
Convergence of Factored Evolutionary Algorithms

Shane Strasser
Gianforte School of Computing

357 Barnard Hall
Montana State University

Bozeman, MT 59717
shane.strasser@msu.montana.edu

John W. Sheppard
Gianforte School of Computing

357 Barnard Hall
Montana State University

Bozeman, MT 59717
john.sheppard@montana.edu

ABSTRACT
Factored Evolutionary Algorithms (FEA) have been found
to be an effective way to optimize single objective functions
by partitioning the variables in the function into overlapping
subpopulations, or factors. While there exist several works
empirically evaluating FEA, there exists very little litera-
ture exploring FEA’s theoretical properties. In this paper,
we prove that the final solution returned by FEA will be the
results of converging to a single point. Additionally, we show
how the convergence of FEA to a single point in the search
space could be to a suboptimal point in space. However,
we demonstrate empirically that when using specific factor
architectures, the probability of converging to these subop-
timal points in space approaches zero. Finally, where hybrid
versions Cooperative Coevolutionary Algorithms have been
proposed as a means to escape these suboptimal points, we
show how FEA is able to outperform its hybrid version.

Keywords
Particle Swarm Optimization, Factored Evolutionary Algo-
rithms, Convergence

1. INTRODUCTION
Many important problems involve function optimization,

including bin packing, the traveling salesman problem, job
shop scheduling, neural network training, and Bayesian net-
work inference [26]. Often, stochastic search algorithms are
used to solve such problems because the randomness used
in the algorithms helps to escape local optima. One of the
best-known families of stochastic search algorithms is the
Evolutionary Algorithm (EA).

An example of an EA is the Genetic Algorithm (GA)
which is inspired by the idea of Darwinian Evolution. Each
individual in a GA acts like a chromosome and is modified
in a manner that mimics genetics [9]. During each itera-
tion, candidate solutions undergo search operations such as
crossover and mutation. Another popular EA that has been
found to perform well on a variety of optimization problems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FOGA ’17, January 12–15, 2017, Copenhagen, Denmark.
c© 2017 ACM. ISBN 978-1-4503-4651-1/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3040718.3040727

is Differential Evolution (DE) [1]. The DE algorithm is sim-
ilar to GA in that individuals undergo mutation, crossover,
and selection, but differs in how those operations are per-
formed.

Another population-based approach is called Particle Swarm
Optimization (PSO) [12]. While GA and DE use a popu-
lation of individuals that reproduce with one another, PSO
uses a swarm of particles that “fly” around the search space.
In addition to a vector that represents a candidate solution,
particles use a velocity vector to control how the particles
move through the space.

While GA and DE have been applied successfully to a
wide range of problems, they are susceptible to hitchhik-
ing, which is when poor values become associated with good
schemata [15, 25]. Similarly, PSO can be prone to what is
called“two steps forward and one step back,” which happens
when near optimal parts of an individual’s current position
may be thrown away if the rest of the individual’s position
causes the individual to have low fitness [30]. The conse-
quences of hitchhiking and two steps forward and one step
back is that the algorithm will often converge to suboptimal
solutions [23].

One way to mitigate hitchhiking and “two steps forward
and one step back” in GA, DE, and PSO is by generat-
ing subpopulations that optimize over subsets of variables
[20]. Potter and De Jong presented one of the earliest such
algorithms called the Cooperative Coevolutionary Genetic
Algorithm (CCGA) that subdivided the problem by creat-
ing an individual GA that optimized over a single variable
at a time. Other methods similar to CCGA have been pre-
sented, such as the Cooperative Particle Swarm Optimiza-
tion (CPSO), which uses PSO as the underlying search al-
gorithm and allows subpopulations to optimize over larger
groups of variables [31]. However, one drawback to both of
these methods is that they assume disjoint subpopulations.

Factored Evolutionary Algorithms (FEA) are a general-
ization of CCGA and CPSO that allow for subpopulations
to overlap with one another [27]. The idea behind FEA is
similar to how polynomials can be decomposed into a prod-
uct of factors. FEA decomposes the optimization problem
into a set of factors that when put together, represent full
solutions to the problem. Additionally, FEA encourages the
factors to overlap, which allows the factors to compete with
one another for inclusion in a full solution Another unique
property of FEA is that it allows for any population based
algorithm to be used as the underlying optimization algo-
rithm. [5]. Consequently, subpopulations or subswarms are

associated with each factor, and the desired search algorithm
is used to search the subspace covered by that factor.

Strasser et al. demonstrated that FEA is able to out-
perform other Cooperative Coevolutionary algorithms on a
wide range of problems [27]. While FEA has been found to
perform well, there is still little known about its convergence
properties. For example, in previous work, the final solution
returned by FEA always converged to a single point; how-
ever, it was unknown whether this would always be the case.
Additionally, it was unknown if the final solution returned
would be located at a global or local minimum. In this pa-
per, we prove that FEA does converge to a single point, but
that this point may not be a local or global minimum. We
are also able to show that individual factors in FEA may
become stuck at points in the search space called pseudo-
minima. A pseudominimum is a point in the search space
that appears as a local minimum in each subset of a config-
uration of subsets for the optimization problem, but is not
a true local minimum for that problem as a whole.

Given these results, we demonstrate that, while FEA may
theoretically not reach a local minimum, the likelihood of
this occurring is often very small. To do so, we compare
FEA with a hybrid version of CPSO that is guaranteed to
reach a local minimum, called CPSO-H, which alternates
between CPSO and PSO. By allowing a regular PSO to
modify individuals in the subswarms in CPSO, CPSO-H is
able to escape instances when subswarms become stuck at
pseudominima. Additionally, we present a version of FEA
called FEA-H, which alternates between FEA and the full
EA. In doing so, we discover that while CPSO-H outper-
forms CPSO, the performance of FEA-H was usually equal
or even worse than FEA.

There are several contributions made in this work. First,
we prove under what conditions FEA will converge to a sin-
gle solution. Second, we prove that FEA may converge to
suboptimal solutions called pseudominima. Third, we de-
fine a hybrid FEA algorithm that combines FEA with a full
population algorithm, called FEA-H. Finally, we present ex-
perimental results showing that while FEA may theoreti-
cally become stuck in pseudominima, the probability of this
occurring is often very small.

The remainder of the paper is organized as follows. We
first discuss relevant related work in Section 2 and then pro-
vide a detailed description of FEA in Section 3. In Section
4, we present our theoretical results that the full solution re-
turned by FEA will converge to a single point if the factors
also converge. Additionally, we show that this convergence
may be to a pseudominimum. Next, in Section 5 we present
a hybrid version of FEA, called FEA-H, that allows FEA
to escape pseudominimum by alternating between FEA and
a full single population EA. Finally, we compare FEA to
Cooperative Coevolutionary algorithms as well as Coopera-
tive Coevolutionary algorithms hybridized with single pop-
ulation algorithms in Section 6 and provide our conclusions
and future work in Section 7.

2. RELATED WORK
Factored Evolutionary Algorithms (FEA) were first pro-

posed by Strasser et al. as a framework for decomposing a
single objective optimization problem into a set of subprob-
lems that can be optimized by any evolutionary or swarm-
based algorithm [27]. When put together, solutions to these
subproblems (i.e., factors) represent full solutions to the

problem. Additionally, FEA encourages the factors to over-
lap with one another, which allows the factors to compete for
inclusion in the full solution [5, 27]. Strasser et al. demon-
strated that FEA versions of Particle Swarm Optimization,
Genetic Algorithms, Differential Evolution, and even simple
Hill climbing outperformed single population and Coopera-
tive Coevolutionary versions of the same algorithms. The
authors also compared several different methods for deriv-
ing subpopulations for FEA and found that the architecture
derived from a variable’s Markov blanket outperformed the
competing approaches. We make note that FEA has a sim-
ilar name to the Fast Evolutionary Algorithm, which is a
genetic algorithm that uses a fitness approximation routine
to calculate the fitness of children based on the fitness of the
parents, reducing the number of fitness evaluations [22].

One of the earliest versions of FEA was the Coopera-
tive Coevolutionary Genetic Algorithm (CCGA) proposed
by Potter and De Jong [20]. CCGA uses subspecies to rep-
resent non-overlapping subcomponents of a potential solu-
tion. Complete solutions are then built by assembling the
current best subcomponents in a process called collabora-
tion. The paper showed that, in most cases, CCGA signif-
icantly outperformed traditional GAs. Only in cases where
the optimization function had high interdependence between
the function variables (i.e., epistasis) did CCGA struggle be-
cause relationships between these variables were ignored.

More dynamic versions of CCGA have been proposed that
allow for subpopulations to evolve over time [21]. When
stagnation is detected in the population, a new subpopula-
tion is initialized randomly and added to the set of subpop-
ulations. Similarly, a subpopulation is removed if it makes
small contributions to the overall fitness. Because of the dy-
namic subpopulations, there does exist the possibility that
two subpopulations may overlap one another. However, this
overlap is not guaranteed, and the algorithm does not have
a means to resolve discrepancies between these overlapping
subpopulations. The authors were able to demonstrate that
their algorithm could evolve an effective number of subpopu-
lations and was competitive with domain-specific algorithms
on training cascade networks [21].

This idea of Cooperative Coevolutionary Evolutionary Al-
gorithms (CCEA) was also applied by Van den Bergh and
Engelbrecht when using PSO to train neural networks [30].
In their paper, the authors tested four fixed subswarm archi-
tectures of their own design. Comparing these four different
architectures, the success of the algorithms was highly de-
pendent on the architecture used, again due to the interde-
pendence between the variables. By keeping variables with
interdependencies together, the algorithm was more effective
at exploring the search space [30]; however the subswarm ar-
chitecture still did not allow for overlap.

Later, Van den Bergh and Engelbrecht extended their
work by applying it to a wider range of optimization prob-
lems [31]. Cooperative PSO (CPSO) was introduced as a
generalization of the authors’ prior work, which was able to
get around the problem of losing good values since each di-
mension is optimized by a single subpopulation. However,
one drawback to CPSO is that it can become trapped in
what the authors call pseudominima, which are places that
are minima when looking at a single dimension but over
the entire search space are not local minima. To avoid this
problem, the authors introduce a hybrid algorithm that al-
ternates between CPSO and PSO. The result was an algo-

rithm that always outperformed PSO and was competitive
with but more robust than CPSO.

Cooperative Coevolutionary (CC) algorithms have also
been applied to Differential Evolution. Shi et al. proposed
a simple and direct application of CCGA to DE, which they
called CCDE [25]. Other adaptations have been more com-
plex, such as those presented by Yang et al., where the au-
thors developed a weighted cooperative algorithm that used
DE to optimize problems over 100 dimensions [34]. In par-
ticular, their weighting scheme allowed for evolving subpop-
ulations. The authors’ algorithm was found to outperform
regular CC algorithms on most of the test functions explored
[34].

Another variation of CCEA that used evolving subpop-
ulations was proposed by Li and Yao [14]. Here, the sub-
population sizes were allowed to grow or to shrink when
stagnation was detected, creating a wider range of variable
groups. The authors showed that their algorithm performed
better than others on functions that had complex multi-
modal fitness landscapes, but performed slightly worse than
PSO on unimodal functions. They noted that, while groups
of random variables perform well, there should exist more
intelligent ways of creating subpopulations.

CPSO was first adapted to allow explicitly for overlapping
variables by Haberman and Sheppard in 2012 [8]. Here the
authors developed an algorithm called Particle-based Rout-
ing with Overlapping Swarms for Energy Efficiency (PROSE),
which used PSO as the underlying optimization algorithm.
PROSE was presented as a method to develop energy-aware
routing protocols for sensor networks that ensure reliable
path selection while minimizing energy consumption dur-
ing message transmission. Each subswarm in PROSE repre-
sented a sensor and all of the sensors’ immediate neighbors
in the network. PROSE was shown to be able to extend
the life of the sensor networks and to perform significantly
better than current energy-aware routing protocols.

Subsequently, PROSE was adapted by Ganesan Pillai and
Sheppard to learn the weights of deep artificial neural net-
works [19]. In that work, the authors developed an algo-
rithm called Overlapping Swarm Intelligence (OSI) where
each swarm represents a unique path starting at an input
node and ending at an output node. A common vector of
weights, called the full global solution, is also maintained
across all swarms to describe a global view of the network,
which is created by combining the weights of the best par-
ticles in each of the swarms. The authors showed that OSI
outperformed several other PSO-based algorithms, as well
as standard backpropagation, on deep networks.

A distributed version of OSI was developed subsequently
by Fortier et al. called Distributed Overlapping Swarm In-
telligence (DOSI) [7]. In that paper, a communication and
sharing algorithm was defined so that swarms could share
values while also competing with one another. The key dis-
tinction from OSI was that a global solution was not used
for fitness evaluation. The authors were able to show that
DOSI’s performance was close to that of OSI’s on several
different networks but there were instances when OSI out-
performed DOSI. DOSI never outperformed OSI but was
generally competitive.

OSI and DOSI have also been applied to the full and
partial abductive inference problems in Bayesian networks,
where the task is to find the most probable set of states for a
set of nodes in the network given a set of observations [3, 5]

The authors were able to show that OSI and DOSI outper-
formed several other population-based and traditional algo-
rithms, such as PSO, GA, simulated annealing, stochastic
local search, and mini-bucket elimination.

Other applications of OSI and DOSI include learning the
parameters or structure of Bayesian networks. For example,
Fortier et al. adapted OSI to learn the structure of Bayesian
classifiers by allowing subswarms to learn the links for each
variable in the network [4]. Here each variable represents an
attribute in the data, and for each variable, two subswarms
were created—one for the incoming links and one for the
outgoing links. The authors were able to show that in most
cases OSI was able to significantly outperform competing
structure learning approaches.

When learning Bayesian networks, latent or unobserved
variables are often introduced, and Fortier et al. used OSI
to learn the parameters of these latent variables [6]. A sub-
swarm was created for each node with unknown parame-
ters and all of the variables in that node’s Markov blanket.
The authors were able to show that OSI outperformed the
competing approaches, including the traditionally-applied
expectation-maximization algorithm, and that the amount
of overlap between the subswarms can impact the perfor-
mance of OSI.

There has been a limited number of papers published that
have attempted to analyze theoretically the convergence of
CCEAs, most of which have focused on collaboration in
CCGA to evaluate individuals in a subpopulation [16]. For
example, when evaluating an individual, which values should
be pulled from other subpopulations to allow for calculating
the fitness of the individual?

One of the earliest was by Wiegand et al., who developed
a framework to analyze convergence properties of CCEA us-
ing evolutionary game theory to model the interaction of two
subpopulations [32]. The authors calculated the next gen-
eration by using a payoff matrix A and proved that when
trajectories converge to a fixed point, the populations be-
come homogeneous. Additionally, the authors showed that
subpopulations may converge to points with“suboptimal fit-
ness values.” Finally, the authors used their framework to
investigate empirically the effects of uniform crossover and
bit flip mutation.

One of the drawbacks to this approach was that the au-
thors assumed infinite population in each of the subpopula-
tions and that an individual’s fitness is given as the average
fitness using all individuals from the other subpopulation
during collaboration [17]. Panait et al. relax this require-
ment by modeling the fitness evaluation of an individual as
the average fitness of N randomly chosen individuals from
the other subpopulation. Additionally, the authors use evo-
lutionary game theory as a way to visualize different conver-
gence properties of CCEA [17].

Later work by Panait argued that the primary reason for
poor performance in CCGAs is caused by poor selection of
individuals during collaboration [16]. The authors go on to
use a refined evolutionary game theory model and show that
a CCGA will converge to globally optimal solution when the
collaboration process is set properly. Additionally, Panait
showed that a collaboration process that uses the best in-
dividuals from subpopulations outperforms a collaboration
process that uses the average or worst individuals.

Other theoretical work involved with CCGAs has been to
investigate its robustness. Wiegand and Potter first defined

a framework for characterizing robustness in evolutionary
algorithms [33]. Using this framework, the authors were able
to show that CCGAs exploit this robustness during search
and demonstrate empirically how this is done [33].

As described elsewhere, Van den Bergh and Engelbrecht
also presented work looking at the convergence of CCEAs
[31], especially within the context of pseudominima. The
authors present an extension to CPSO called CPSO-H, that
avoids the problem of convergence to pseudominimum by
iterating between CPSO and a full PSO algorithm, allow-
ing the algorithm to escape pseudominima during the PSO
portion of the algorithm. Because the CPSO-H iterates be-
tween CPSO and a regular PSO, the authors claim that any
convergence results that are applicable to the full PSO are
also applicable to CPSO-H [29].

Finally, we make note of some of the similarities between
FEA and the Sequential Subspace Optimization (SESOP)
algorithm [2]. SESOP is a gradient descent method that
determines the next update based on a set of subspaces
spanned by the current gradient and all previous steps. This
is similar to FEA in that during each update, only a subset
of variables may be updated. SESOP is different than FEA
in that during each update, any subset of variables may be
updated whereas in FEA, an individual is only able to up-
date the same set of variables. Because SESOP is able to
update any combination of variables, it is also less likely to
become trapped in in pseudominima.

There are several different ways our theoretical work pre-
sented here differs from the previous work. The first is that
prior work does not consider the overlap between factors
(subpopulations). Second, we are currently not interested
in the optimal way to evaluate an individual in a factor. Be-
cause there are multiple factors, the complexity to evaluate
an individual with a large set of randomly selected values
from other factors becomes intractable. FEA handles this
problem by performing a local search during the competition
step to generate a full global solution to allow for individuals
to evaluate themselves. Finally, our work differs in that we
enable any optimization algorithm to be used. All previous
work assumes a particular algorithm, such as CPSO using
PSO.

3. THE FACTORED EVOLUTIONARY AL-
GORITHM

In this section, we describe FEA. Note that a full specifi-
cation of FEA can be found in [27]. There are three major
subfunctions in FEA: update, competition and sharing. The
update function is the simplest and allows each factor to
optimize over its set of variables. The competition function
creates a full solution that is used by factors to evaluate a
partial solution, while the sharing step uses the full solu-
tion to inject information in the factors. Before giving the
pseudocode for these steps, we first formally define factors
in FEA.

3.1 Factors
Given a function f : DN → R with domain DN to be

optimized with parameters X = 〈X1, X2, . . . , XN 〉, let Si

be a subset of X. Let K be the average size of all subsets
Si. Without loss of generality, assume that all subsets Si

are the same size. A subpopulation or factor Pi can then
be defined over the variables in Si that are optimizing f .

Algorithm 1 FEA Compete

Input: Function f to optimize, factors S, full global solu-
tion G
Output: Full solution G

1: randV arPerm← RandomPermutation(N)
2: for ranV arIndex = 1 to N do
3: i← randV arPerm[ranV arIndex]
4: bestF it← f(G)
5: bestV al← P 1[Xi]
6: Si ← {Sk|Xi ∈ Sk }
7: randPopPerm← RandomPermutation(|Si|)
8: for ranPopIndex = 1 to |Si| do
9: P j ← Si[randPopPerm[ranPopIndex]]

10: G[Xi]← P j [Xi]
11: if f(G) is better than bestF it then
12: bestV al← P j [Xi]
13: bestF it← f(G)
14: end if
15: end for
16: G[Xi]← bestV al
17: end for
18: return G

Note that f can still be optimized over the variables in
Si by holding variables Ri = X \ Si constant. We refer
to Ri as factor Si’s remaining values. An algorithm that
uses a set of subpopulations to optimize a problem is called
a multi-population algorithm. We denote the set of s factor
in a multi-population algorithm as S = ∪s

i=1P i.
When s = 1 and S1 = X, then S will have just a sin-

gle population that results in a traditional application of
the population-based algorithm, such as PSO, DE, or GA.
However, when s > 1, Si ⊂ X, and

⋃
Si = X for all popula-

tions, the algorithm becomes a multi-population algorithm.
We define FEA to be an algorithm where the factors that
are proper subsets of X and at least one factor overlaps with
another factor.

Because each population is only optimizing over a subset
of values in X, the factor defined for Si needs to know the
values of Ri for local fitness evaluations. Given a factor P i

and its remaining values Ri, fitness for a partial solution in
factor P i can be calculated as f(Si∪Ri). The values for Ri

are derived from the other factors, which thereby allows P i

to use values optimized by other factors. The algorithm ac-
complishes this through competition and sharing as follows.

3.2 Competition
The goal of competition in FEA is to find the factors with

the state assignments that have the best fitness for each
dimension. Here, we present the competition algorithm de-
scribed by Strasser et al. [27] (Algorithm 1). FEA con-
structs a full global solution G = 〈X1, X2, . . . , XN 〉 that
evaluates the optimized values from factors. For every Xi ∈
X, the algorithm iterates over every factor containing Xi

and finds the best value from those factors.
The algorithm first iterates over a random permutation of

all of the variables in X, shown in line 2. Note that this
permutation changes each time the algorithm is run. Lines
4 and 5 initialize variables that are used for the competition.
Next, the algorithm iterates over another random permuta-
tion of all the factors that are optimizing the variable Xi.
Lines 10-14 then compare the individual values of variable

Algorithm 2 FEA Share

Input: Full global solution G, factors S
Output: Updated factors S
1: for all P i ∈ S do
2: for all Xj ∈ Ri do
3: Ri[Xj]← G[Xj]
4: end for
5: pw ← P i.worst()
6: for all Xj ∈ Si do
7: pw[Xj]← G[Xj]
8: end for
9: pw.fitness← f(pw ∪Ri)

10: end for
11: return S

Xi by substituting the factors’ values into G. In our imple-
mentation, the factor uses the best value found during the
entire search process as its candidate value to be evaluated
in lines 10-14. Note that this means changes are only made
when the new fitness is strictly greater than the previous
fitness. The values yielding the best fitness from the over-
lapping factors are saved and then inserted into G. Once the
algorithm has iterated over all variables in X, the algorithm
exits and returns G.

Note that competition is not guaranteed to find the best
combination of values from each factor, nor does it guarantee
the combination of values is better than the previous G.
However, by iterating over random permutations of X and
S, the algorithm is able to explore different combinations
and is still able to find good combinations of values.

3.3 Sharing
The sharing step serves two purposes. First it allows over-

lapping factors to inject their current knowledge into other
factors. Previous work by Fortier et al. discovered that this
is one of the largest contributors to the FEA’s performance
[5]. Second, it sets each factor’s Ri values to those in the
full global solution G so that each factor P i can evaluate its
partial solution on f . The sharing algorithm is provided in
Algorithm 2.

The share algorithm iterates over all the factors and up-
dates each factor’s remaining values by setting each variable
Xj ∈ Ri to the value in G (lines 2-4). Next, the algorithm
injects information from G into factor P i. To accomplish
this, the algorithm finds the individual with the worst fit-
ness in P i (line 5). Then, the share algorithm sets the worst
individual pw’s current position to the values in G (lines 6
- 8). Finally, the fitness for pw is recalculated in line 9.

3.4 FEA
Now that the share and competition algorithms have been

defined, we can give the full FEA (Algorithm 3). The al-
gorithm works as follows. First, all of the subpopulations
are initialized according to the optimization algorithm be-
ing used and the subpopulation architecture (line 1). The
full global solution G is randomly initialized in line 2.

Next, the algorithm begins inter-factor optimization, which
consists of three steps (lines 3-11). First, the algorithm it-
erates over each factor and optimizes the values using the
corresponding search algorithm until some stopping criterion
is met (line 6). The optimization of each individual factor
is called the intra-population optimization step. Following

Algorithm 3 Factored Evolutionary Algorithm

Input: Function f to optimize, optimization algorithm A
Output: Full solution G

1: S ← initializeFactors(f,X, A)
2: G← initializeFullGlobal(S)
3: repeat
4: for all P i ∈ S do
5: repeat
6: P i.updateIndividuals()
7: until Termination criterion is met
8: end for
9: G← Compete(f,S,G)

10: S ← Share(G,S)
11: until Termination criterion is met
12: return G

intra-population optimization of all factors, competition oc-
curs between factors in the Compete function on line 9. Fi-
nally, the Share function on line 10 shares the updated best
states between the factors. These three inter-population op-
timization steps are repeated until the stopping criterion is
met.

4. CONVERGENCE OF FEA
One open question concerning FEA is its convergence be-

havior. Previous work with FEA has found that the full
global solution G always converged to a single solution; how-
ever, no one has analyzed under what conditions conver-
gence will occur. Here, we present work showing that the
full global solution G in FEA will converge to a single solu-
tion if the individual factors also converge. Additionally, we
show that FEA may converge to suboptimal solutions that
are not local minima.

4.1 Convergence to Single Solutions
First, we will prove under what conditions the full global

solution G converges to a single solution. The following as-
sumes the function being optimized is a minimization prob-
lem. We begin with some definitions.

Definition 1. Let ∆t
i be the change in factor Si’s best

position at time t where St
i = [st(i,1), s

t
(i,2), . . . , s

t
(i,k)] is the

best position for factor Si at time t, where each position s(i,j)
corresponds to a parameter in the function f : DN → R with
domain DN and parameters X. The change in the position
for a single factor Si is calculated as

∆t
i = d(St−1

i ,St
i) =

√√√√ K∑
j=1

(st−1
(i,j) − st(i,j))2

where K is the size of the factor.

Definition 2. Let df(Si)
t be the change in fitness in fac-

tor Si’s at time t, where

df(Si)
t = f(St−1

i ∪Rt−1
i)− f(St

i ∪Rt
i).

where Rt
i are the set of values from G.

Because Si is only updated if the fitness is strictly less than
the previous fitness, we know df(Si)

t ≥ 0.

Definition 3. Let ∆t
G be the change in position for G

where

∆t
G = d(Gt−1,Gt) =

√√√√ N∑
i=1

(gt−1
i − gti)2

and Gt = [gt1, g
t
2, . . . , g

t
N].

Definition 4. Let df(G)t be the change in fitness of G
at time t where

df(G)t = f(Gt−1)− f(Gt)

Definition 5. Let Df represent the search space for the
function f . Similarly, Let Dt

Comp be the search space for
the competition algorithm at time t. Note that Dt

Comp is a
discrete search space and is given by the set of best positions
from all factors,

Dt
Comp = [Dt

1, D
t
2, . . . , D

t
N]

where Dt
i is the set of values a variable Xi in G can assume

at time t,

Dt
i = [st(1,i), s

t
(2,i), . . . , s

t
(K,i)]

and st(1,i) is the best position at time t for the first factor S1

that optimizes parameter Xi.

Definition 6. Let Ct be the set of all points in which G
can assume at time t. The set Ct is determined by Dt

Comp

and consists of

Ct = {Dt
1 ×Dt

2 × · · · ×Dt
N},

where

Ct
i = [st(a,1), s

t
(b,2), . . . , s

t
(z,N)]

and st(a,1) is a value for variable X1 from a factor a. We

denote the size of Ct as L.

Definition 7. A factor Si converges when

lim
t→∞

∆t
i = 0.

Similarly, G is said to have converged when

lim
t→∞

∆t
G = 0.

Theorem 4.1. Assume that at time t− 1, G is at a local
optimum in Dt−1

Comp. If df(Si)
t = 0 for all factors i, then

∆t
G = 0 and df(G)t = 0.

Proof. If df(Si)
t = 0, then no factors were updated and

∆t
i = 0 for all i. This indicates that the search space remain

unchanged from t−1 to t and Ct−1 = Ct. Since G was at a
local optimum in Ct−1, G is also at a local optimum in Ct.
Because there are no single changes that the competition
algorithm can make to improve the fitness of G, ∆t

G = 0.
Finally, because G remains unchanged, so does its fitness
df(G)t = 0.

The above theorem shows that if the full global solution
is locally optimal and the search space Dt

Comp does not
change, then there are no changes that the competition al-
gorithm can make to increase the fitness of G. This leads us
to the next theorem, which relates the convergence of factors
to the convergence of G.

Theorem 4.2. If G is at a local optimum in Dt
Comp and

all factors have converged, then G has also converged.

Proof. By definition of convergence for a factor Si,

d(St−1
i ,St

i) = 0

St−1
i = St

i.

Therefore,

f(St−1
i) = f(St

i)

f(St−1
i)− f(St

i) = 0

df(Si)
t = 0

for all factors i. By Theorem 4.1, G will not change and
therefore has converged.

The above theorem requires that all of the factors have
already converged to guarantee the full global solution also
converges. We relax this constraint in the next Theorem
by only assuming that at some point in time the factors
converge.

Theorem 4.3. If all the factors Si in FEA converge at
some point in time during FEA’s optimization of f , then the
full global solution G will also converge.

Proof. By definition of convergence for each factor Si,

lim
t→∞

∆t
Si

= 0.

Thus,

lim
t→∞

√√√√ N∑
j=1

(si,j t−1 − si,j t)2 = 0.

Because the distance function is positive semidefinite,

lim
t→∞

(si,j
t−1 − si,j t)2 = 0

for all j in i. Let ∆t
C be the change in A at time t,

∆t
C =

∑L
i=1 d(Ct−1

i , Ct
i)

L

where Ct
i is the ith point in C at time t, and d is the Eu-

clidean distance. Because Ct−1
i,j is factor k’s value for vari-

able j, we know that the sequence of values will converge

lim
t→∞

(Sk,j
t−1 − Sk,j

t)2 = 0

therefore,

lim
t→∞

(Ct−1
i,j − C

t
i,j)

2 = 0.

for all j given i. Additionally,

lim
t→∞

d(Ct−1
i , Ct

i) = 0

for all factors i. Putting this together gives us

lim
t→∞

∑M
i=1 d(Ct−1

i ,Ct
i)

M
= 0.

So,

lim
t→∞

∆t
C = 0.

Recalling that this is a discrete search space with a finite
number of points for the competition algorithm to explore,

this shows that the search space Dt
Comp also converges to

a set of discrete points. Eventually, the competition algo-
rithm, which is a local search algorithm (i.e., Hill Climbing),
will either reach a local optimum or hit all points. Therefore,
G will converge.

The above theorem requires that all of the factors in FEA
have converged. However, it is possible for the full global
solution in FEA to converge even if not all of the factors
have converged. Instead, we only require that G is a local
optimum in all subsequent search spaces, which allows for
some of the factors to not converge.

Theorem 4.4. If G is a local optimum in all spaces Dt
Comp

∀t > t0, then G has converged.

Proof. Since G was at a local optimum in Ct for all
future time past t0, there are no single changes that the
competition algorithm can make to improve the fitness of G
during each FEA iteration. Therefore, ∆t

G = 0, which by
definition is the convergence of G.

4.2 Pseudominimum Convergence
The previous section showed that if the search space for

the competition algorithm converges or if G is at a local
optimum, then the full global solution G will converge to
a single point. However, it is unknown to what kind of
solutions the full global solution will converge. Additionally,
while G may be located at a local optimum in Dt

Comp, it
may not be a local optimum in Dt

f . Here, we prove that G
may become stuck in suboptimal points in the search space
known as pseudominima.

Definition 8. A local minimum is a point

x∗ = (x1, x2, . . . , xN)

if there exists some ε > 0 such that f(x∗) < f(x) for all
points within a distance ε from x∗.

Definition 9. Given a subspace S in RK where K < N ,
a pseudominimum is a point

xp = (x1, x2, . . . , xN)

such that xp is a local minimum in the subspace S but is not
a local minimum for f .

Definition 10. Given a subspace S in RK where K <
N , a global pseudominimum is a point

xp = (x1, x2, . . . , xN)

such that xp is a global minimum in the subspace S but is
not a local or global minimum for f .

Example 1. An example of a global pseudominimum is
the point (0, 0) for the function

f(X) = g(h(X)) (1)

where

g(X) = X2
1 +X2

2−

(tanh(10X1) + 1) (tanh(−10X2) + 1) exp

(
X1 +X2

3

)

−5

0

5

−5
0

5

−100

0

X
Y

f
(X

,Y
)

Figure 1: An inverse plot of Equation 1. Point (0, 0)
is an example of a global pseudominimum.

and h(X, θ) is a rotation operator defined as

h(X, θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
X1

X2

]
.

To highlight the shape of the function, we plot the inverse in
Figure 1. The point (0, 0) is a global pseudominimum in the
subspace defined by the y axis at X = 0 because moving in
any direction in the y-axis, the function increases in value.
However, the point is not a local minimum since the function
can be decreased in the x and y axes simultaneously.

We also make note of a special set of pseudominima, called,
maximal pseudominima, which are defined as follows.

Definition 11. Given a subspace S in RK where K <
N , a maximal pseudominimum is a point

xp = (x1, x2, . . . , xN)

such that xp is a local minimum in the subspace S but is not
a local minimum for S ∪Xi for all variables in RN .

Definition 11 differs from Definition 9 in a key way. A
pseudominimum in subspace S may also be a pseudomin-
imum S ∪ Xi where Xi is some dimension not in S. The
definition of a pseudominimum only requires that a point
not be a local minimum for all dimensions. For example, a
point may be a pseudominimum in two dimensions X1 and
X2 for a function with 5 variables X1, X2, X3, X4, X5. But
it may also be a pseudominimum in the dimensions X1, X2,
and X3. If the point is not a pseudominimum in the sub-
spaces X1, X2, X3, X4 and X1, X2, X3, X5, then it is a
maximal pseudominimum.

We note that pseudominima are similar to saddle points.
While saddle points are pseudominima, not all pseudomin-
ima are saddle points. For example, (0, 0) in Figure 1 is a
pseudominimum but is not a saddle point.

With these definitions, we can now give the following the-
orems. First, we show that there exist global pseudominima
that will trap FEA. The second theorem generalizes this ex-
istence theorem by showing under what conditions FEA will
become trapped by global pseudominima.

0
1

2
3

4
0 1 2 3 4 5

1

2

3

4

5

X∗

X
Y

Z

Figure 2: Three-dimensional function with a pseu-
dominimum when projected into primary planes.

Theorem 4.5. There exist global pseudominima that will
trap FEA.

Proof. We prove this by example. Assume we are given
a function f : DN → R with domain DN , that the output
of the function is greater than 0, and the function is strictly
increasing when moving in any direction from the origin.
Additionally, there exists a simplex with a point at the ori-
gin where the rest of the points that define the simplex are
strictly greater than 0. At the the tip of simplex, the output
of f is equal to the origin, and within the simplex, the fitness
decreases from all of the points that define the simplex to a
local minimum X∗ = (X∗1 , X

∗
2 , . . . , X

∗
N).

An example function with 3 dimensions is shown in Fig-
ure 2 with the sides of the triangle region projected onto
the primary planes. In this example, the function for three
variables X,Y and Z, is equal to f(X) = ||X||. The only
exception is in a triangle shaped region where f(X) < 0.
Let B be the simplex region. We represent the function as

f(X) =

{
g(X) if B contains X√
X2 + Y 2 + Z2 else

where

g(X) = (X −X∗)2 + (Y − Y ∗)2 + (Z − Z∗)2 − C.

C is a constant value to ensure that all values of the function
g within the simplex are negative.

Suppose an FEA is applied with factors S1, S2, . . .SM

where each factor Si optimizes over a pair of variablesXj , Xk.
Note that the origin (0, 0 . . . , 0) is a global pseudominimum
defined by the FEA’s factors since moving in only two di-
rections causes f to increase in value. However, the origin
is not a local minimum since f decreases in value by moving
in all N directions simultaneously. thereby moving into the
simplex with negative values.

Suppose the FEA has a full global solution G at the origin
(0, 0, . . . , 0). If during factor S1’s solve step it evaluates the
point X∗1 , X

∗
2 , the fitness will be some value L. By definition

of f , the output is strictly increasing when moving away
from the origin, and therefore, L is greater than 0. This is

because FEA uses the full global solution G to evaluate the
values X∗1 , X

∗
2 .

In the example shown in Figure 2, this would equate to
three factors: S1,S2, and S3, each of which optimizes over
variables XY , Y Z and XZ, respectively. Additionally, G =
(0, 0, 0). Factor S1 would evaluate the point X∗, Y ∗ as

f(X∗, Y ∗, 0) =
√

(X∗)2 + (Y ∗)2.

Note that this point is not within the simplex because all
points that define the simplex are strictly greater than 0.

Because the fitness of X∗, Y ∗ is greater than 0 and the
current best fitness of the factor, the factor discards this
point and X∗1 , X

∗
2 will not be used in the competition and

sharing steps. Consequently, the full global solution is un-
able to move from the origin to (X∗, Y ∗, 0, . . . , 0). This same
phenomenon will also occur for all factors; therefore, FEA
will be stuck at the global pseudominimum.

Theorem 4.6. Given an FEA, let S be a set of subspaces
RK as defined by the set of factors in the FEA. If FEA’s full
global solution reaches a point p that is a global pseudomin-
imum in all subspaces Si ∈ S, then FEA will be unable to
escape p.

Proof. Assume we are given a function f : DN → R
with domain DN and that the FEA has a set of factors
S1, S2, . . .SM . Also, assume that the full global solution
G = (X∗1 , X

∗
2 , . . . X

∗
N) is at a point p that is a global pseu-

dominimum. By definition of a global pseudominimum, each
factor Si will be unable to move to a better position because
all other points in the subspace that factor Si is searching
over will have fitness greater than the current fitness of Si at
p. Since each factor will be unable to locate a position with
better fitness than its current position, the factor will not
use other values different than those in G during the compe-
tition and sharing steps of FEA. Because no other values are
used during competition, the full global solution is unable to
move from the global pseudominimum; therefore, FEA will
be unable to escape from the global pseudominimum.

While this shows that FEA may become stuck, the factors
must be optimizing over the variables that induce the pseu-
dominimum. For example, if a factor is optimizing over all
3 variables in Figure 2, then the factor using hill climbing
as the algorithm will not be trapped by the point (0,0,0).
This suggests that if it is known where a pseudominimum
occurs, then there should exist a factor that optimizes over a
superset of variables that induce the pseudominimum. Note
also that this only works if the pseudominimum is maximal.

Another consequence of this result is that it may provide
another explanation of the results presented by Strasser et
al. as to why certain factor architectures outperform others
[27]. In that work, the authors hypothesized that the best
factor architecture performed better than the other architec-
ture because the better performing architecture minimized
hitchhiking. However, the performance of the better factor
architecture may also be due to fact that the factors have
less chance of becoming trapped in pseudominima.

5. HYBRID FEA
In the previous section, we showed that the full global

solution G in FEA will converge to a single solution. How-
ever, similar to CPSO, FEA may converge to suboptimal

Algorithm 4 Hybrid Factored Evolutionary Algorithm

Input: Function f to optimize, optimization algorithm A
Output: Full solution G

1: S ← initializeFactors(f,X, A)
2: G← initializeFullGlobal(S)
3: repeat
4: for all Si ∈ S do
5: repeat
6: Si.updateIndividuals()
7: until Termination criterion is met
8: end for
9: G← Compete(f,S)

10: Share(G,S)
11: Full.seed(G)
12: repeat
13: Full.updateIndividuals()
14: until Termination criterion is met
15: if Full.bestFitness() is better than f(G) then
16: G← Full.bestSolution()
17: end if
18: until Termination criterion is met
19: return G

solutions called pseudominima that regular EA are able to
escape. As described earlier, van den Bergh and Engelbrecht
proposed an extension to the CPSO algorithm called Hy-
brid Cooperative Particle Swarm Optimization (CPSO-H).
CPSO-H combined the benefits of CPSO and a regular PSO
by performing a number of iterations using CPSO followed
by running a regular PSO. By performing several iterations
with a full PSO, CPSO-H is able to escape pseudominima
because an individual is able to modify all variables in one
round of updates. Here, we present a similar extension to
FEA called FEA-H (Algorithm 4).

FEA-H works as follows. First, it performs the same set of
operations as FEA—Update, Compete, and Share—in lines
1–10. Next, FEA-H performs a set of updates to the full EA
population, which is denoted as Full. First, the position of
the individual with the worst fitness from Full is set to the
full global solution G (line 11). In line 14, the full popula-
tion updates its individuals until some stopping criteria is
satisfied. Finally, the fitness of the best solution in Full is
compared with G. If the fitness of the best individual from
the full population is better than the full global solution,
then the algorithm sets G to solution with the better fit-
ness (line 16). However, if the fitness is not better, then no
changes are made to G.

By running a set of iterations with a full EA, FEA-H is
should be able to escape pseudominima. This is because
when Full updates its individuals, each individual has the
opportunity to change every variable simultaneously. For
example, in Figure 1, the full population is able to move in-
dividuals from the origin to the optimal solution by following
the incline on the ridge. However, if the factor architecture
subsumes the pseudominima in the fitness landscape, then
FEA will not become stuck at suboptimal solutions, and
FEA-H will provide little to no benefit over FEA.

6. EMPIRICAL ANALYSIS
As shown in Section 4, FEA is still susceptible to pseudo-

minima. However, FEA only becomes stuck at these points

if the factors are optimizing over a subset of variables in Rk.
We hypothesize that for certain factor architectures in FEA,
the probability of pseudominima becomes low. To test this
hypothesis, we compare versions of CPSO and FEA with the
hybrid version of CPSO-H presented by Van de Bergh and
Englebrecht [31]. In addition, we compare all algorithms
with FEA-H presented in Section 5. If FEA does become
stuck in pseudominima, then one would expect FEA-H to
outperform FEA because the full population in FEA-H al-
lows the algorithm to escape pseudominima. However, if
FEA does not become stuck in pseudominima, FEA-H will
provide little to no benefit over FEA.

For the test problems we chose NK landscapes, abductive
inference in Bayesian Networks, and some common bench-
mark optimization problems. NK landscapes were included
because they represent commonly used functions for eval-
uating the performance of evolutionary algorithms applied
to epistatic functions. We included abductive inference in
Bayesian Networks because they are a practical combinato-
rial optimization problem.

Because the focus in this set of experiments is to analyze
the convergence of FEA, we restrict our analysis to using
PSO as the underlying search algorithm. Previous work by
Strasser et al. has already demonstrated the performance of
FEA versions with Genetic Algorithms, Differential Evolu-
tion, Particle Swarm Optimization, and simple Hill Climb-
ing over single population and Cooperative Coevolutionary
versions. On the NK landscapes and abductive inference,
we used a modified version of PSO since both problems are
functions with a discrete input. To handle these problems,
we used the Integer and Categorical Particle Swarm Opti-
mization (ICPSO) algorithm proposed by Strasser et al as
the underlying search algorithm [28].

6.1 Integer and Categorical PSO
The Integer and Categorical Particle Swarm Optimiza-

tion (ICPSO) algorithm is a new PSO algorithm developed
by Strasser et al. that has been shown to outperform other
discrete PSO algorithms [28]. The ICPSO algorithm incor-
porates ideas from Estimation of Distribution Algorithms
(EDAs) in that particles in the PSO represent probability
distributions rather than solution values, and the PSO up-
date modifies the probability distributions. This differs from
other PSO variants, where a particle’s position is often a di-
rect representation of the solution values.

In ICPSO, a particle p’s position is represented as

Xp = [Dp,1,Dp,2, . . . ,Dp,n]

where each Dp,i denotes the probability distribution for vari-
able Xi. In other words, each entry in the particle’s position
vector is itself comprised of a set of distributions:

Dp,i = [dap,i, d
b
p,i, . . . , d

k
p,i],

where djp,i corresponds to the probability that variable Xi

takes on value j for particle p.
A particle’s velocity is a vector of n vectors φ, one for each

variable in the solution, that adjust the particle’s probability
distributions.

V p = [φp,1, φp,2, . . . , φp,n]

φp,i = [ψa
p,i, ψ

b
p,i, . . . , ψ

k
p,i].

where ψj
p,i is particle p’s velocity for variable i in state j. The

velocity and position update equations are identical to those
of traditional PSO and applied directly to the continuous
values in the distribution.

Vp = ωVp + U(0, φ1)⊗ (pBest−Xp)

+ U(0, φ2)⊗ (gBest−Xp)

Xp = Xp+Vp

The difference operator is defined as a component-wise dif-
ference between the two position vectors, i.e. for each vari-
able Xi and value j ∈ V als(Xi), d

j
(pBestp−Pp),i = djpB,i −

djp,i. Here, djpB is the personal best position’s probability
that variable Xi takes value j. The global best equation is
identical except pBestp is replaced with gBest and djpB,i

with djgB,i. The addition of the velocity vector to the po-
sition vector is similarly component-wise over each value in
the distribution. For each probability for variable Xi and
possible value j, the addition is djp,i + ψj

p,i.
After the velocity and position update, an extra check

is performed to ensure that probabilities fall within [0, 1].
Additionally, the distribution is normalized to ensure that
its values sum to 1.

To evaluate a particle p, its distributions are sampled to
create a candidate solution

Sp = [sp,1, sp,2, . . . , sp,n]

where sp,j denotes the state of variable Xj .
The fitness function is used to evaluate the sample’s fit-

ness, which then is used to evaluate the distribution. When
a particle produces a sample that beats the global or lo-
cal best, both the distributions from that particle’s posi-
tion, P p, and the sample itself, Sp, are used to update the
best values. Mathematically, for all states j ∈ V als(Xi) the
global best’s probability is updated as

djgB,i =

ε× djp,i if j 6= sp,i
djp,i +

∑
k∈V als(Xi)
∧k 6=j

(1− ε)× dkp,i if j = sp,i

where ε, the scaling factor, is a user-set parameter that de-
termines the magnitude of the shift in the distribution re-
stricted to [0, 1). This increases the likelihood of the distri-
bution producing samples similar to the best sample, while
inherently maintaining a valid probability distribution. The
procedure for setting the local best is directly analogous.
The global best sample is returned as the solution at the
end of optimization.

6.2 Test Problems

6.2.1 NK landscapes
An NK landscape model contains two parameters, N and

K, that control the overall size of the landscape and the
structure or amount of interaction between each dimension,
respectively [11]. It is defined by a function f : BN → R+

where BN is a bit string of length N . K specifies the num-
ber of other bits in the string on which a bit is dependent.
This interaction is often referred to as epistasis. Given a
landscape, the fitness value is calculated as

f(X) =
1

N

N∑
i=1

fi(Xi, nbK(Xi))

where nbK(Xi) returns the K bits that are located within
Xi’s neighborhood. The individual factors fi are then de-
fined as fi : BK → R+ and the values of fi are generally
created randomly.

There are multiple ways to define the neighborhood func-
tion. In our work, we used the next K contiguous bits of
the string starting at Xi. If the end of the string is reached,
then the neighborhood wraps back around to the beginning
of the string. We generated NK landscapes with parameters
N = 25, 40, 50, and K = 5. For each set of parameters, we
created 30 random landscapes and ran each algorithm 30
times.

6.2.2 Bayesian Networks
A Bayesian network is a directed acyclic graphG = (V,E)

that encodes a joint probability distribution over a set of
random variables, where each variable can assume one of an
arbitrary number of mutually exclusive values [13, 18]. In a
Bayesian network, each random variable Xi is represented
by a node, and edges between nodes in the network rep-
resent probabilistic relationships between the random vari-
ables. Each root node contains a prior probability distribu-
tion while each non-root node contains a local probability
distribution conditioned on the node’s parents.

A common type of query for Bayesian networks is called
abductive inference, which finds the most probable state as-
signment to a set of unobserved variables given a set of ob-
served variables (evidence). To evaluate the fitness of a state
assignment in abductive inference, we used the log likelihood
`, which is calculated

`(x) =

n∑
i=1

logP (xi|Pa(xi))

where x = {x1, x2...xn} is a complete state assignment and
Pa(xi) corresponds to the assignments for the parents of Xi.
However, in all our experiments, we used an empty evidence
set to minimize the number of parameters in the experiment.
For test networks, we used the Alarm, Andres, Child, Hail-
finder, Hepar2, Insurance, and Win95pts Bayesian networks
from the Bayesian Network Repository [24].

6.2.3 Benchmark Optimization Problems
For the benchmark functions, we chose the following: Ack-

ley’s, Dixon Price, Exponential, Griewank, Rastrigin, Rosen-
brock, Schwefel 1.2, and Sphere [10]. All of the problems are
minimization problems with optimal finesses of 0.0 except
for Exponential, whose optimal fitness is -1.0. All of the
problems are scalable, meaning they can be optimized for
versions of any dimension. The Sphere function is separable.
The remaining functions are non-separable with most func-
tions depending on adjacent, overlapping dimensions such as
xi and xi+1. All functions were tested with 30 dimensions.

6.3 Setup
For the FEA algorithm on the NK landscapes and Bayesian

networks, we used the Markov blanket factor architecture
proposed by Fortier et al. since this was shown by Strasser
et al. to outperform all other architectures on Bayesian net-
works and NK landscapes [5, 27]. On the Benchmark func-
tions, we used the Simple Centered (SC) architecture of size
two proposed by Strasser et al. since SC architecture had
the most consistent performance over all functions [27]. The
SC architecture creates a factor for each neighboring pairs

of variables in an ordered list of variables corresponding to
the function definition.

For the CPSO algorithms, we had each subswarm optimize
over two variables in the problem. This subswarm size was
found to have the most consistent performance during the
tuning of the algorithms. Furthermore, even when other
subswarm sizes performed better than those used here, the
differences were not significant.

Each algorithm was given a total of 400 individuals to
divide between their subswarms. For the hybrid algorithms
CPSO-H and FEA-H, an additional 10 individuals were used
for the full algorithm step of the algorithms. These values
were found to perform well for all algorithms during tun-
ing. On the NK landscapes and abductive inference, both
versions of CPSO and FEA used ICPSO as the underly-
ing search algorithm. On the benchmark problems, we used
canonical PSO. For both PSOs, the ω parameter was set to
0.729, and φ1 and φ2 were both set to 1.49618. In ICPSO,
the scaling value ε was set to 0.75. These values were found
to perform well for all algorithms on all problems during
tuning of the algorithms.

6.4 Results
Table 1 shows the results comparing CPSO, CPSO-H,

FEA, and FEA-H on maximizing NK landscapes. Results
from abductive inference on Bayesian networks are shown
in Table 2 Note that both these problems are maximiza-
tion. Results comparing CPSO, CPSO-H, FEA, and FEA-
H on minimizing the benchmark functions are in Table 3.
All results are expressed as means over 30 trials with stan-
dard errors in parentheses. Bold values indicate a significant
difference between the regular CPSO or FEA algorithms
with the hybrid versions using Mann-Whitney U test with
α = 0.05. Note that we did not perform any statistical test-
ing between CPSO and FEA because it has already been
shown by Strasser et al. that FEA outperforms CPSO.

As we can see in the NK landscape results, CPSO-H out-
performed CPSO on two out of the three landscapes, but
was only significantly better on N = 25,K = 5. Only on
the larger problems (N = 50) did CPSO-H tie with CPSO-
H. However, when looking at the FEA, the hybrid version
of FEA was always outperformed by regular FEA, so hy-
bridization provided no benefit and appears to have hurt
performance.

The Bayesian network results show a similar trend in com-
paring regular and hybrid versions of CPSO and FEA. On
the Andes, Hailfinder, Insurance, and Win95pts networks,
CPSO-H outperformed CPSO significantly. Additionally, it
was not outperformed by CPSO on the Alarm and Child
networks. Only on the Hepar2 networks did CPSO signifi-
cantly outperform CPSO-H. FEA outperformed FEA-H sig-
nificantly on the Andes, Hailfinder, and Win95pts networks.
Furthermore, it was only outperformed by FEA-H on the
Child and Hepar2 networks. Note that in both of these
cases, there was no significant difference between FEA and
FEA-H.

On the benchmark functions, CPSO-H outperforms CPSO
significantly on Griewank and Schwefel whereas, CPSO per-
forms significantly better than CPSO-H on the Ackleys,
Dixon Price, Exponential, Rastrigin and Sphere functions.
FEA outperformed FEA-H by a significant margin on all
functions except the Griewank function, where FEA-H out-
performed FEA. We also note that the trends in the dif-

ferences between CPSO and CPSO-H are similar to that of
FEA and FEA-H. Only on the Schwefel function was there
a significant difference in the trends of CPSO and CPSO-H
with that of FEA and FEA-H.

6.5 Analysis
From the NK landscape, Bayesian network, and bench-

mark results, we see that the full PSO steps used by FEA-H
provided a performance gain only a few times. In partic-
ular, FEA-H only significantly outperformed FEA on the
Griewank function. Additionally, in many of the problems,
the full population steps in FEA-H hurt the performance.

While CPSO-H significantly outperformed CPSO on the
majority of the NK landscapes and Bayesian networks, CPSO
performed significantly better than CPSO-H on the majority
of the benchmark functions. There are two possible reasons
for this result. One is that in the majority of the functions,
there are fewer pseudominima that trap CPSO; therefore,
CPO-H provides fewer benefits than regular CPSO. The
other possible reason is that the creation of the subswarms
for CPSO leads to the ability to avoid the pseudominima in
the search space on the majority of the functions.

Another result we would like to make note of is the similar-
ities between CPSO and FEA on the benchmark functions.
We believe that the similarity of these results is due to the
subswarm (factor) size for both CPSO and FEA being set
to two thus not adequately capturing all of the variable in-
teractions. Even with these similarities, on the Rosenbrock
and Schwefel functions, CPSO did not outperform CPSO-
H whereas FEA outperformed FEA-H on both these func-
tions. Specifically, with Rosenbrock and Schwefel functions
the overlap in FEA appears to allow the subpopulations to
capture the majority of the of the variable interactions that
CPSO is unable to capture. Again, this is because CPSO
subpoulations optimize only disjoint sets of variables.

For the NK landscape and Bayesian networks, we believe
that the performance of FEA over FEA-H is because the fac-
tors in FEA are less susceptible to pseudominima than the
subswarms in CPSO. In the benchmark functions, CPSO
was able to escape the majority of the pseudominima. But
on the NK landscapes and Bayesian networks, CPSO had
a higher liklihood of becoming trapped in pseudominima,
which explains why CPSO-H often outperformed CPSO.
Meanwhile, the factors in FEA are less prone to get stuck
in pseudominima because they are optimizing over larger
groups of subspaces that induce the pseudominima; there-
fore, the full PSO steps are not needed.

We explored this hypothesis further by running an exper-
iment where, during FEA, we checked to see if the factors’
best solutions were at a pseudominimum after the compete
step. Because the Bayesian networks and NK landscapes
are discrete problems, we are able to look at all neighboring
states of a factor. For a given factor Si, if there does not
exist a neighboring state with better fitness, then Si could
be at a pseudominimum. However, this point could also be
a true local minimum. To see if Si is in fact at a pseudomin-
imum, we check to see if any neighboring points of Si ∪Ri

have better fitness. If there does exist a neighboring point
of Si ∪Ri with better fitness, then Si is a true pseudomini-
mum. However, if there are no neighboring points of Si∪Ri

with better fitness, then Si is at a local minimum and not a
pseudominimum. If the factor is not at a pseudominima or
local minima, it is ignored in the calculation. This is because

Table 1: Results from comparing regular and hybrid versions of CPSO and FEA on NK landscapes.
CPSO CPSO-H FEA FEA-H

N=25, K = 5 1.78E+01(6.06E−02) 1.83E+01(3.80E−02)1.83E+01(3.80E−02)1.83E+01(3.80E−02) 1.91E+01(3.15E−02)1.91E+01(3.15E−02)1.91E+01(3.15E−02) 1.89E+01(3.19E−02)
N=40, K = 5 2.81E+01(1.09E−01) 2.86E+01(7.00E−02) 3.05E+01(4.72E−02)3.05E+01(4.72E−02)3.05E+01(4.72E−02) 3.01E+01(5.08E−02)
N=50, K = 5 3.47E+01(1.31E−01)3.47E+01(1.31E−01)3.47E+01(1.31E−01) 3.47E+01(6.74E−02) 3.81E+01(3.87E−02)3.81E+01(3.87E−02)3.81E+01(3.87E−02) 3.65E+01(5.11E−02)

Table 2: Results from comparing regular and hybrid versions of CPSO and FEA on Bayesian networks.
CPSO CPSO-H FEA FEA-H

Alarm −1.99E+01(2.01E+00) −1.59E+01(1.49E+00) −9.12E+00(5.44E−01) −9.87E+00(6.45E−01)
Andes −2.01E+02(8.72E+01) −1.72E+02(7.12E+00)−1.72E+02(7.12E+00)−1.72E+02(7.12E+00) −7.37E+01(8.34E−01)−7.37E+01(8.34E−01)−7.37E+01(8.34E−01) −8.80E+01(1.30E+00)
Child −9.54E+00(5.08E−01) −9.06E+00(4.48E−01) −6.61E+00(3.03E−01) −6.57E+00(2.98E−01)
Hailfinder −7.39E+02(1.60E+02) −2.28E+02(6.92E+01)−2.28E+02(6.92E+01)−2.28E+02(6.92E+01) −3.43E+01(3.61E−01)−3.43E+01(3.61E−01)−3.43E+01(3.61E−01) −3.57E+01(3.18E−01)
Hepar2 −1.86E+01(4.48E−01)−1.86E+01(4.48E−01)−1.86E+01(4.48E−01) −2.14E+01(7.96E−01) −1.81E+01(4.35E−01) −1.76E+01(3.04E−01)
Insurance −3.26E+02(8.56E+01) −1.57E+01(9.07E−01)−1.57E+01(9.07E−01)−1.57E+01(9.07E−01) −9.65E+00(4.13E−01) −1.04E+01(2.91E−01)
Win95pts −2.65E+02(1.10E+02) −1.17E+02(3.46E+01)−1.17E+02(3.46E+01)−1.17E+02(3.46E+01) −1.82E+01(5.90E−01)−1.82E+01(5.90E−01)−1.82E+01(5.90E−01) −3.26E+01(1.16E+00)

5 10 15 20

0

0.2

0.4

0.6

0.8

1

Iterations

P
ro
b
.
o
f
P
se
u
d
o
m
in
im

u
m

M
in

CPSO

FEA

Figure 3: Probability of pseudominimum for NK
landscape N = 25, K = 5.

a factor not at a local or pseudominimum suggests that the
factor is still in the process of moving towards a better area
in the search space.

We ran these experiments on the NK landscape with N =
25, K = 5, and on the Insurance network. Results for both
CPSO and FEA are shown in Figures 3 and 4 respectively.
In both these figures, the X-axis represents the number of
iterations of the evolutionary algorithm. The Y -axis gives
the probability of a pseudominimum at each iteration and
is calculated as

#pm

#pm+ #lm

where #pm is the number of factors at a pseudominimum
and #lm is the number of factors at a local minimum. A
value of 1 means that all subswarms and factors are located
at pseudominima while 0 indicates that all factors are lo-
cated at local minima. Note that there is a possibility that
the probability of a pseudominimum may become undefined
if none of the factors are at a local minima or pseudomin-
ima. However, those instances were never encountered in
these experiments.

5 10 15 20

0

0.2

0.4

0.6

0.8

1

Iterations

P
ro
b
.
o
f
P
se
u
d
o
m
in
im

u
m

M
in

CPSO

FEA

Figure 4: Probability of pseudominimum for Insur-
ance network

As we can see in the two figures, both CPSO and FEA
begin with a high probability of being located at pseudomin-
ima. This is likely due to the fact that the subswarms have
just begun to locate good areas in the search space and are
still moving towards those areas. However, we can see that
the probability of factors being located at pseudominima in
FEA decreases much faster than CPSO. Additionally, as the
number of iterations increase, the probability for FEA be-
comes closer to zero. While the probability of CPSO does
decrease over time, there is approximately a 20% probabil-
ity of a subswarm being located at a pseudominimum. Fi-
nally, we note that the probability of pseudominima never
increases because the definition of pseudominimum excludes
a local minimum. Once a factor reaches a local minimum,
it becomes more difficult for the factor to escape the local
minimum, thus reducing the likelihood of a factor moving
from a local minimum to a pseudominimum.

These results highlight why CPSO-H sees greater perfor-
mance gains over CPSO than FEA-H does over FEA. On
the NK landscapes and Bayesian networks, CPSO becomes
trapped in pseudominima. CPSO-H is able to escape these

Table 3: Results from comparing regular and hybrid versions of CPSO and FEA on benchmark functions.
CPSO CPSO-H FEA FEA-H

Ackleys 6.47E−06(3.86E−07)6.47E−06(3.86E−07)6.47E−06(3.86E−07) 5.61E−05(6.24E−06) 6.12E−06(7.39E−07)6.12E−06(7.39E−07)6.12E−06(7.39E−07) 9.90E−05(1.20E−05)
Dixon Price 2.22E−02(2.22E−02)2.22E−02(2.22E−02)2.22E−02(2.22E−02) 2.17E−01(1.52E−01) 4.44E−02(3.09E−02)4.44E−02(3.09E−02)4.44E−02(3.09E−02) 1.56E−01(5.23E−02)
Exponential −1.00E+00(2.95E−10)−1.00E+00(2.95E−10)−1.00E+00(2.95E−10) −1.00E+00(1.02E−08) −1.00E+00(1.47E−10)−1.00E+00(1.47E−10)−1.00E+00(1.47E−10) −1.00E+00(7.34E−08)
Griewank 3.17E−02(1.95E−02) 3.11E−03(1.50E−03)3.11E−03(1.50E−03)3.11E−03(1.50E−03) 4.77E−02(8.32E−03) 5.33E−03(1.99E−03)5.33E−03(1.99E−03)5.33E−03(1.99E−03)
Rastrigin 4.34E+00(3.83E−01)4.34E+00(3.83E−01)4.34E+00(3.83E−01) 5.27E+00(3.76E−01) 3.38E+00(2.96E−01)3.38E+00(2.96E−01)3.38E+00(2.96E−01) 4.51E+00(4.49E−01)
Rosenbrock 2.81E+00(5.77E−01) 2.28E+01(1.40E+01) 9.29E+00(3.07E+00)9.29E+00(3.07E+00)9.29E+00(3.07E+00) 4.80E+01(7.22E+00)
Schwefel 2.86E+05(5.31E+04) 1.42E+03(5.08E+02)1.42E+03(5.08E+02)1.42E+03(5.08E+02) 6.06E+02(5.63E+01)6.06E+02(5.63E+01)6.06E+02(5.63E+01) 1.00E+03(6.96E+01)
Sphere 2.15E−08(6.64E−09)2.15E−08(6.64E−09)2.15E−08(6.64E−09) 7.48E−07(1.68E−07) 8.97E−09(1.20E−09)8.97E−09(1.20E−09)8.97E−09(1.20E−09) 3.21E−06(1.15E−06)

pseudominima and continue searching towards better solu-
tions. FEA, on the other hand, has a smaller probability of
becoming stuck in a pseudominima; therefore, the full swarm
steps in FEA-H provide less benefit because the algorithm
is already able to move towards good locations in the search
space.

While the results suggest that FEA is less prone to pseu-
dominima, the benchmark results suggest that the architec-
ture is not the best for all functions. This is demonstrated
by FEA-H significantly outperforming FEA on the Griewank
function. We believe that main cause is that the factor ar-
chitecture used for the Griewank function is suboptimal, and
given a better factor architecture, we may see FEA outper-
form FEA-H. However, despite a suboptimal factor architec-
tures, FEA is still competitive with both FEA-H and both
versions of CPSO.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proved that the full global solution G

found by FEA will converge to a single point if the individ-
ual factors also converge. Even so, we also proved that FEA
is still susceptible to pseudominima. Despite the fact that
FEA can become stuck at pseudominima, we demonstrated
that, when using certain factor architectures, the probabil-
ity of factors becoming stuck at pseudominimum approaches
zero. To test this, we compared hybrid versions of CPSO and
FEA and demonstrated that FEA-H did not provide signif-
icant performance gains on discrete problems. Additionally,
we showed that over time, FEA has a lower probability of
pseudominimum than CPSO.

There are a variety of areas we wish to explore for fu-
ture work. The first is further investigation into the dif-
ferent factor architectures for benchmark functions. While
previous work by Strasser et al. showed the Simple Center
factor architecture has consistent performance, the results
comparing FEA and FEA-H suggest that it may not be the
best architecture for all functions [27]. Strasser et al. were
also able to show that the Markov architecture was the best
for abductive inference in Bayesian networks. One possible
way to derive better factor architectures for the benchmark
functions would be to map the functions to a Bayesian net-
work and then use the resulting Markov blankets as a way
to derive factors for FEA.

Another area of research is a more in depth analysis of
FEA’s different parameters, such as the number of itera-
tions during the update step. These different parameters
could also affect the complexity of FEA. As demonstrated
by Strasser et al, FEA requires more fitness evaluations than
its single-population counterparts [27]. One possible expla-
nation is that this increase in complexity is driven by the

number of iterations FEA allows each subpopulation to per-
form during the Update step. To verify this, we plan to vary
the number of iterations allowed during the update step and
compare the performance in terms of fitness and number of
fitness evaluations.

Finally, we plan to apply FEA to a wider range of prob-
lems; for example, additional benchmark test functions and
combinatorial optimization problems such as MaxSAT. This
will help inform us further regarding to what type of prob-
lems FEA is most effective at solving. Additionally, we want
to investigate the scalability of FEA by applying it to large
optimization problems.

8. REFERENCES
[1] S. Das and P. N. Suganthan. Differential evolution: A

survey of the state-of-the-art. IEEE Transactions on
Evolutionary Computation, 15(1):4–31, 2011.

[2] M. Elad, B. Matalon, and M. Zibulevsky. Coordinate
and subspace optimization methods for linear least
squares with non-quadratic regularization. Applied
and Computational Harmonic Analysis, 23(3):346–367,
2007.

[3] N. Fortier, J. Sheppard, and K. G. Pillai. Bayesian
abductive inference using overlapping swarm
intelligence. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS), pages 263–270. IEEE,
2013.

[4] N. Fortier, J. Sheppard, and S. Strasser. Learning
Bayesian classifiers using overlapping swarm
intelligence. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS), pages 1–8. IEEE, 2014.

[5] N. Fortier, J. Sheppard, and S. Strasser. Abductive
inference in Bayesian networks using distributed
overlapping swarm intelligence. Soft Computing,
19(4):981–1001, 2015.

[6] N. Fortier, J. Sheppard, and S. Strasser. Parameter
estimation in Bayesian networks using overlapping
swarm intelligence. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO),
pages 9–16. ACM, 2015.

[7] N. Fortier, J. W. Sheppard, and K. Pillai. DOSI:
training artificial neural networks using overlapping
swarm intelligence with local credit assignment. In
Joint 6th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 13th International
Symposium on Advanced Intelligent Systems (ISIS),
pages 1420–1425. IEEE, 2012.

[8] B. K. Haberman and J. W. Sheppard. Overlapping
particle swarms for energy-efficient routing in sensor
networks. Wireless Networks, 18(4):351–363, 2012.

[9] J. H. Holland. Adaptation in natural and artificial
systems: An introductory analysis with applications to
biology, control, and artificial intelligence. U Michigan
Press, 1975.

[10] M. Jamil and X.-S. Yang. A literature survey of
benchmark functions for global optimisation problems.
International Journal of Mathematical Modelling and
Numerical Optimisation, 4(2):150–194, 2013.

[11] S. A. Kauffman. The origins of order:
Self-organization and selection in evolution. Oxford
university press, 1993.

[12] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Proceedings of the IEEE International
Conference on Neural Networks, pages 1942–1948,
1995.

[13] D. Koller and N. Friedman. Probabilistic Graphical
Models - Principles and Techniques. MIT Press, 2009.

[14] X. Li and X. Yao. Cooperatively coevolving particle
swarms for large scale optimization. IEEE
Transactions on Evolutionary Computation,
16(2):210–224, 2012.

[15] M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and ga
performance. In Proceedings of the first european
conference on artificial life, pages 245–254.
Cambridge: The MIT Press, 1992.

[16] L. Panait. Theoretical convergence guarantees for
cooperative coevolutionary algorithms. Evolutionary
computation, 18(4):581–615, 2010.

[17] L. Panait, R. P. Wiegand, and S. Luke. A visual
demonstration of convergence properties of
cooperative coevolution. In International Conference
on Parallel Problem Solving from Nature, pages
892–901. Springer, 2004.

[18] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann,
1988.

[19] K. G. Pillai and J. Sheppard. Overlapping swarm
intelligence for training artificial neural networks. In
Proceedings of the IEEE Swarm Intelligence
Symposium (SIS), pages 1–8. IEEE, 2011.

[20] M. A. Potter and K. A. De Jong. A cooperative
coevolutionary approach to function optimization. In
Parallel Problem Solving from Nature?PPSN III,
pages 249–257. Springer, 1994.

[21] M. A. Potter and K. A. De Jong. Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

[22] M. Salami and T. Hendtlass. A fast evaluation
strategy for evolutionary algorithms. Applied Soft
Computing, 2(3):156–173, 2003.

[23] N. N. Schraudolph and R. K. Belew. Dynamic
parameter encoding for genetic algorithms. Machine
learning, 9(1):9–21, 1992.

[24] M. Scutari. Bayesian network repository.
http://www.bnlearn.com/bnrepository, 2012.

[25] Y.-j. Shi, H.-f. Teng, and Z.-q. Li. Cooperative
co-evolutionary differential evolution for function
optimization. In Advances in natural computation,
pages 1080–1088. Springer, 2005.

[26] J. C. Spall. Introduction to Stochastic Search and
Optimization: Estimation, Simulation, and Control.
John Wiley & Sons, 2005.

[27] S. Strasser, N. Fortier, J. Sheppard, and R. Goodman.
Factored evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, PP(99):1–1, 2016.

[28] S. Strasser, R. Goodman, J. Sheppard, and
S. Butcher. A new discrete particle swarm
optimization algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO),
pages 53–60. ACM, 2016.

[29] F. Van Den Bergh. An analysis of particle swarm
optimizers. PhD thesis, University of Pretoria, 2006.

[30] F. Van den Bergh and A. P. Engelbrecht. Cooperative
learning in neural networks using particle swarm
optimizers. South African Computer Journal,
(26):p–84, 2000.

[31] F. Van den Bergh and A. P. Engelbrecht. A
cooperative approach to particle swarm optimization.
IEEE Transactions on Evolutionary Computation,
8(3):225–239, 2004.

[32] R. P. Wiegand, W. C. Liles, and K. A. De Jong.
Modeling variation in cooperative coevolution using
evolutionary game theory. In FOGA, pages 203–220,
2002.

[33] R. P. Wiegand and M. A. Potter. Robustness in
cooperative coevolution. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO),
pages 369–376. ACM, 2006.

[34] Z. Yang, K. Tang, and X. Yao. Large scale
evolutionary optimization using cooperative
coevolution. Information Sciences, 178(15):2985–2999,
2008.

