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ABSTRACT
Bayesian networks are probabilistic graphical models that
have proven to be able to handle uncertainty in many real-
world applications. One key issue in learning Bayesian net-
works is parameter estimation, i.e., learning the local condi-
tional distributions of each variable in the model. While pa-
rameter estimation can be performed efficiently when com-
plete training data is available (i.e., when all variables have
been observed), learning the local distributions becomes dif-
ficult when latent (hidden) variables are introduced. While
Expectation Maximization (EM) is commonly used to per-
form parameter estimation in the context of latent variables,
EM is a local optimization method that often converges to
sub-optimal estimates. Although several authors have im-
proved upon traditional EM, few have applied population
based search techniques to parameter estimation, and most
existing population-based approaches fail to exploit the con-
ditional independence properties of the networks. We intro-
duce two new methods for parameter estimation in Bayesian
networks based on particle swarm optimization (PSO). The
first is a single swarm PSO, while the second is a multi-
swarm PSO algorithm. In the multi-swarm version, a swarm
is assigned to the Markov blanket of each variable to be esti-
mated, and competition is held between overlapping swarms.
Results of comparing these new methods to several existing
approaches indicate that the multi-swarm algorithm outper-
forms the competing approaches when compared using data
generated from a variety of Bayesian networks.

Categories and Subject Descriptors
Swarm Intelligence [Probabilistic Graphical Models]:
Bayesian Networks

1. INTRODUCTION
Bayesian networks are widely used models for reasoning

under uncertainty that provide a compact representation of
high-dimensional joint probability distributions. There are
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two categories of learning related to Bayesian networks, the
first involves learning the structure of the network, while
the second involves learning the parameters that define the
local probability distributions of the network. In the case of
complete data, parameter estimation is not difficult, but in
practice training data is often incomplete and some hidden
variables never have data.

It is common for latent or hidden variables to be incorpo-
rated into Bayesian network models. Latent variables allow
the network to encode unobserved effects and can drastically
reduce the number of parameters used to specify the model.
However, when latent variables are introduced to a Bayesian
network, marginal probabilities can no longer be computed
efficiently [14]. Also, since the likelihood of the parameters
is no longer decomposable, conditional dependencies exist
between the optimal parameters for the network’s variables.

While several algorithms have been proposed for parame-
ter estimation, these algorithms have a tendency to gravitate
towards sub-optimal solutions, resulting in poor generaliza-
tion for unseen test data, especially when estimating param-
eters for joint distributions with many conditional depen-
dencies. Also, despite their effectiveness on complex search
problems, few authors have applied population based search
methods to the problem of parameter estimation.

We propose a new algorithm for latent variable parameter
estimation in Bayesian networks based on particle swarm
optimization (PSO). Our algorithm assigns a single swarm to
each latent variable and its children. Each swarm learns the
unknown parameters for the corresponding node’s Markov
blanket. Swarms with overlapping Markov blankets compete
for inclusion in a global parameter set.

We hypothesize that, by assigning a swarm to the Markov
blanket of a node, we can exploit conditional independence
properties of the network to achieve better performance than
single population search methods. To evaluate this hypoth-
esis, we give a traditional single-swarm approach to param-
eter estimation and compare our multi-swarm approach to
single-swarm PSO and several other existing approaches to
parameter estimation. We also hypothesize that both of our
PSO-based methods will yield results competitive with tra-
ditional and state-of-the-art methods based on methods that
extend the Expectation-Maximization (EM) algorithm.

2. BACKGROUND

2.1 Bayesian Networks
A Bayesian network is a directed acyclic graph that rep-

resents a joint distribution over a set of variables [14]. In a



Bayesian network, each random variable is represented by a
node, and edges between nodes represent conditional depen-
dence relationships between the variables. Each root node
encodes a prior probability distribution, while each non-root
node encodes a probability distribution conditioned on the
node’s parents. In discrete Bayesian networks, these dis-
tributions are represented as conditional probability tables
(CPT). For the variables in the network, the probability of
any entry in the joint distribution can be computed using
the chain rule:

P (X1, ..., Xn) =

n∏
i=1

P (Xi|Xi+1, ..., Xn)

Using the local distributions specified by the network, which
exploit conditional independence properties of the variables,
the joint distribution can be represented equivalently as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pa(Xi)).

where Pa(Xi) denotes the parents of Xi.
In a Bayesian network, the Markov blanket of a node con-

sists of the node’s parents, children, and children’s parents.
A variable Xi is conditionally independent of all other vari-
ables in the network given its Markov blanket.

{Xi ⊥ (X\({Xi} ∪MB(Xi))) |MB(Xi)}

An example illustrating the concept of a Markov blanket is
shown in Figure 1. Figure 1(a) shows the Markov blanket of
d3, Figure 1(b) shows the Markov blanket of d5, and Figure
1(c) shows the Markov blankets of both d3 and d5. In the
example, nodes in the Markov blanket of d3 and nodes in the
Markov blanket d5 are shown with a dashed rectangle. In
Figure 1(c) nodes that are in the Markov blankets of both d3
and d5 (namely c and d4) are shown to be inside both dashed
rectangles, thus indicating an overlap. We will exploit these
overlaps later.

2.2 Particle Swarm Optimization
Particle Swarm Optimization is a population based search

technique proposed by Kennedy and Eberhart [4] in 1995,
which is inspired by the behavior of bird flocks and fish
schools. The pseudocode for PSO is presented in Algorithm
1. In PSO, the population is initialized with a number of
random solutions called particles. Each particle contains
a position vector that encodes a potential solution in the
search space and a velocity vector that defines how the par-
ticles will move through the search space. Each particle
tracks the coordinates in the search space associated with
the best solution it has found so far. These coordinates are
called the personal best position of the particle and denoted
pi for the ith particle. The algorithm also keeps track of
the overall best solution found so far by any particle in the
swarm. This is called the global best position and is denoted
pg.

Typically, both position and velocity are defined as vectors
of real numbers. The search process updates the position
vector of each particle based on that particle’s corresponding
velocity vector. These velocity vectors are updated at each
iteration based on the fitness of the states visited by the
particles. Eventually all particles should move closer to a
local optimum in the search space.

C
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(a) Markov blanket of d3
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(b) Markov blanket of d5

C

d1 d2 d3 d4 d5 d6
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(c) Overlap of Markov blankets for d3 and d5

Figure 1: Markov blanket example

3. RELATED WORK
There have been prior methods applying swarm and evo-

lutionary based methods to Bayesian networks. These meth-
ods include work like learning Bayesian network structures
using Ant Colony Optimization [17] and abductive infer-
ence using PSO [8]. However, to our knowledge, no work
has been published using PSO or multi-population methods
for parameter estimation. In this next section, we discuss
work related to parameter estimation and multi-population
optimization algorithms

3.1 Parameter Estimation
A number of algorithms have been developed for parame-

ter estimation. The most common algorithm for parameter
estimation is Expectation Maximization (EM) [14]. The al-
gorithm begins with an initially random parameter assign-
ment and repeatedly executes the expectation and maxi-
mization steps. During the expectation step, the algorithm
fills in the missing values using the current parameter esti-
mates of the model. This way, a set of data can be generated
with values corresponding, not only to the observable vari-



Algorithm 1 Particle Swarm Optimization

repeat
for each particle position xi ∈ P do

Evaluate position fitness f(xi)
if f(xi) > f(pi) then
pi = xi

end if
if f(xi) > f(pg) then
pg = xi

end if
vi = ωvi + U(0, φ1) ⊗ (pi−xi) + U(0, φ2) ⊗ (pg−xi)
xi = xi + vi

end for
until termination criterion is met

ables but to the hidden variables as well. The maximization
step uses the resulting completed data set to find a new
maximum likelihood estimate of the probability estimates
for those hidden variables. Unfortunately, since the EM al-
gorithm is a local search method, this process often con-
verges to sub-optimal parameters and even small changes to
the initial parameters can change the local optima found by
the algorithm significantly. Also, the expectation step can
often be computationally expensive since it must estimate
the joint distribution for each data point.

Several authors have developed enhanced versions of EM
in terms of both computational complexity and quality of
learned parameters. In 1990 Wei and Tanner proposed a
randomized EM algorithm in which the expectation step is
approximated using Monte Carlo sampling [21]. In this ap-
proach, the data is completed by sampling from the condi-
tional distribution of the missing data for each data point.
The expectation is then approximated as the Monte Carlo
average. The performance of Monte Carlo EM (MCEM) is
often comparable to that of traditional EM and the algo-
rithm has been shown to perform well even when a single
sample is drawn for each data-point[2].

In 2002, Elidan et al. used data perturbation to improve
upon the quality of the local maxima reached by EM [7].
Their algorithm allows EM to escape local maxima by per-
turbing the training data, thereby forcing the algorithm to
explore new ascent directions. This work evaluates the effec-
tiveness of both random data perturbation and adversarial
data perturbation, in which the data is modified to directly
challenge the current parameter estimates.

In 2005, Elidan and Friedman proposed the information
bottleneck EM algorithm for learning both the parameters
and the structure of Bayesian networks in the presence of
incomplete data [6]. This approach is based on the informa-
tion bottleneck framework and involves grouping observed
variables by mutual information and then creating a hidden
variable for each group.

More recently, EM has been combined with population
based approaches to improve the quality of learned param-
eters. In 2006, Jank proposed a genetic algorithm version
of EM (GAEM) based on MCEM. In this algorithm, each
individual in the population encodes a set of parameter es-
timates. The fitness of an individual is the approximate
probability of the data given the parameters as computed
by a single iteration of MCEM[13].

Another variant of EM based on evolutionary computa-
tion was proposed by Mengshoel et al. in 2012 [15]. This

algorithm is described as an age-layered EM (ALEM) ap-
proach that discards low likelihood runs before convergence.
This algorithm maintains a population of individuals that
represent EM runs. The population is then divided into a
set of layers, each with a user-defined age limit. Once the
number of iterations for an individual EM run exceeds this
limit, the individual is removed from the layer and, if the
likelihood of the data given the parameters is high enough,
the individual is moved to the next layer.

3.2 Multi-population Algorithms
Several authors have proposed multi-population genetic

algorithms (GA) [1, 19, 22, 23]. These include island mod-
els, in which several subpopulations are maintained by the
genetic algorithm, and members of the populations are ex-
changed through a process called migration. These meth-
ods have been shown to obtain better quality solutions than
traditional GAs [23] when applied to the problems of neural
network parameter learning, the traveling salesman prob-
lem, and several deceptive problems proposed by Goldberg
et al. [11]. Because the sub-populations maintain some in-
dependence, each island can explore a different region of the
search space while sharing information with other islands
through migration. This improves genetic diversity and so-
lution quality [22].

Van den Bergh and Engelbrecht developed several multi-
population PSO methods for training multi-layer feed-forward
neural networks [20]. These methods include NSPLIT in
which there is a single particle swarm for each neuron in the
network, and LSPLIT in which there is a swarm assigned to
each layer of the network. The authors claim that splitting
the swarms in this way results in a finer-grained credit as-
signment, reducing the possibility of neglecting a potentially
good solution for a specific component of the solution vec-
tor. The results obtained by Van den Bergh and Engelbrecht
indicate that these algorithms outperform traditional PSO
methods specifically on neural network training problems.

Recently a new distributed approach to improve the per-
formance of the PSO algorithm has been explored where
multiple swarms are assigned to overlapping subproblems.
This approach is called Overlapping Swarm Intelligence (OSI)
[10, 12, 16]. In OSI each swarm searches for a partial so-
lution to the problem, and solutions found by the different
swarms are combined to form a complete solution once con-
vergence has been reached. Where overlap occurs, commu-
nication and competition take place to determine the com-
bined solution to the full problem.

Haberman and Sheppard first proposed OSI as a method
to develop an energy-efficient routing protocol for sensor net-
works that ensures reliable path selection while minimizing
the energy consumption during message transmission [12].
In this approach a swarm is associated with each node in the
sensor network, and each swarm consists of a particle for its
corresponding node and the particles for all of the node’s im-
mediate neighbors. The particles encode the cost estimate
of sending a messing along one of the outgoing edges of the
node. Using this method, the swarm for a given node over-
laps with its neighboring swarms. This algorithm was shown
to be able to extend the life of the sensor networks and to
perform significantly better than current energy-aware rout-
ing protocols.

Ganesan Pillai and Sheppard extended the OSI method
to learn the weights of deep artificial neural networks [16].



This algorithm separates the structure of the network into
paths where each path begins at an input node and ends
at an output node. Each of these paths is associated with
a swarm that learns the weights for that path of the net-
work. A common vector of weights is maintained across all
swarms to describe a global view of the network. This vector
is created by combining the weights of the best particles in
each of the swarms. This method was shown to outperform
the backpropagation algorithm, a traditional single-swarm
PSO algorithm, and both NSPLIT and LSPLIT on deep
networks. A distributed version of this approach was devel-
oped subsequently by [10].

Following the success of OSI on training deep neural net-
works, Fortier et al. adapted the OSI to yield a method
for both partial and full abductive inference in Bayesian
Networks [8]. In this approach, multiple swarms are used
to find the most probable state assignments for a Bayesian
network given the evidence. Each node in the network is
associated with a swarm that learns the state assignments
for its Markov blanket. Swarms periodically communicate
and compete for inclusion in the final set of most probable
state assignments.

In 2014, a method for learning the structure of Bayesian
classifiers was proposed by Fortier et al. [9]. In this work,
a swarm is assigned to each node in the network, and the
swarm learns the parent and child edges for that node. Swarms
then compete for inclusion in a global network structure.

4. APPROACH
We describe two algorithms for parameter estimation in

Bayesian networks using PSO. The first uses a traditional
single swarm approach to solve the problem, while the sec-
ond uses a multi-population variant of PSO based on OSI.

4.1 Traditional Particle Swarm Optimization
Since PSO has not been applied to parameter estima-

tion in Bayesian networks, we have developed both a single
swarm and and OSI-based approach to the problem, thus al-
lows us to compare these two methods in terms of the quality
of learned parameters. For the single swarm approach, each
particle’s position vector xi is a d-dimensional vector of real
numbers where xi ∈ [0, 1]d, d is the number of unknown
parameters in the network, and initially each component of
xi is drawn from a uniform probability distribution U(0, 1).
Each value corresponds to a parameter in the conditional
distribution of a missing variable or the child of a missing
variable and the size if this vector is equal to the number of
parameters to be estimated.

For some variable A in the network, let xa|Pa(A) be the
value in a particle’s position vector that encodes the likeli-
hood of A = a given some state assignment to the parents
of A, Pa(A). During fitness evaluation, xa|Pa(A) is normal-
ized to compute the particle’s estimate of the probability
P (a|Pa(A)) as follows:

P (a|Pa(A)) =
xa|Pa(A)∑

a′∈A xa′|Pa(A)

The parameters for each variable being learned can be com-
puted from the particle’s position in this way.

If a variable is present in the data and none of its par-
ents are latent variables, we estimate its parameters directly
based on frequency. Given some data-set D we can estimate

any joint probability over the observed variables as

P (x1, x2, ..., xn) =

∑
d∈D 1d(x1, x2, ..., xn) + α

|D|+ αz

where

z =

n∏
i

|V al(Xi)|

In the above equations, 1d is an indicator function for a data
point d, V al(X) is the set of possible values for variable
X, and α > 0 is a smoothing parameter. Using the above
joint probability estimate we can compute any conditional
probability over a subset of the observed variables as follows:

P (x|Pa(x)) =
P (x,Pa(x))

P (Pa(x))

Because these probabilities can be computed directly, PSO
will not optimize the parameters for observed variables with
no latent parents.

Once the parameters have been computed, each particle’s
fitness is evaluated. To compute the fitness of a set of pa-
rameters we use variable elimination to calculate the log
likelihood of the data D given the parameters Θ.

L(D|Θ) = logP (D|Θ). (1)

Since performing variable elimination can be computation-
ally expensive, it may be necessary to sample from the train-
ing data to obtain a smaller dataset S. The log likelihood of
this reduced data set can then be used as the fitness func-
tion. Alternatively, an approximate inference method such
as importance sampling can also be used. After comput-
ing the fitness for a particle, its position and velocity are
updated as shown in Algorithm 1.

4.2 Overlapping Swarm Intelligence
We also developed a multi-swarm approach to parame-

ter estimation based on OSI. In this approach, a swarm is
assigned to each latent variable, and each child of a latent
variable. Each variable’s corresponding swarm learns the
parameters associated with that variable’s Markov blanket
using PSO. This representation is advantageous since every
node in the network is conditionally independent of all other
nodes when conditioned on its Markov blanket.

Figure 2 shows an example network with a single hidden
variable L where the nodes whose parameters are learned
by a particular swarm are indicated by a dashed rectan-
gle. For this network, the algorithm maintains three swarms:
one for the hidden variable L, and one for each of its chil-
dren, C and D. Figure 2(a) shows that parameters will be
learned by swarm SC , which covers nodes L and C; 2(b)
shows that parameters will be learned by swarm SD, which
covers nodes L and D; and Figure 2(c) shows that parame-
ters will be learned by swarm SL, which in this case covers
the nodes in SC ∪ SD. If C and D had children, then SC

and SD would have included those children while SL would
not. Note that the parameters associated with nodes A and
B are not learned by any of the swarms, as these param-
eters can be estimated directly using the frequency based
approach described in the previous section.

The pseudocode for our approach is shown in Algorithm
2. The algorithm is split into two main loops that are ex-
ecuted repeatedly until some termination criterion is met.
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Figure 2: Swarm assignment example

The first iterates over each of the swarms, evaluating the fit-
ness of the corresponding particles, while the second holds a
competition between the best particles in the swarms to up-
date a global set of network parameters. This set of initially
random global parameters is used for inter-swarm commu-
nication.

Each particle’s position xi is defined by a d-dimensional
vector of continuous values where xi ∈ [0, 1]d, where d is
the number of parameters to be learned by the particle’s
swarm. Each position value encodes a likelihood value for
the probability distribution of a node in the swarm’s Markov
blanket, thus each particle encodes the parameter estimates
for part of the network. As in the traditional PSO algorithm,
the log-likelihood of the data given the parameters is used
to evaluate the fitness of each particle.

For some swarm s, let M(s) be the set of variables in the
Markov blanket associated with s. Let Θg = {θg,v1 , . . . , θg,vn}
be the set of CPTs for all variables v1, . . . , vn in the network.
Let Θp = {θp,v|v ∈ M(s)} be the set of CPTs encoded by
the position vector of particle p in swarm s. A new full pa-
rameter set Θg,p can be constructed by inserting Θp into Θg

as follows:

Θg,p = Θp ∪Θg\{θg,v|v ∈M(s)}

We use the log likelihood of the data given the parameters
Θg,p as the fitness for the particle p.

f(p) = L(D|Θg,p)

This function defines the fitness of particle p as the log like-
lihoods of the data given the global parameters Θg, when
the parameter estimates encoded in p are substituted into
Θg.

When multiple swarms learn the parameters for a given
node, (such as c and d4 in Figure 1) these swarms are said to
overlap. After each iteration of the algorithm, overlapping
swarms compete to determine which parameter estimates to
include for each entry in the CPTs. This competition is
held between the parameter estimates encoded in the per-
sonal best particles of each swarm. The parameters resulting
in the highest log-likelihood are selected for inclusion in the

Algorithm 2 Overlapping Swarm Intelligence

Randomly initialize Θg

Initialize particles in each swarm

repeat
for each swarm s do

for each particle, p ∈ s do
Construct Θg,p

Calculate particle fitness f(p)
if f(p) > p’s personal best fitness then

Update p’s personal best position and fitness
end if
if f(p) > the global best fitness then

Update global best position and fitness for s
end if
Update p’s velocity and position

end for
end for

for each incomplete variable v in the network do
Let the set of swarms S = {s|v ∈MB(s)}
for each parameter z ∈ θg,x do
z ← Compete(S, z)

end for
end for

until termination criterion is met

return Θg

Algorithm 3 Compete(S, z)

Lbest ← −∞
for each swarm s ∈ S do

Let pg be the most fit particle in s
Let wz be the parameter estimate for z within pg
Insert wz into Θg

if L(D|Θg) > Lbest then
Lbest ← L(D|Θg)
wbest ← wz

end if
end for
return wbest

global parameter set. Thus in the example presented in Fig-
ure 1, the swarms associated with d3 and d5 would compete
to determine which parameter values are assigned to the
nodes c and d4.

5. EXPERIMENTS
To test the performance of our algorithms, several exper-

iments were performed using data generated from networks
in the Bayesian Network Repository [18]. We compared our
algorithms to four competing approaches to parameter esti-
mation: EM, Monte-Carlo EM (MCEM), Genetic Algorithm
EM (GAEM), and Age-Layered EM (ALEM) [13, 14, 15, 21].

5.1 Methodology
For these experiments, we chose networks with gradually

increasing numbers of parameters to evaluate the effect of
network complexity on performance, in terms of log likeli-
hood. For each network, we used forward sampling to gen-
erate 2000 data points and then removed the data for some



of the nodes, thereby simulating the presence of latent vari-
ables.

To evaluate the effect of latent variable structure on per-
formance, we repeated the above sampling procedure for
each network using two latent variable sets. The first set of
data was generated using a latent variable architecture with
a number overlapping Markov blankets, while the second
was generated using latent variables with fewer overlapping
Markov blankets. A cross-reference to the network infor-
mation and latent variable configurations for the datasets is
shown in Table 1. Datasets annotated with “O” were gen-
erated from networks with a greater number of overlapping
latent variable structures, when compared to the datasets
annotated with “I”. We estimate the amount of overlap as
the average number of nodes learned by each swarm:

Overlap =

∑
s∈S N(s)

|S|

where N(s) is the number of nodes learned by swarm s.
Note that since we are calculating Overlap based only on
the swarms, this measure will differ on the same network
depending on which variables are identified as being latent.
We found that all of the networks with a greater number of
overlapping latent variable structures had Overlap ≥ 3.

For our algorithm, six particles were assigned to each sub-
swarm. For the other population based approaches, the total
number of individuals was six times the number of incom-
plete nodes, to ensure that all population based algorithms
had the same total number of individuals. For both swarm-
based algorithms φ1 and φ2 were set to 1.49618, while ω was
set to 0.7298. Eberhart and Shi empirically determined that
these are good parameter choices for ω, φ1, and φ2 [5]. For
MCEM, 400 samples were used during the expectation step.

To evaluate the effect of sampling from the dataset during
fitness evaluation, we compared two versions of OSI. In the
first, the entire training set was used during fitness evalua-
tion, while the second version of OSI evaluated the parame-
ters using a subset of the training data, containing 1

3
of the

original data points that were sampled at random during
each fitness calculation. We denote the sampling based OSI
algorithm as OSI-S.

To evaluate the performance of these algorithms, each
data set was divided into training and testing data using
a 5×2 cross-validation procedure, as recommended by Diet-
terich [3]. The log likelihoods for the best parameters found
in each run were averaged over the runs for each algorithm.
We compared the average log likelihoods of the algorithms
using a paired t-test with a confidence interval of 95% to
evaluate statistical significance.

5.2 Results
Table 2 shows the average log likelihoods for each algo-

rithm and network configuration. Bold values indicate that
the corresponding algorithm’s performance is statistically
significantly better than the competing algorithms. If two
algorithms tied on the significance testing, both values are
bolded.

On the networks with greater overlap, both OSI algo-
rithms were statistically significantly better than all the other
algorithms. OSI performed the best on Child-O, Alarm-O,
Win95-O, and Hepar2-O networks while OSI-S did better
on the Sachs-S and Insurance-O networks. MCEM was the
worst performing algorithm on the Sachs-O and Hepar2-O

networks. On the Child-O, Alarm-O, and Insurance-O, PSO
was the worst performing algorithm while GAEM was the
worst on the Win95-O network. Neither MCEM or GAEM
outperform traditional EM on any of these networks.

On the networks with less overlap, OSI outperformed all
other algorithms. However, while OSI and OSI-S were sta-
tistically significantly better than all the other algorithms on
all networks, on the Alarm-I network, OSI was also statis-
tically significantly than OSI-S. Additionally, OSI was only
outperformed by OSI-S on the Insurance-I network. MCEM
was the worst performing algorithm on the Sachs-I network
while PSO performed the worst on the Child-I, Alarm-I, and
Insurance-I network. For the Win95-I and Hepar-I networks,
GAEM was the worst performing algorithm. EM was only
outperformed by MCEM on the Hepar2-I network. On all
other networks, EM outperformed MCEM and GAEM.

Finally, we observed that for three of the six networks, the
gap between EM and OSI is much larger when the Markov
blankets of the latent variables have greater overlap. Ad-
ditionally, the performance of the OSI algorithms is worse
when there was less overlap over the Markov blankets.

5.3 Discussion
The paired t-tests on the log likelihoods indicate that OSI

performs better than the competing methods for all gener-
ated datasets. While PSO has consistently worse log likeli-
hood than EM, OSI outperforms both EM and PSO on all
datasets. Although ALEM managed to outperform tradi-
tional EM for most of the data-sets, the improvement was
small compared that of OSI. Neither MCEM or GAEM out-
perform traditional EM, this is likely a result of the error
introduced by the approximate Monte-Carlo based expec-
tation step. The results also show that using a randomly
sampled subset of the training data for fitness evaluation
does not have a significant impact on the performance of
OSI in terms of log likelihood for most datasets.

Although OSI outperforms EM and ALEM even when
there is little overlap between the Markov blankets of la-
tent variables, for half of the networks, the gap between the
log likelihoods of OSI and EM were even larger when the
latent variables had greater overlap between their Markov
blankets. This is evidence that the improved performance
obtained by OSI is due to the representation of each swarm
being based on the Markov blankets and the corresponding
competition that occurs between overlapping swarms. Re-
call that each variable is conditionally independent of all
other variables in the network given its Markov blanket. By
defining each variable’s swarm to cover its Markov blanket,
we ensure that the swarm learns the corresponding parame-
ters for all variables upon which that variable may depend.

The difference in log-likelihood when overlap is varied is
particularly large for the Sachs and Hepar2 networks. This
may be because of the large difference in the overlap metric
between the two configurations of the networks. However,
we do not see similar results for the Win95 network, which
has the most extreme difference in overlap between the two
configurations. It appears that the effect of overlap on the
performance of OSI could vary between networks, but fur-
ther experiments must be performed to verify this claim and
determine the effect of overlap on OSI’s performance.

There are several additional advantages provided by our
multi-swarm approach that may explain why our method
outperforms competing approaches, even when there is little



Table 1: Network Statistics
Network Params Nodes Label Latent Variables Overlap

Sachs 178 11
O PKA, Raf, Erk 3.57
I PIP3, Raf, Erk 2.33

Child 230 20
O LungParench, HypDistrib, HypoxiaInO2, ChestXray 3.00
I LVH, HypDistrib, Sick, CO2 2.11

Alarm 509 37
O VENTLUNG, INTUBATION, SAO2, CATECHOL 3.20
I CO, VENTALV, LVEDVOLUME, VENTTUBE 2.64

Win95 574 76
O NtGrbld, LclGrbld, DSLCLOK, AppData, DSNTOK 3.89
I TTOK, PSGRAPHIC, CmpltPgPrntd, AppDtGnTm, DSLCLOK 2.33

Insurance 984 27
O CarValue, ThisCarCost, OtherCarCost, VehicleYear 3.67
I ThisCarCost, SeniorTrain, DrivQuality, Cushioning 2.75

Hepar2 1453 70
O Obesity, Steatosis, RHepatitis, Hepatomegaly 3.89
I Obesity, Joints, Encephalopathy, Injections 2.40

Table 2: Comparison against other approaches

Network EM MCEM GAEM ALEM PSO OSI OSI-S
Sachs-O -5700.67 -7049.28 -6664.70 -5602.99 -6804.89 -854.82 -834.18
Child-O -10598.31 -11706.62 -11477.23 -10519.32 -11751.61 -3534.98 -3574.44
Alarm-O -11053.01 -13172.76 -13043.30 -10572.05 -13365.95 -4797.21 -4811.59
Win95-O -8951.64 -9387.82 -9505.28 -8786.31 -5542.32 -5194.31 -5814.35

Insurance-O -12316.01 -13774.30 -14577.78 -12209.57 -15622.23 -7575.05 -7555.93
Hepar2-O -33329.08 -34504.95 -33970.11 -32704.60 -34105.81 -19213.89 -19337.85

Network EM MCEM GAEM ALEM PSO OSI OSI-S
Sachs-I -5168.45 −6515.06 -5946.70 -5173.73 -5979.34 -3110.52 -3545.88
Child-I -10966.85 -11263.68 -11250.29 -10715.44 -11342.20 -5118.27 -5499.05
Alarm-I -11037.85 -13585.07 -13541.31 -10749.36 -13995.45 -4396.54 -4761.65
Win95-I -9294.90 -9792.64 -9861.66 -9081.66 -8630.77 -5357.83 -5490.31

Insurance-I -12554.39 -14234.46 -14014.89 -12375.49 −15504.62 -8942.22 -8855.79
Hepar2-I -31249.45 -31214.12 -31261.57 -31195.40 -31006.87 -26198.50 -26719.78

overlap between the Markov blankets of latent nodes. First,
since the sub-swarms maintain independence, each swarm
can explore a different region of the search space. Second,
by splitting the swarms over the nodes of the network, we re-
duce the possibility of neglecting a potentially good parame-
ter for a specific component of the global network’s complete
parameter set.

Also, since several swarms learn the parameters for a sin-
gle variable, OSI allows for greater exploration of the search
space and the competition between swarms ensures that the
best parameter estimates found by the swarms are used in
the global network. It is likely that this increased explo-
ration contributes to the improved performance of OSI when
compared to the EM algorithm, which is known to converge
to local optima.

While these results are encouraging, more work must be
done to empirically verify the effect of conditional dependen-
cies on the optimal overlap structure. One area of improve-
ment is the sampling procedure. It is possible that our the
sampling procedure could result in some data points exist-
ing in both the training and testing data, thus introducing a
bias into our results, but the number of times this occurred
was small. In addition, since our goal is to parameterize
the distribution with latent variables, one could argue that
removing these data points would also bias the results nega-

tively due to under-sampling. In addition, we are currently
researching the effect of applying the OSI framework to other
stochastic search techniques such as genetic algorithms, dif-
ferential evolution, and simulated annealing to determine if
the benefit of overlap is algorithm specific.

6. CONCLUSIONS
We have presented a swarm-based method for parame-

ter estimation in Bayesian networks. In our approach, a
swarm is associated with each hidden/latent variable in the
network, and that swarm learns the parameters for its cor-
responding node. We compared our algorithm to several
other approaches to parameter estimation, including a tra-
ditional single-swarm PSO. Our results indicate that OSI
significantly outperforms the competing approaches on all
of the datasets studied in terms of the log likelihood of the
data given the parameters. Additionally, we found that, by
sampling from the training data during fitness evaluation,
we can reduce the computational burden of the algorithm
without impacting the quality of learned parameters.

For future work, we will investigate the affect OSI pa-
rameters, such as the number particles per sub-swarm and
how often competition is performed, have on OSI’s perfor-
mance. Additionally, the traditional OSI algorithm uses a
sharing step in which the global solution is used to seed val-



ues in other sub-swarms. In this work, the sharing step was
left out because it was found to dramatically decrease OSI’s
performance. More work is needed to investigate why OSI’s
performance decreased when OSI performed sharing.

Other areas of future work include investigating the ex-
istence of optimal swarm overlap structures. In the work
presented here, we used the Markov blanket to derive OSI’s
sub-swarm architecture. We conjecture that, for many op-
timization problems, optimal OSI sub-swarm architectures
exist related to the conditional dependence/epistatic prop-
erties of the underlying fitness landscape. We are exploring
theoretical avenues to support this claim and are develop-
ing procedures to derive the swarm architectures based on
a transformed representation of the optimization problem
whereby we can determine each variable’s Markov blanket.
This would then allow us to know how to apply OSI to a
large spectrum of optimization problems.

Finally, we are exploring how to use OSI to learn the
structure of Bayesian networks. In all of the work presented
in this paper, we assumed that the structure of the net-
work was given; however, in many scenarios, the structure
of the Bayesian network is unknown and must be learned
from data. We plan to adapt OSI to the Bayesian structure
learning problem, after which we can then use the work pre-
sented here as a way to learn the parameters for that struc-
ture. This will give us a OSI algorithm to learn a Bayesian
network given only the data.
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