiently in large or
sparse environments. Furthermore, it does not use knowl-
edge from previous experience to guide further exploration.

This paper provides evidence for the utility of PEB, focus-
ing on its integration with ϵ-greedy in the context of model-
free methods. However, this exploration is far from exhaus-
tive, and the principle of biasing exploration using TD-error
likely extends beyond these specific context. RL advance-
ments are rarely independent, as evidence by the Rainbow
framework (Hessel et al. 2017). PEB’s design suggests po-
tential compatibility with other techniques, to further im-
prove performance.

Related Work
One of the simplest exploration methods in RL is ϵ-greedy.
Exploration in this scheme is unbiased, choosing a random
action with probability ϵ. This randomness requires epsilon
to be annealed or adapted to achieve reasonable performance
(Tokic 2010). Unbiased exploration can struggle in environ-
ments with complex dynamics requiring long sequences of
specific actions. Randomly drawing these sequences is un-
likely and can slow learning. PEB builds on this by provid-
ing a bias for exploration, increasing the likelihood of ex-
ploring promising actions. Overly narrow exploration bias
may lead to suboptimal policies by neglecting less-explored
actions. Sufficient exploration is necessary to ensure an op-
timal policy, and care should be taken when biasing explo-
ration in any way. However, introducing a well-calibrated
bias can often improve learning efficiency.

A direct improvement is often biased exploration in some
way, and this usually takes the form of biasing towards ac-
tions with a high Q value. Such is the case with the Upper
Confidence Bound, which adds a confidence bound to an es-
timate of Q and takes the highest upper bound. As states
are visited more often, the Q value approaches its actual
value, and the bounds shrink. This action allows the agent
to refine lesser-used actions continually, exploring their ac-
tual value (Auer 2000; 2002). Softmax and Boltzmann ex-

ploration prioritize an action based on its Q value rela-
tive to its peers. They convert the Q values into a proba-
bility distribution and draw from it, utilizing the distribu-
tion to control exploration (Cesa-Bianchi and Lugosi 2006;
Cesa-Bianchi et al. 2017). The key difference between PEB
and these methods is that the bias for exploration comes
from TD error, which gets updated immediately, unlike Q-
based methods, which must wait for one Q value to overtake
another to become prioritized.

PEB is not the first method to attempt to bias the learn-
ing process or even exploration. In Prioritized Experience
Replay (PER), transitions are stored in a buffer and drawn
based on the Q-value prediction error they cause. This bias
has been shown to improve sample efficiency (Schaul 2015;
Liu et al. 2022; Pan et al. 2022). Still, unlike PEB, it does
not bias the exploration process explicitly, which means high
error actions may take longer to find. Curiosity-driven ex-
ploration, on the other hand, does bias the exploration pro-
cess but only on model prediction errors (Pathak et al. 2017;
Burda et al. 2018). While this approach does not depend on
external rewards like PEB does, it requires maintaining a
model of the environment, the added computational over-
head of which may not be necessary to learn a policy. Fur-
thermore, QXplore (Simmons-Edler et al. 2021) and TDU
(Flennerhag et al. 2021), attempt to bias exploration us-
ing reward predictions, similar ot PEB. However, both rely
on additional computations to explicitly model uncertainty,
such as estimating variance or maintaining multiple value
predictions. Our results suggest that such complexity is un-
necessary for many applications.

Algorithm
PEB introduces a new estimator, Z(S,A) (colloquially
Zest), which estimates the recent TD error of a given state-
action pair. We initially set Z(S,A) to zero for all state-
action pairs for exact methods; however, they may be ini-
tialized as typical (e.g., small initial weights in NN) for ap-
proximate methods. We update Z(S,A) each time we visit
a state-action pair. One approach may perform a TD-style
update on Z(S,A), but delaying a response to a change in
TD error may not be as beneficial to early learning. Delayed
updates reduce the method’s ability to respond to recently
overperforming actions, which can slow discovery.

We continue with the notion that with some probability
ϵ, an agent should explore. However, unlike traditional ϵ-
greedy, the exploration action is not chosen randomly. In-
stead, we pass the present Z estimate into a softmax func-
tion, generating a probability distribution that biases selec-
tion towards actions with recent positive TD errors. This ap-
proach is still stochastic, ensuring total exploration while bi-
asing the exploration towards actions with recent positive
TD error. The softmax distribution is given by:

softmaxτ (Z(S,A)) =
eZ(S,A)/τ∑
a e

Z(S,a)/τ

Furthermore, PEB’s bias is naturally transient. As the
agent improves its Q-value estimates, the TD error (and thus
Z) for that action diminishes over time. Once this occurs,



Algorithm 1 Positive Error Bias (PEB)
1: Initialize Q-values Q(S,A)← 0 for all S,A
2: Initialize Z-values Z(S,A)← 0 for all S,A
3: Set hyperparameters ϵ, τ , α, and γ
4: for each episode do
5: Initialize S ← starting state
6: while S is not terminal do
7: Generate a random number r ∈ [0, 1)
8: if r < ϵ then ▷ Exploration
9: P (A|S)← softmaxτ (Z(S,A))

10: Select action A according to P (A|S)
11: else ▷ Exploitation
12: Select A← argmaxa Q(S, a)
13: end if
14: Execute action A, observe R and next state S′

15: δ ← R+ γmaxa′ Q(S′, a′)−Q(S,A)
16: Q(S,A)← Q(S,A) + αδ
17: Z(S,A)← δ
18: S ← S′

19: end while
20: end for

the bias shifts to actions with the following highest Z val-
ues, dynamically prioritizing promising areas of the state-
action space. Softmax with a tuned temperature setting (τ )
helps continually probe other actions for updated TD error
estimates (Z values). This mechanism preserves total explo-
ration, critical for avoiding premature convergence and iden-
tifying optimal policies.

One can adjust or anneal the τ to scale the bias from to-
tally random to essentially deterministic. The algorithm may
be sensitive to the selection of τ in a fixed budget learn-
ing environment. If an immediate sub-optimal reward has a
more positive TD error than a distant reward and annealing
of exploration degrades too quickly, the algorithm may not
find the distant reward.

During exploitation, the agent selects the action with the
highest Q-value as in standard ϵ-greedy. The interplay be-
tween ϵ and τ is critical; ϵ controls how often exploration
occurs, and τ controls the strength of the bias when explo-
ration occurs. Algorithm 1 outlines the main steps of PEB,
including initialization, decision-making, and updates to the
Z and Q estimators.

Experiments
We evaluate the effect of PEB through three experiments, a
k-armed bandit, a simple gridworld, and three classic control
problems. The k-armed bandit tests PEB’s ability to make
locally optimal choices during exploration, resulting in an
optimal policy. We include the gridworld to stack these lo-
cally optimal choices into efficient multi-state optimization.
The final experiment highlights the continued usefulness of
PEB under the generalization of Z. We claim these prob-
lems represent typical RL problems and provide evidence of
PEB’s effectiveness in varied environments.

A k-armed bandit is a reference to slot machines. In this
environment, each arm of the bandit gives a set distribution

Setting Value
Seed 42
Arms 10
Optimal Arms 1
Optimal Mean 10
Optimal Std 1
Min Suboptimal Mean 0
Max Suboptimal Mean 5
Suboptimal Std 1
Dynamic Rate None
Number of agents 1000

Table 1: Environment settings for k-armed bandit of
Buffalo-Gym.

of rewards. An agent must find and exploit the arm with
the highest average return to maximize its reward; thus the
problem reflects the classic exploration-exploitation trade-
off. Reward distributions with overlapping standard devia-
tions may complicate this as the optimality of an arm be-
comes more challenging to distinguish. In the base k-armed
bandit, the bandit does not have a state, and the player has
no control over future rewards. This environment character-
izes the ability of an algorithm to measure its environment
and make locally optimal choices. We used an open source
OpenAI Gymnasium (Towers et al. 2024) compatible envi-
ronment for k-armed bandits, Buffalo Gym (Parker 2024),
which provides several standard and non-standard k-armed
bandit implementations with the aim of reproducibility in
results. From this package, we use the ”Bandit-v0” environ-
ment, which implements a non-contextual bandit. We use
the environment settings in Table 1 and measure the average
reward over the steps of the run for each of 1000 agents, pro-
viding the average and standard deviation of performance at
a given step.

The gridworld is a simple maze-like environment. The
agent knows where it is in the gridworld and can move in
one of the cardinal directions. For our experiment, we built
a “corridor” gridworld of size of h, which denotes the num-
ber of tiles inside the outer perimeter of the map (Figure 1).
The map has walls, and any attempt to traverse a wall puts
the agent back in its previous state. Walls surround the map,
and there is a wall down the center of the map, separating it
lengthwise. In the center of the wall is a single-tile corridor
to get to the other half of the map. The map has two terminal
states, one immediately south of the fixed starting position
in the top left and the other in the bottom right corner. The
terminal state closer to the starting position has a reward of
h and the further reward is 2× h.

The agent also incurs a cost of −1 for each step taken.
This reward structure incentivizes the agent to reach a goal
quickly. The dual reward setup measures the agent’s abil-
ity to find an optimal reward when tempted with a local
optimum. The metric of success is the total reward for an
episode, which ends at a terminal state. The episode can also
end when it hits a maximum number of steps, which we set
to 3 × h. Again, we calculate the mean and standard devia-
tion of the performance using 1000 agents.



Figure 1: Gridworld where S = the start state, R1 = the sub-
optimal terminal state and R2 = the optimal terminal state.

We ran experiments on both the k-armed bandit and the
gridworld with a tabular (exact) estimator. The estimator
used a fixed learning rate of α = 0.1 and a discount factor
of γ = 1. ϵ started at 0.5, and was annealed to a final value
of 0.01 over the first 75% of the episodes. We set τ = 10
during the bandit experiments and 0.4 for the gridworld ex-
periments. We chose the values through manual tuning via
grid search. For the control, we use the tabular Q-Learning
algorithm with epsilon-greedy search, which is effective in
bandit environments (Kuleshov and Precup 2014). All val-
ues were kept the same between the two runs. We tested the
statistical significance of the results using a two-tailed two-
sample t-test with p ≤ 0.05.

For the final experiment, we used three problems from the
OpenAI Gymnasium Environment. Specifically, we tested
on Acrobot, Cartpole, and Mountain Car. These problems
each have real-valued states, making the state space infi-
nite and requiring generalization to solve effectively. In Ac-
robot, the goal is to apply torque to the center joint of a two-
segment chain and raise the free end of the chain above a
certain height. Cartpole lets the agent control a cart to which
an inverted pendulum is attached. The pendulum starts up-
right, and the agent aims to keep it upright by moving the
cart to the left and right. Finally, Mountain Car requires the
agent to accelerate the car strategically from its position at
the bottom of a hill to reach the goal on top. All problems
used discrete actions: -1, 0, 1 torque in Acrobot, left/right
push in Cartpole, and left/none/right acceleration in Moun-
tain Car.

For these latter control environments, we used a neural
network as the estimator. We initialized the network from
scratch for each agent. The network’s architecture consisted
of a neuron for each element of the state value vector, two
fully connected hidden layers with 128 neurons each, and
two sets of outputs. The output layers consisted of one neu-
ron for each action, representing the corresponding Q value,

Input Layer
(State Variables)

Hidden Layer 1
(128 Neurons)

Hidden Layer 2
(128 Neurons)

Q Outputs
(Q Values)

Z Outputs
(TD Errors)

Q Value Estimator Z Value Estimator

Figure 2: Neural network architecture used for approximate
estimator.

and one neuron for each action, representing the correspond-
ing Z value.

Figure 2 shows the architecture of the neural network. The
shared trunk with separate prediction outputs is similar to
the Dueling Network architecture, where the outputs predict
Value and Advantage (Wang et al. 2016). A RELU activa-
tion was used at all layers except the outputs, which were
linear. We use the AdamW optimizer with a learning rate
of 0.001 and 0.005 for Q and Z, respectively. The weight
updates from the Q node flows back to the inputs, and the
weight updates for Z stops where it branches from the trunk
of the network. In our testing, Z’s lack of effect on the main
trunk helped stabilize the learning of both Q and Z.

During weight updates, we drew random batches of 32
transitions from an experience replay buffer of size 10,000.
Epsilon started at 0.9 and was annealed geometrically with
an annealing rate of ζ = 0.99 in all environments except
Acrobot, where annealing occurred at a rate of ζ = 0.9.
Annealing occurred once per episode as ϵ ← ϵ × ζ. We set
τ = 0.4 after tuning.

The control in these experiments is regular ϵ-greedy with
a Neural Network estimator for Q (herein called DQN). The
agent’s performance was measured as the total reward from
an episode, averaged over 20 agents for both PEB and the
control. The architecture of the PEB neural net estimator
and DQN were identical, except the control did not have a Z
branch.

Results
The k-armed bandit
Performance on the k-armed bandit is shown in Figure 3.
As shown, performance separates quickly between PEB and
Q-Learning. Significant differences in performance are re-
vealed as early as the 7th step (out of 1000) (p = 0.0002).
PEB results in a 10% higher average reward (7.2 vs 6.5) at
the end of the trial (p < 0.0001). In this case, PEB’s focus



Figure 3: Learning curve for k-armed bandit with k = 10.
Shaded regions indicate 1 standard deviation off the mean.

on arms with recent positive TD errors (and soft bias toward
the highest positive TD errors) accumulates rewards early. In
contrast, Q-Learning spreads experience evenly, leading to
slower reward accumulation. However, despite this focused
exploration, PEB’s exploration does not appear to get stuck
on suboptimal arms, as evident in the final performance.

The gridworld
We ran the gridworld at two settings, h = 7 and h = 9
(Figure 4). Both graphs clearly distinguish between the al-
gorithms in terms of terminal performance. In both exper-
iments, PEB achieves the average terminal performance of
> 3.8 (with 4 being optimal). ϵ-greedy has an average neg-
ative total reward with PEB’s lead deepening as we increase
h. Raising h from 7 to 9 dramatically increased the explo-
ration difficulty, as the agent needed to navigate longer se-
quences of actions to reach the optimal goal. In our experi-
mentation, the dip in early performance becomes shallower
as we lower τ . PEB explores the most promising regions
first. As the Z signal diminishes, softmax leads the agent to
explore the next most interesting paths, which give worse re-
wards at first, but total exploration helps the algorithm find
the optimal path.

Control tasks
Finally, we show the results for the classic control tasks
in Figure 5. Mountain Car represents a challenging envi-
ronment for ϵ-greedy. Given a 400-episode training budget,
DQN did little to no learning. In contrast, PEB began learn-
ing at 200 episodes and maintained steady learning through-
out the remaining episodes. PEB biases the exploration to-
wards building momentum and increasing overall reward,
where ϵ-greedy tended to wander.

CartPole is a medium-difficulty task, which we evaluated
with a 200-episode budget. DQN began to improve in un-
der 100 episodes on average; however, PEB began to distin-
guish itself as early as 25 episodes (p < 0.05). Furthermore,

Figure 4: Learning curves for gridworld with h = 7 and
h = 9. Shaded regions indicate 1 standard deviation off the
mean. The optimal reward is scaled to 4 and the suboptimal
reward is scaled to 2.

its lead in performance continued throughout the reminder
of the 200-episode budget. Agents within a single standard
deviation of the mean achieved a near-perfect score of 500
during this budget, which means approximately one third of
agents had at least one perfect or near-perfect episode dur-
ing this period. These results suggest that PEB excels in en-
vironments where approximate solutions allow Z values to
generalize effectively across states. This generalization en-
ables the agent to prioritize promising regions of the state-
action space, even those it has not recently visited, ensuring
exploration remains focused and efficient.

Finally, PEB essentially tied with DQN in the Acrobot
task. Neither algorithm had a statistically significant lead
over the other at any part of the task. It could be that the
bias was unneeded as ϵ-greedy found the task to be relatively
easy; any random action was acceptable during exploration.

The range of results presented demonstrates that PEB pro-
vides a bias that can significantly help in some environ-
ments. In almost all cases, early learning performance sub-



Figure 5: Learning curves for the three classic control tasks.
Shaded regions indicate 1 standard deviation off the mean.

stantially improved. It seems particularly effective when ex-
ploration was crucial, but it appeared to struggle as complex-
ity increased.

Discussion
This paper demonstrates the utility of Positive Error Bias
(PEB) as a practical exploration strategy in Reinforcement
Learning (RL). PEB’s advantage appears to lie in its targeted
exploration of actions with the highest positive TD errors.

This focus appears to allow agents to prioritize actions with
immediate promise, contributing to faster early learning.
With proper tuning, PEB can lead to shorter, more consis-
tent training cycles and reduced total compute requirements,
as fewer episodes or iterations may be needed to achieve
meaningful performance. This effect sometimes translates
into superior terminal policies, as observed in the h = 7 and
h = 9 gridworld and Mountain Car.

There are several hyperparameter interactions to remem-
ber when using PEB. An excessively low τ may get explo-
ration trapped by rewards with high variance. Despite the
early performance, a low τ may require a longer ϵ-anneal to
provide a robust policy as it deprioritizes total exploration.
Too high of a τ and a low γ will weaken the effect of distant
rewards on Z, and exploration may default to near-random,
limiting PEB’s impact.

Including a Z estimator introduces additional computa-
tional overhead, doubling the storage requirements for ex-
act solutions. This overhead is mitigated in approximate im-
plementations by sharing lower network layers between Q
and Z estimators; however, it still necessitates updating a
marginally larger set of parameters. Therefore, one needs
to weigh the tradeoff between PEB’s benefits and these re-
source demands. Notably, the Z branch would be omitted
during runtime if continual learning is unnecessary, as its
primary function is to guide exploration.

In light of these increased storage and computational
costs, it is tempting to compare this algorithm to softmax
exploration, under which the softmax of the Q function se-
lects actions. We explored integrating PEB with softmax ex-
ploration by combining the softmax of Q and Z values into
a weighted probability distribution. This method showed
promise, but the added complexity introduced confounding
factors that require further investigation beyond the scope of
this study. Furthermore, PEB is only a bias, and its bias may
be compatible with the biases of other modifications to DQN
(e.g., Dueling Networks, PER, Noisy Networks). However,
the interaction of these biases requires more study.

This study is limited in scope, focusing only on classic
control tasks. Future work should investigate PEB’s effects
in more diverse and challenging settings, such as multi-agent
RL, dynamic reward environments, and vision-based tasks.
Finally, PEB’s mechanisms may go beyond policy optimiza-
tion to planning-level control, potentially unlocking benefits
at a meta-control level.

In summary, PEB shows potential as an exploration bias.
Enhancing RL efficiency through improved exploration of-
fers meaningful advantages to researchers and practitioners
alike. Further studies could make evident greater potential,
cementing PEB’s role as a valuable tool in the RL toolkit.

References
Auer, P. 2000. Using Upper Confidence Bounds for Online
Learning. In Proceedings 41st Annual IEEE Symposium on
Foundations of Computer Science, 270–279.
Auer, P. 2002. Finite-time Analysis of the Multiarmed Bandit
Problem. Kluwer Academic Publishers.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;



Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the Atari Human Benchmark. In Interna-
tional Conference on Machine Learning, 507–517. PMLR.
Burda, Y.; Edwards, H.; Pathak, D.; Storkey, A.; Dar-
rell, T.; and Efros, A. A. 2018. Large-scale
Study of Curiosity-driven Learning. arXiv:1808.04355;
https://arxiv.org/abs/1808.04355.
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, Learn-
ing, and Games. Cambridge university press.
Cesa-Bianchi, N.; Gentile, C.; Lugosi, G.; and Neu, G. 2017.
Boltzmann Exploration Done Right. In Advances in neural
information processing systems, volume 30.
Flennerhag, S.; Wang, J. X.; Sprechmann, P.; Visin, F.;
Galashov, A.; Kapturowski, S.; Borsa, D. L.; Heess, N.; Bar-
reto, A.; and Pascanu, R. 2021. Temporal difference uncer-
tainties as a signal for exploration.
Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and Sil-
ver, D. 2017. Rainbow: Combining improvements in deep
reinforcement learning.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
Learning in Robotics: A Survey. The International Journal
of Robotics Research 32(11):1238–1274.
Kuleshov, V., and Precup, D. 2014. Algorithms
for Multi-armed Bandit Problems. arXiv:1402.6028;
https://arxiv.org/abs/1402.6028.
Liu, X.; Zhu, T.; Jiang, C.; Ye, D.; and Zhao, F. 2022. Pri-
oritized Experience Replay Based on Multi-armed Bandit.
Expert Systems with Applications 189:116023.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602; https://arxiv.org/abs/1312.5602.
Pan, Y.; Mei, J.; Farahmand, A.-m.; White, M.; Yao, H.; Ro-
hani, M.; and Luo, J. 2022. Understanding and Mitigating
the Limitations of Prioritized Experience Replay. In Uncer-
tainty in Artificial Intelligence, 1561–1571. PMLR.
Parker, A. 2024. Buffalo Gym. version 0.2.0,
https://github.com/foreverska/buffalo-gym.

Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven Exploration by Self-supervised Prediction.
In International Conference on Machine Learning, 2778–
2787. PMLR.
Schaul, T. 2015. Prioritized Experience Replay.
arXiv:1511.05952; https://arxiv.org/abs/1511.05952.
Simmons-Edler, R.; Eisner, B.; Yang, D.; Bisulco, A.;
Mitchell, E.; Seung, S.; and Lee, D. 2021. Reward pre-
diction error as an exploration objective in deep rl.
Sutton, R. S. 1988. Learning to Predict by the Methods of
Temporal Differences. Machine learning 3:9–44.
Sutton, R. S. 2018. Reinforcement Learning: An Introduc-
tion. MIT Press, 2nd edition.
Tokic, M. 2010. Adaptive ε-greedy Exploration in Re-
inforcement Learning Based on Value Differences. In
KI 2010: Advances in Artificial Intelligence, 203–210.
Springer.
Towers, M.; Kwiatkowski, A.; Terry, J.; Balis, J. U.; Cola,
G. D.; Deleu, T.; Goulão, M.; Kallinteris, A.; Krimmel, M.;
KG, A.; Perez-Vicente, R.; Pierré, A.; Schulhoff, S.; Tai,
J. J.; Tan, H.; and Younis, O. G. 2024. Gymnasium: A Stan-
dard Interface for Reinforcement Learning Environments.
arXiv:2407.17032; https://arxiv.org/abs/2407.17032.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep Rein-
forcement Learning with Double Q-Learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 30.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling Network Architectures for
Deep Reinforcement Learning. In International Conference
on Machine Learning, 1995–2003. PMLR.
Watkins, C. J. C. H. 1989. Learning From Delayed
Rewards. Ph.D. Dissertation, King’s College, Cambridge
United Kingdom.
Yu, C.; Liu, J.; Nemati, S.; and Yin, G. 2021. Reinforcement
Learning in Healthcare: A Survey. ACM Computing Surveys
(CSUR) 55(1):1–36.


