
The Royal Road Not Taken: A Re-Examination of
the Reasons for GA Failure on R1

Brian Howard1 and John Sheppard1,2

1 The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218
itsbehoward@hotmail.com

2 ARINC Engineering Services, LLC, 2551 Riva Road, Annapolis, MD 21401
jsheppar@arinc.com and jsheppa2@jhu.edu

Abstract. Previous work investigating the performance of genetic algorithms
(GAs) has attempted to develop a set of fitness landscapes, called “Royal
Roads” functions, which should be ideally suited for search with GAs. Sur-
prisingly, many studies have shown that genetic algorithms actually perform
worse than random mutation hill-climbing on these landscapes, and several dif-
ferent explanations have been offered to account for these observations. Using
a detailed stochastic model of genetic search on R1, we attempt to determine a
lower bound for the required number of function evaluations, and then use it to
evaluate the performance of an actual genetic algorithm on R1.

1 Introduction

Many theoretical frameworks for understanding the overall performance of genetic
algorithms assume implicitly that the observed evolutionary dynamics of finite popu-
lations should follow those of a hypothetical infinite population. For example, the
“implicit parallelism” predicted by the schema theorem assumes that schema sam-
pling is sufficiently unbiased to provide a reasonably accurate estimate of each ob-
served schema’s average fitness. However, in reality, sampling anomalies can pro-
foundly influence the way that a population evolves in the short term, especially
when the size of that population is small.

For example, Mitchell, et al. present an apparent conundrum: on a fitness land-
scape designed specifically to be amenable for search with a genetic algorithm, the
simpler Random Mutation Hill-Climbing (RMHC) approach defeats the genetic algo-
rithm by an order of magnitude [4]. Specifically, their paper demonstrated that the
genetic algorithm requires approximately 61,000 fitness evaluations to find the opti-
mal solution, versus only about 6,200 for the hill-climber. This observation has been
widely interpreted as evidence against the relevance of the building block hypothesis.
These tests used the Royal Roads fitness function R1, which is defined as follows and
displayed graphically in Figure 1:

∑

 ∈

==
i

i
iii

sx
xxcx

otherwise0
 if1

)(e wher),()(R1 σσ
(1)

Mitc
to the p
discove
popula
buildin
they in
showed
cantly,
is not c

In th
lower
We wi
of the
error a

2 A S

In the
Algorit
fitness
ing to t
to find
the foll

1. The
Nor
strin

2. The
latio

3. In g
real

Perh
describ
stance
rithms,
this fra
 s1 = 11111111**; c1=8
 s2 = ********11111111**; c2=8
 s3 = ****************11111111**; c3=8
 s4 = ************************11111111********************************; c4=8
 s5 = ********************************11111111************************; c5=8
 s6 = **11111111****************; c6=8
 s7 = **11111111********; c7=8
 s8 = **11111111; c8=8
 sopt = 11
Fig. 1. Royal Roads landscape R1

hell, et al. attributed the poor performance of the genetic algorithm primarily
henomenon of genetic hitchhiking: once an instance of a highly fit schema is
red, its high fitness allows that schema to spread quickly throughout the

tion, with zeros in other positions in the string “hitchhiking” along with the
g blocks. To reduce the influence of hitchhiking on the GA’s performance,
troduced “introns” between the adjacent schemata. However, their experiments
 that, in the case of R1, introns do not improve the GA’s performance signifi-

 highlighting the fact that the mechanism of hitchhiking in genetic algorithms
learly understood.
e following section we will attempt to create a model that defines a reasonable

bound on the expected performance of a genetic algorithm on landscape R1.
ll then use this model to investigate the hypothesis that the poor performance
genetic algorithm can be partially explained by hitchhiking, but that sampling
nd population cost also contribute substantially.

tochastic Model of Genetic Search on Landscape R1

original Royal Roads work [4], Mitchell et al., introduced the “Ideal Genetic
hm”, or IGA, to determine an approximate lower bound on the number of
evaluations required by a genetic algorithm searching landscape R1. Accord-
his model, the researchers assert that an ideal genetic algorithm should be able
 the optimum on R1 in approximately 696 evaluations on average. However,
owing points illustrate the need for a more realistic lower bound:

 IGA algorithm requires perfect knowledge of all eight schemata, a priori.
mally, fitness functions are designed to compute the relative fitness of an entire
g as a whole, without any facility to explicitly recognize partial solutions.

 algorithm does not use a population and, thus, the cost of maintaining a popu-
n is not considered in the model.

eneral, the mutation and crossover mechanisms proposed do not provide a
istic analogy to what might actually be expected from a real genetic algorithm.

aps the most “exact” method of modeling search using a genetic algorithm is
ed in Vose [9,10]. Here the genetic algorithm is described as a specific in-
of the more general Random Heuristic Search process (RHS). Genetic algo-
 simulated annealing [2], PBIL [1], and hill-climbing can all be modeled under
mework. In general, RHS begins with a randomly initialized population, repre

sented as a frequency vector that describes the relative proportions of each possible
member of the search space. At each step, the current population is passed to a heu-
ristic function, G, that returns a multinomial distribution from which the next genera-
tion can be generated via stochastic sampling. The transition from one generation to
the next can be viewed equivalently as the application of a transition function, τ. Al-
though the function τ is an induced mapping, the process is Markovian because it
produces each new population contingent only on the state of the previous popula-
tion.

Vose describes a precise model of a heuristic function that can be used to model a
binary encoding of the simple genetic algorithm [10]. Other authors have extended
this model to cover, for example, general cardinality representations [3] and alternate
forms of selection [8]. In theory, a variant of Vose’s simple genetic algorithm could
be employed to model a GA’s search of R1; however, in practice, the state space for
such a model would require a transition matrix with 264 states, making this approach
intractable.

In an attempt to construct a more manageable model of the R1 landscape, Suzuki
and Sawai reduce the search space by describing each set of eight bits in terms of the
number of ones present, without tracking the exact positions of those ones within the
schemata [6]. This reduces the search space somewhat, but still required Suzuki and
Sawai to limit their analysis to smaller versions of Royal Roads functions having only
a fraction of the total number of bits in R1. Nevertheless, using such a model, they
were able to show that crossover accelerates GA search when compared to an
equivalent GA without crossover.

Another attempt to model the search of R1 with a genetic algorithm was intro-
duced by van Nimwegen, Crutchfield, and Mitchell [7]. This model groups together
all strings that have the same fitness value. Using this model, van Nimwegen et al.
were primarily interested in exploring the high-level dynamics of the search process,
in particular, the occurrence of punctuated equilibria and fitness epochs. In their
model, they excluded crossover from the analysis, acknowledging that such an ap-
proach may leave out many key details of search necessary to explore other prob-
lems.

In this paper, we introduce a new model of genetic search on R1. Using Vose’s
general RHS framework, our model groups population members by the schemata that
they contain. Furthermore, when any one of the eight schemata is missing from a
chromosome, our model assumes that the eight bits at the corresponding locations are
true “don’t cares,” freshly sampling, at each generation, from the set of all binary
strings of length eight. In this manner, our model engages in an “implicitly parallel
search” and eliminates the possibility of bit-wise hitchhiking. By comparing the per-
formance of such a model to the performance of an actual genetic algorithm, we
should, therefore, be able to determine the approximate degree to which hitchhiking
is actually a problem on R1. The following sections define this model more precisely.

2.1 Representation of the Population

In our model, each of the 256 possible combinations of the schemata s1-s8 is repre-
sented as a unique 8-bit string c, in which each bit, ci, indicates the presence or ab

sence of schema si. A one in a particular position indicates that the corresponding
schema is present, while a zero signifies that the schema is absent. For example, the
bit string, 10010001, describes all strings matching the pattern:

11111111 ******* ******** 11111111 ******** ******** ******** 11111111

Throughout this paper we will refer to such 8-bit strings as schema configurations,
or simply as configurations. Given this representation, a particular population can be
characterized by a real vector p of length 256, which indicates the frequencies of
each of the possible R1 schema configurations in that population. We will index these
configurations with the integers 0–255, such that each index maps to the integer rep-
resentation of the corresponding schema configuration, interpreted as a binary num-
ber. Hence, the configuration 00000000 is given index 0, while configuration
00001000 is given index 8. Using this indexing scheme, the ith position in a particular
population vector represents the frequency with which this schema configuration
occurs in the underlying population. For example, the following population vector:

]01.005.025.0[=p (2)

indicates that in 25% of the underlying population, none of the schemata s1-s8 are
present (configuration 00000000). In 5% of the population, only schema s8 is present
(configuration 00000001), while in 1% of the population all of the schemata s1-s8 are
present (configuration 11111111).

By grouping together all bit strings with the same arrangement of schemata, this
representation reduces the state space from the set of 264 64-bit binary strings to the
set of 28 8-bit binary strings. Furthermore, this model forces us to assume that when a
schema is not present in a string, then nothing else is known about the eight bits in
that schema’s partition. If we build our model’s operators such that the distribution of
these unknown “don’t care” bits is assumed to be uniform, then we have a model that
implicitly removes the possibility of bit-level hitchhiking.

2.2 Mutation

If the population is represented by the vector, p , then the mutation operation can be
described as a 256 × 256 matrix, M = [mij], where each element mij represents the
probability of transitioning from a population member with the schema configuration
i to a population member with schema configuration j, in one generation, due to mu-
tation. With this representation, the mutation operator can be applied to a population
using matrix multiplication:

Mppm = (3)

Given any particular eight-bit parent configuration, c, we can calculate the prob-
ability that mutation transforms this schema configuration into child configuration c'
by considering each of the eight schemata independently. For each of the eight sche-
mata, si ∈{ s1, …, s8 }, there are four distinct cases corresponding to whether the
child string has the schema given the parent does/does not have that same schema.

The individual likelihoods of these four cases can be calculated with the applica-
tion of basic probability theory, assuming that if a particular population member lacks
schema si, then the actual bits within partition i are equally likely to be zeroes as they
are ones. Starting with the child having the schema given the parent does not, we
need to compute:

)0|1Pr(==′ ii cc (4)

Equation (4) can be decomposed as follows. Let “ mi ” denote the occurrence of
at least one mutation in partition i.

)Pr(),0|1Pr(
)0|Pr(),0|1Pr(

)0|Pr(),0|1Pr()0|1Pr(

mimicc
cmimicc

cmimicccc

ii

iii

iiiii

==′=
=//==′+

===′===′ (5)

Here, the probability of mutating partition i is independent of the state of the parent,
so)Pr()0|Pr(micmi i == . Also, note that the second term in the sum drops out
because 0),0|1Pr(=/==′ micc ii . So, in other words, the probability of creating schema
si in an offspring from a parent that lacks si is equal to the probability of creating this
schema from such a parent given that at least one mutation occurs in this schema
partition, times the probability that such a mutation occurs.

Let µ be the bitwise mutation probability. If the parent string lacks a particular
schema, si, and the child gains this schema after applying the mutation operator, then
we know that a mutation must have occurred somewhere within the eight bit partition
attributed to this schema. The probability that a mutation occurs somewhere within a
particular 8-bit schema is:

8)1(1)Pr(µ−−=mi (6)

Assuming a uniform probability distribution for bits in the parent that are not part
of a previously discovered schema, the probability that any one of these bits is a one
is 0.5, and the probability that any one of these bits is a zero is also 0.5†. Let µ' be the
bitwise mutation rate within a schema, given that at least one such mutation has oc-
curred. Then the first half of the right side of equation (5) reduces to the following:

)5.0())(5.0)1(5.0(),0|1Pr(88 =′+′−===′ µµmicc ii
(7)

Substituting the above result, along with the probability that a mutation occurs in a
given schema, back into equation (5), we get the following result:

))1(1()5.0(

)Pr(),0|1Pr()0|1Pr(
88 µ−−=

==′===′ mimicccc iiii (8)

Note further that

† Actually, the probability that a bit is 0 is slightly greater than 0.5, since we know that the

parent’s bit sequence is not 11111111; that is, at least one of the bits must be zero.

)0|1Pr(1)0|0Pr(==′−===′ iiii cccc (9)

The remaining cases are straightforward. If the parent contains a particular schema,
si, then the probability that the child does not contain this schema after mutation is
simply the probability that a mutation occurs anywhere within this schema partition:

)Pr()1|0Pr(micc ii ===′ (10)

Likewise,

)Pr(1)1|1Pr(micc ii −===′ (11)

Given these four cases, it is now possible, for any particular parent configuration c,
and child configuration c' to calculate the probability that c' is the offspring of c after
applying the mutation matrix, M, where:

∏
=

′=
8

1

)|Pr(
k

kkij ccm
(12)

2.3 Crossover

Crossover is a bit more complex because we need an operator that takes into account
the interaction between two parents to produce each offspring. For our model, we
represent one-point crossover with a 256 × 256 × 256 hypermatrix C, such that when
this hypermatrix is divided into planes along its third dimension, each plane with
index c represents a transition matrix, where each entry ccm ′ describes the probabil-
ity that a parent with a particular schema configuration, c , produces a child c', given
that the second parent is c . At each generation, C can be applied to the next genera-
tion as follows. Let)Pr(c be the probability of selecting configuration c as the sec-
ond parent in crossover, given the distribution of configurations resulting from muta-
tion, mp , and cC be the slice of hypermatrix C corresponding to the second parent
c . Then, the new distribution of configurations, χmp , after mutation and crossover is
calculated as follows:

∑=
c

cmm pcp])[Pr(Cχ (13)

Next we will describe a procedure for building the crossover hypermatrix, C. Note
that crossover can occur in the middle of a particular schema partition or between
schema partitions, resulting in 15 distinct crossover points. Assuming that crossover
is equally likely to occur at any of the 64 bit positions in the R1 chromosome, the
probability that crossover occurs within a particular partition, given that crossover
occurs, is 7/63, while the probability of crossover occurring between two particular
adjacent partitions is 1/63.

Given parent strings, c and c , a crossover event at a particular point can be de-
scribed with a bit mask. We will describe building the crossover hypermatrix, C with
an example. Suppose c = 26, c = 52, and the crossover point is 10. Using the in

dexing scheme described in Section 3.1, c = 26 maps to chromosome 00011010 and
c = 52 maps to chromosome 00110100. With crossover point 10, the masks are A =
11111000 and B = 00000111 respectively. The children are determined by applying
the following logical operators:

)()(
)()(

BA
BA

∧∨∧=′′
∧∨∧=′

ccc
ccc

where A is Mask A and B is Mask B. Given this information, there are two possible
children, 00011100=′c and 00110010=′′c .

Given this, we can determine the probability either child will result via crossover,
given parents c and c . Let χ be the probability crossover occurs. Let ψi indicate
crossover point i was selected (e.g., ψ10 corresponds to crossover point 10). Finally,
let n = the number of children generated by crossover. Then

)Pr(1)Pr()Pr(χψ in
cc

=′′=′

(14)

The procedure described above works perfectly when crossover occurs between
schemata. When crossover occurs within a partition, the situation is a bit more com-
plicated. For example, at crossover point 11, A = 11111000 and B = 00000011. Be-
cause bit six in both of the masks is a zero, simply applying the masks in the logical
operations would prevent either child from ever having schema six. In reality, the
offspring may indeed have the schema, either because both parents had the schema,
or because the schema is created in the child after mixing bits from both parents. Thus
in the event a schema partition is disrupted by crossover, we need to explicitly calcu-
late the probability that the child inherits the disrupted schema and modify our list of
children and their probabilities accordingly. There are 3 distinct possibilities.

If both parents have the schema, then the probability that the child will have the
schema after crossover, even if it occurs in the middle of this schema, is 1. However,
because the crossover masks turn off the schema bit in the offspring, we must modify
the children produced by the procedure outlined above by turning this bit back on.
The probabilities are calculated as shown in equation (14), using the appropriate
Pr(ψi).

If exactly one of the parents has the schema that is disrupted, then there are actu-
ally four possible children. First, it is possible that both children lose the schema. At
the same time, based on the actual configuration of the parents, it is possible that
either child could “regain” the schema. Thus, the probability that the schema in ques-
tion is “preserved” in the offspring is calculated as follows:

∑
=

−
− −=

7

1

8
12))5.0(1()5.0(

7
1)|Pr(

j

jj
iis ψ

(15)

where i is the index of the schema partition considered, and the sum is taken over the
seven possible crossover positions within the schema partition. That is, if that cross-
over occurs in some schema, it is equally likely to occur in each of seven distinct
places, between each of the eight bits comprising the partition.

Thus the probability of producing children c ′′′ and c ′′′′ , in which schema i is pre-
served after crossover is calculated as follows:

)Pr()|Pr(
4
1)Pr()Pr(12 χψψ iiiscc −

=′′′′=′′′

(16)

While for children c′ and c ′′ , in which schema i is lost, it is:

)Pr(1)Pr()Pr(ccc ′′′−=′′=′ (17)

If neither parent has the schema that is disrupted, it is still possible that the schema
could be created in the child simply due to the chance mixing of bits from the two
parents. Once again, there are four possible children, which can be determined in
exactly the same manner as shown above. In this case, we calculate the probability of
generating a new schema in the child, assuming that both parents lack the schema,
and that the bits in both parents are uniformly distributed. This can be computed as:

∑
=

−
− −−=

7

1

8
8

12))5.0(1)()5.0(1(
7

)5.0()|Pr(
j

jj
iis ψ

(18)

Again, there are seven distinct places where crossover can occur. If crossover occurs
at bit j, then parent c must have only ones in positions 1 through j, and also must not
have all ones in positions j + 1 through 8 (since we know that the other parent does
not have the schema). Similarly, parent c must have all ones in positions j + 1
through 8, and also must not have all ones in positions 1 through j.

These calculations lead directly to Equation (18) for computing the probability that
two parents that lack a particular schema create the schema in an offspring, given that
a crossover occurs within this schema’s bit locations. Given these three distinct cases,
it is now possible to compute the crossover hypermatrix, C, by enumerating all possi-
ble combinations of parents c and c to produce various children.

2.4 Sigma Truncation Selection

Before applying crossover and mutation, the population is first subject to sigma trun-
cation selection (Mitchell, 1998) and frequencies are updated accordingly, where

=

≠+=
0 if , 0.1

0 if ,
2

)(1 for Offspring Expected
σ

σ
σ

f - pf
p

i
i

(19)

3 Experiments

3.1 Quantifying Hitchhiking

To simulate a search using our model, we begin by creating an initial population
probability distribution that describes the relative likelihood of each possible configu

ration of schemata, given a uniform distribution of bits in the underlying population.
Then we sample stochastically from this population probability distribution vector to
create a new population vector for some particular finite population size. Next, the
new (sampled) population vector is used as the input to the model outlined in Section
2 to generate the sampling distribution for the subsequent generation. These two steps
are then repeated until a population member with the optimum fitness is selected
during the sampling phase of the search process, at which point the search terminates
and the number of generations required to find the optimum is recorded.

By performing 100 replications of search using this model, we found that, on aver-
age, the hitch-hiking free genetic algorithm required approximately 18,432 fitness
evaluations to find the optimum on landscape R1, using a population size of 128, a
bitwise mutation rate of .005, and a crossover rate of 0.7. In contrast, when we tested
an implementation of a standard simple genetic algorithm using the same parameters
as our model, the average number of evaluations required to achieve the optimum was
approximately 64,490. This result agrees with the original Royal Roads research [5].
Thus, removing the effect of bitwise hitchhiking in our model has a major impact on
the performance of the GA. However, given that RMHC requires only 6,200 evalua-
tions, there must be factors in addition to hitchhiking that influence the GA’s per-
formance relative to the hill-climbing algorithm such as sampling errors.

3.2 Quantifying Sampling Errors

Genetic drift and sampling errors are artifacts of a finite population size. As popula-
tion size increases, these effects should diminish. For Random Heuristic Search, it
can be shown that in the limit of an infinite population, the heuristic function, G, con-
verges to the transition function, τ. In other words, for an infinite population, the
expected distribution at time t, tp , can be calculated by iterating the heuristic function
on the initial population vector, bypassing the sampling phase altogether.

)(0
tppt G= (20)

To assess the performance of the infinite population model, we need to calculate
the expected number of steps required for an arbitrary string selected from an initially
random population to achieve the optimum state, via the transition function G. One
way to compute this is to iterate G on an initially uniformly distributed population and
record the frequency with which strings enter the optimum state after each time step:

∑
≤

=

=
maxsteps

0

*Optimum toSteps # Avg
t

t
t tη

(21)

where tη represents the percentage of strings that first visit the optimum after t steps,

and “maxsteps” is chosen large enough such that Σηi > 0.99999.
To ensure that we don’t recount strings that visit the optimum state more than once

during the time interval, we need to make a minor modification to our model. By
eliminating all rows and columns that directly transition into or out of the optimum
state from the population vector, p , the mutation matrix, M, and the crossover ma

trix, C, we transform the optimum state into an absorbing state. At each generation,
the proportion of population members in the optimum state can be calculated by sub-
tracting from 1.0 the total proportion of members remaining in the abbreviated popu-
lation.

This technique was used to compute tη , the percent of the population newly ar-
riving at the goal state for each generation, t. Given this information, the average
number of steps required for an arbitrary population member to reach the goal state,
assuming the transition function of an infinite population, can be calculated as de-
scribed in equation (21). In this manner we calculated that the approximate number of
generations required for an initially random string to first visit the optimum state
should be about 38 generations, assuming an infinite population.

The preceding calculation quantifies the number of generations required for a sin-
gle string to arrive at the optimum. To determine the role sampling error plays in
limiting search efficiency, we want to compare the empirical, finite population model
of Section 3.1 to a theoretical, finite population model that has the dynamics of an
infinite population. For such a model we need to calculate, at each generation, the
probability that at least one population member out of a population of some particular
size has reached the optimum. At each generation this is:

−−= ∑

≤

=

SizePop
ti

i
it)1(1) by timemember 1least at by visitedOptimumPr(

0
η

(22)

Using this derived distribution we again applied equation (21) to calculate the av-
erage number of generations for a “drift-less” population of size 128 to discover the
optimum on R1. The resulting calculation yields an estimate of approximately 30.44
generations, or about 3,896 function evaluations.

3.3 Population Cost

In Section 3.2, we calculated that if a population of size 128 could evolve free from
the effects of sampling error and hitchhiking, then the number of generations required
to discover the optimum would be approximately 30.4, a performance level that actu-
ally surpasses that of RMHC. Unfortunately, the limited population size ensures that
drift and hitchhiking will remain a problem. If our model is accurate, however, we
should observe that, as the population size is increased, the performance of a real
genetic algorithm should approximate our finite population model from Section 3.2.

Fig. 2 shows the relationship between population size and search efficiency for an
implementation of a genetic algorithm using the same parameters as in the original
Royal Roads research. The performance predicted by the model described in Section
3.2 is also displayed as a function of population size. When population size increases,
the number of generations required by the actual genetic algorithm converges to the
number predicted by the model. In fact, when the population size increases to about
8,000, the performance of the model and the actual GA are approximately the same.

Fig. 3 shows the relationship between population size and the total number of
evaluations required to find the optimum, for the actual genetic algorithm. Note that
increasing the population size to 8,000 drastically impacts the performance of the

genetic algorithm in terms of the total number of fitness evaluations. For the settings
used in the original Royal Roads work, the optimum performance occurs at a popula-
tion size of around 500, at which the average number of evaluations required was
33,041. Thus, it appears the primary shortcomings of the genetic algorithm are related
to the cost of maintaining a population, given a serial implementation, rather than
hitchhiking, which is a consequence of utilizing a population size that is too small.

4 Conclusions

In this paper we have re-examined the performance of genetic algorithms on Royal
Roads fitness landscapes in comparison to the performance of simpler hill-climbing
algorithms. By building a model of genetic search on landscape R1, we have at-
tempted to show that the poor performance of the standard GA can be explained in
terms of the trade-off between the cost required to maintain a large population and the
consequences due to hitchhiking and drift when utilizing a population that is too
small.

References

1. Baluja, S. & Caruana, R. (1995). “Removing the Genetics from the Standard
Genetic Algorithm.” In Prieditis, A., & Russell, S. (Eds.), The Proceedings of the
12th Annual Conference on Machine Learning, (pp.38-46). Morgan Kauffman.

2. Kirkpatrick, S., Gelatt Jr., C. D., & Vecchi, M. P. (1983). “Optimization by
Simulated Annealing.” Science, vol. 220, pp 671-680.

3. Koehler, G., Bhattacharyya, S., & Vose, M. D. (1997). “General Cardinality
Genetic Algorithms.” Evolutionary Computation, vol. 5, no. 4, pp. 439-459.

4. Mitchell, M., Holland, J. H., & Forrest, S. (1994). “When Will a Genetic Algo-
rithm Outperform Hill Climbing?” In J. D. Cowan, G. Tesauro, & J. Alspector
(Eds.), Advances In Neural Information Processing Systems 6, San Mateo, CA:
Morgan Kaufmann.

5. Mitchell, M. (1998). Introduction To Genetic Algorithms. Cambridge, MA: MIT
Press.

6. Suzuki, H., & Sawai, H. (2001). “Crossover Accelerates Evolution In GA with a
Royal Road Function.” 2001 Genetic and Evolutionary Computation Conference
Late Breaking Papers, pp. 401-412.

7. van Nimwegen, E., Crutchfield, J. P., & Mitchell, M. (1999). “Statistical Dy-
namics of the Royal Road Genetic Algorithm.” Theoretical Computer Science, vol.
229, pp. 41-102.

8. Vose, M. D. (1995). “Modeling Alternate Selection Schemes For Genetic Algo-
rithms.” In Koppel, M. & Shamir, E. (Eds.), Proceedings of BISFAI ’95, (pp. 166-
178). Ramat Gan and Jerusalem, Israel: AAAI Press.

9. Vose, M. D. (1999a). “Random Heuristic Search.” Theoretical Computer Science,
vol 229, pp. 103-142.

10. Vose, M. D. (1999b). The Simple Genetic Algorithm: Foundations and Theory.
Cambridge, MA: MIT Press.

10
1

10
2

10
3

10
4

10
2

10
3

104

GA Search efficiency vs. Population size

Population Size (log scale)

Standard GA
Infinite Pop Model

N
um

be
r o

f g
en

er
at

io
ns

 to
 o

pt
im

um
 (

lo
g

sc
al

e
)

Fig. 2. GA search efficiency vs. population size

101 102 103 104 105
0

1

2

3

4

5

6

7

8
x 105

Population Size (log scale)

N
um

be
r o

f F
un

ct
io

n
E

va
lu

at
io

ns

GA Function Evaluations vs. Population Size

Fig. 3. GA function evaluations vs. population size

