
A New Discrete Particle Swarm Optimization Algorithm

Shane Strasser,
Rollie Goodman

Montana State University
Dept. of Computer Science
Bozeman MT, 59717-3880

{shane.strasser,
rollie.goodman}

@msu.montana.edu

John Sheppard
Montana State University

Dept. of Computer Science
Bozeman MT, 59717-3880

john.sheppard
@montana.edu

Stephyn Butcher
Johns Hopkins University

Dept. of Computer Science
Baltimore, MD 21218-2682
steve.butcher@jhu.edu

ABSTRACT
Particle Swarm Optimization (PSO) has been shown to per-
form very well on a wide range of optimization problems.
One of the drawbacks to PSO is that the base algorithm as-
sumes continuous variables. In this paper, we present a ver-
sion of PSO that is able to optimize over discrete variables.
This new PSO algorithm, which we call Integer and Cate-
gorical PSO (ICPSO), incorporates ideas from Estimation of
Distribution Algorithms (EDAs) in that particles represent
probability distributions rather than solution values, and the
PSO update modifies the probability distributions. In this
paper, we describe our new algorithm and compare its per-
formance against other discrete PSO algorithms. In our ex-
periments, we demonstrate that our algorithm outperforms
comparable methods on both discrete benchmark functions
and NK landscapes, a mathematical framework that gener-
ates tunable fitness landscapes for evaluating EAs.

Keywords
Particle Swarm Optimization, Discrete Optimization, Cate-
gorical Optimization

1. INTRODUCTION
Discrete optimization problems, such as feature selection

or inference in Bayesian networks, represent an important
and challenging set of problems. These differ from continu-
ous problems in that each variable can take on only a finite
number of states [6]. An example is integer problems, where
variables are restricted to a set of integer values. For such
problems, there exists a relationship between neighboring
values. More generally, there is an implicit ordering in the
integers: integers with a larger difference between them are
considered to be further apart.

While integer problems are a subset of discrete problems,
there are other types. For example, in abductive inference
for Bayesian networks, the goal is to find the set of states

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908935

that best explains a set of observations. Here, there may not
exist a direct relationship or gradient between neighboring
states. For example, say the set of states is the emotions
Sadness, Fear, Anger, Joy, and Disgust. While these states
may be represented with integers during optimization, there
is no real ordered relationship between the values of this
encoding. We refer to such problems as categorical opti-
mization problems.

Particle Swarm Optimization (PSO) is a highly customiz-
able, yet relatively simple search algorithm applicable to a
wide variety of optimization problems. However, the orig-
inal PSO algorithm is unable to handle discrete problems,
such as the ones discussed above, as its velocity update re-
quires continuous solution values [12, 16, 17]. Currently,
there are several extensions to the PSO algorithm that allow
discrete solution values, though the definition of “discrete”
varies widely between applications and algorithms. In this
paper, we formally define a class of discrete problems and
propose a new PSO algorithm, called Integer and Categor-
ical PSO (ICPSO), designed for this set of problems. We
then compare ICPSO to other discrete PSO variants pro-
posed in the literature.

The goal of our algorithm is to keep the extensions to con-
tinuous PSO as simple as possible and preserve much of the
original semantics, while also addressing some of the poten-
tial pitfalls of other discrete PSO algorithms. To achieve
this, we alter the representation of the particle’s position so
that each attribute in a particle is a distribution over its
possible values rather than a value itself. This is similar to
Estimation of Distribution Algorithms (EDAs) where a set
of fit individuals is used to generate a distribution vector
that can then generate fitter solutions [14]. ICPSO differs
from EDAs in that the algorithm has several distribution
vectors that are updated using the PSO update equations.

For ICPSO, evaluating a particle becomes the task of sam-
pling a candidate solution from these distributions and then
calculating its fitness. ICPSO also allows us to use the orig-
inal PSO update equations and avoids problems associated
with an implicit ordering of the possible solution values. Ad-
ditionally, ICPSO modifies the global and local best solu-
tions’ distributions whenever a global best sample is pro-
duced. This serves to bias distributions toward the best
sample they have produced while still allowing exploration
of the search space.

The remainder of this paper proceeds as follows. In Sec-
tion 2, we formally define ICPSO. Section 3 presents a more
detailed overview of other discrete PSO algorithms, to which

53

we empirically compare ICPSO in Section 4. Finally, Section
5 presents our conclusions and future work.

2. ICPSO
This section briefly introduces the original continuous PSO

algorithm and the necessary definitions and modifications
for our discrete algorithm. Though our experiments do in-
clude maximization problems, for the definitions we are as-
suming a minimization problem where f(x) denotes the fit-
ness function for the optimization.

2.1 Traditional PSO
In traditional PSO, as introduced in [10], a particle p’s

position in the search space, Xp = {Xp,1, Xp,2, . . . , Xp,N},
directly represents a candidate solution. The particle “flies”
through the search space according to its velocity vector
Vp = {Vp,1, Vp,2, . . . , Vp,N}, which is updated at each itera-
tion. In the simplest case, this velocity and position updates
are

Vp = ωVp + U(0, φ1)⊗ (pBest−Xp)

+ U(0, φ2)⊗ (gBest−Xp) (1)

Xp = Xp+ Vp (2)

where each operator is performed component-wise over each
variable in the vector and U(0, φ1) and U(0, φ2) are uni-
formly distributed random numbers between 0 and φ1 and
0 and φ2. The vectors pBest and gBest represent, respec-
tively, the best position in the search space this particle has
ever seen, and the best position in the search space any
particle in the swarm has ever seen. This has the effect of
pulling the particle in three directions: the direction it was
previously going, the direction of its personal best, and the
direction of the global best. By tuning ω, φ1, and φ2, the
user may control the relative effects of these three terms –
known as inertia, the cognitive component, and the social
component – to tune the particle’s behavior. This updated
velocity is added to the particle’s position vector at the cur-
rent iteration, moving the particle through the search space.

One limitation to this algorithm is that it assumes contin-
uous state variables. If solution variables must take on dis-
crete values, this representation is no longer appropriate. In
the next section, we suggest an alternate PSO algorithm that
produces discrete-valued solutions without deviating signif-
icantly from the traditional update equations.

2.2 Our Approach
We propose an alternative position representation that

supports discrete-valued solutions. We first describe the
particle representation used in this PSO variant, followed
by the necessary changes to the update equations. Finally,
we give a modified fitness evaluation procedure and explain
how to set the personal and global best vectors.

2.2.1 Defining the Class of Problems
Across the literature, “discrete” PSO has taken on a num-

ber of meanings. Many papers only consider integer prob-
lems; however, there are many applications where the dis-
crete solution values are not integers. Similarly, while cate-
gorical optimization is a form of discrete optimization, not
all discrete optimization is necessarily categorical. Due to
this ambiguity in the literature, we propose a more specific
definition of discrete optimization problems.

Definition 2.1. Discrete Optimization. A class of prob-
lems where an objective function is to be optimized that has
variables whose values are limited to finite sets, numerical
or categorical, ordered or unordered.

The definition of discrete optimization is often a bit fuzzy
because integers are frequently used as an example. This
definition recognizes that discrete optimization problems of-
ten require integer solutions where the possible values for
each value are numerical, discrete, ordered and there is a
fitness relationship between adjacent or nearby values. But
it also emphasizes that some discrete problems are over vari-
ables with categorical values such as the emotion example,
{Sadness, Fear, Anger, Joy, Disgust}. In this case, there
is not necessarily a fitness relationship between the values
Sadness and Fear because the set is unordered. More im-
portantly, we could resort to an integer encoding for this set
for representational convenience, just because the integers in
the encoding are ordered, this does not mean there is now a
fitness relationship between adjacent values in the encoding.
For example, we could just as easily have encoded our set of
emotions from above: {Sadness, Fear, Anger, Joy, Disgust}
as {1, 2, 3, 4, 5} or {3, 5, 4, 2, 1}.

Traditionally, discrete includes both finite and countably
infinite sets. For practical reasons, we limit ourselves to
finite sets due to finite computer memory. However, our al-
gorithm is applicable to all discrete problems falling within
this definition. We refer to our algorithm as Integer and Cat-
egorical PSO (ICPSO) to emphasize that it can be applied
to both integer and categorical discrete problems.

2.2.2 Representation
The current position for a particle in ICPSO is a set of

probability distributions, one for each dimension of the so-
lution. This differs from other PSO variants, where a parti-
cle’s position is often a direct representation of the solution
values. When optimizing over discrete values, this direct
representation creates a problem: namely, there is an as-
sumption that there must be a relationship between neigh-
boring states, and that the arithmetic difference between
states must be indicative of distance between them. While
certain discrete applications may have a fairly natural way
to order the possible states, others do not.

Using our emotions example from before, suppose we have
a solution with three attributes and {Sadness, Fear, Anger,
Joy, Disgust} is encoded as {1, 3, 2, 4, 5}. Say we have two
particles with positions Pp1 = (1, 4, 5) and Pp2 = (1, 3, 5),
and the global best is at gBest = (1, 5, 5). The vector sub-
traction during the velocity update would imply that p1 is
closer to the global best than p2 is. However, semantically,
one could argue that Anger is closer to Disgust than Joy is;
therefore, the variable ordering is not indicative of a mean-
ingful ordering of the states.

ICPSO’s particle representation avoids this problem by
using probability distributions rather than single values in
the position vector. A particle p’s position is represented as

Xp = [Dp,1,Dp,2, . . . ,Dp,n]

where each Dp,i denotes the probability distribution for vari-
able Xi. In other words, each entry in the particle’s position
vector is itself comprised of a set of distributions:

Dp,i = [dap,i, d
b
p,i, . . . , d

k
p,i].

54

djp,i corresponds to the probability that variable Xi takes on
value j for particle p.

A particle’s velocity is a vector of n vectors φ, one for each
variable in the solution, that adjust the particle’s probability
distributions. Formally, this is represented as:

Vp = [φp,1, φp,2, . . . , φp,n]

φp,i = [ψa
p,i, ψ

b
p,i, . . . , ψ

k
p,i].

where ψj
p,i is particle p’s velocity for variable i in state j.

Since these values are continuous, the velocity update equa-
tion can be used nearly identically to the update equation
in traditional PSO.

2.2.3 Update Equations
The velocity and position update equations are identi-

cal to those of traditional PSO, seen in Equations (1) and
(2). However, because we are working with distributions in-
stead of real values, the difference and addition operators
for the distribution and velocity vectors take on a slightly
different meaning. For this reason, we will define them ex-
plicitly as follows. The difference operator is defined as a
component-wise difference between the two position vec-
tors, i.e. for each variable Xi and value j ∈ V als(Xi),
dj(pBestp−Pp),i = djpB,i−d

j
p,i. Here, djpB is the personal best

position’s probability that variable Xi takes value j. The
global best equation is identical except pBestp is replaced
with gBest and djpB,i with djgB,i.

The addition of the velocity vector to the position vector is
similarly component-wise over each value in the distribution.
For each probability for variable Xi and possible value j, the
addition is djp,i + ψj

p,i.
These operations have the potential to create probabilities

that fall outside [0, 1]. In order to maintain a valid probabil-
ity distribution, any value outside this range is mapped to
the nearest boundary. The distribution is then normalized
to ensure that its values sum to 1.

To evaluate a particle p, its distributions are sampled to
create a candidate solution. This sample is denoted

Sp = [sp,1, sp,2, . . . , sp,n]

where sp,j denotes the state of variable Xj .
The fitness function is used to evaluate the sample’s fit-

ness, which then is used to evaluate the distribution.

2.2.4 Setting The Best Vectors
When a particle produces a sample that beats the global

or local best, we use both the distributions from that parti-
cle’s position, Pp, and the sample itself, Sp, to update the
best values. The goal of this update is to bias the distribu-
tion that produced the best sample toward producing similar
samples in the future. This is accomplished by reducing the
probability, for each variable, of taking on any state except
its state in the best sample. Mathematically, for all states
j ∈ V als(Xi) the global best’s probability is updated as

djgB,i =

ε× djp,i if j 6= sp,i
djp,i +

∑
k∈V als(Xi)
∧k 6=j

(1− ε)× dkp,i if j = sp,i

where ε, the scaling factor, is a user-set parameter that de-
termines the magnitude of the shift in the distribution. We
restrict the scaling factor to values in [0, 1). This increases

the likelihood of the distribution producing samples simi-
lar to the best sample, while inherently maintaining a valid
probability distribution. This can be shown as follows:∑
j∈V als(Xi)

djgB,i =
∑

j∈Sv(Xi,k)

(
djp,i × ε

)
+ dkp,i+

∑
j∈Sv(Xi,k)

(
djp,i − d

j
p,i × ε

)
=

∑
j∈Sv(Xi,k)

(
djp,i × ε

)
+ dkp,i+

∑
j∈Sv(Xi,k)

(
djp,i

)
−

∑
j∈Sv(Xi,k)

(
djp,i × ε

)
= dkp,i +

∑
j∈Sv(Xi,k)

(
djp,i

)
= 1

where Sv(Xi, k) = {j|j ∈ V als(Xi) ∧ j 6= k} and k = sp,i.
The procedure for setting the local best is directly analogous.
The global best sample is returned as the solution at the end
of optimization.

3. RELATED WORK
In this section, we review other approaches to discrete

particle swarm optimization, both binary and multi-valued.
This analysis provides the necessary context for our exper-
iments comparing the performance of ICPSO to competing
approaches. Additionally, this section serves to highlight
the problems, endemic in discrete PSO methods, that our
contributions are intended to address.

First, we discuss PSO variants that mostly maintain the
core update equations and have only been augmented with a
few additional equations to handle discrete problems. These
algorithms are the most similar to ours, and thus the bulk
of the discussion will be focused here.

Next, we present versions of PSO that have been combined
with other optimization algorithms, such as estimation of
distribution algorithms (EDA). We include these hybrid al-
gorithms because ICPSO shares some similar ideas, though
it differs in implementation. Finally, we discuss other PSO
variants applied to specific discrete problems, such as the
Traveling Salesman Problem. While these algorithms are
only designed for specific applications, we include them in
our discussion for the sake of completeness.

3.1 Discrete Variations of PSO
Integer PSO: It is possible to use the original continu-

ous PSO to solve problems with integer-valued solutions by
rounding the particle’s position at each iteration [10]. We
will refer to this algorithm as Integer PSO (IPSO).

IPSO requires a relationship between neighboring states,
as the velocity update equation uses subtraction to measure
the distance between the particle’s current position and the
global/local best positions. As such, it is only applicable to
certain problems where the states can be ordered or arranged
in a way that provides the necessary relationship between
neighboring states.

Binary PSO: Another discrete PSO algorithm is Binary
PSO (BPSO), originally proposed by Kennedy and Eberhart
[12]. BPSO requires that the position vector be a binary
representation of candidate solutions. This representation
also changes the velocity interpretation: the velocity rep-
resents the probability of each variable assuming the value

55

0 or 1. While the velocity update for BPSO remains un-
changed, the position update is modified to take advantage
of the new semantics of the velocity vector. After updating
the velocity vector, each term in the velocity is mapped into
a [0,1] interval using the sigmoid function

Sig =
1

1 + exp(−Vi,j)
(3)

where Vi,j is the value of the jth variable for particle i [12].
Next, a random number is sampled from the normal distri-
bution Xi,j = N (0, 1) and converted to be in [0, 1] by first
calculating Si,j − Xi,j , and then using a unit set function
to snap the difference to 0 or 1. This value is then assigned
as particle i’s current position for variable j. When velocity
is high, the position update is more likely to select a value
closer to 1 than 0. Conversely, when velocity is low, there is
a higher likelihood of selecting 0 [12].

The main limitation of BPSO is that it requires a bi-
nary representation. Binary coding is commonly used for
binary representation, but has the disadvantage of intro-
ducing Hamming cliffs. Hamming cliffs represent situations
where adjacent binary-encoded numbers have a large Ham-
ming distance between them, or where two binary-encoded
numbers with a very small Hamming distance actually have
a large difference in value.

An alternative strategy is to use Gray coding, where the
Hamming distance between neighboring values is set to 1,
which reduces the Hamming Cliff problem. However, both
methods’ encoding may overrepresent the problem if the
number of states is not a power of 2. This can also increase
problem dimensionality, slowing optimization [15].

Veeramachaneni PSO: Veeramachaneni et al. devel-
oped an extension to binary PSO that relaxes the need for
a binary representation of the problem [22]. Throughout
the rest of the paper, we will refer to this algorithm as the
Veeramachaneni PSO (VPSO). In VPSO, each variable is
allowed to assume any of M discrete values. While the ve-
locity update remains unchanged from the binary case, the
position update is modified to allow for more than 2 states.
After the velocity has been updated, it is mapped into the
[0,M − 1] interval by first using a generalized version of the
sigmoid function in Equation (3), which is given as

Si,j =
M − 1

1 + exp(−Vi,j)
.

Next, each particle’s position is updated by generating a
random number according to the normal distribution Xi,j =
N (Si,j , σ × (M − 1)) and rounding the result. Then the
piecewise function

Xi,j =

 M − 1 Xi,j > M − 1
0 Xi,j < 0
Xi,j otherwise

is applied to ensure all values fall within [0,M − 1] [22].
While VPSO does extend BPSO so any number base can

be used, the algorithm requires a relationship between neigh-
boring states in the range of variable values, just like in
IPSO. In [22], the authors demonstrated that VPSO is able
to outperform BPSO when mapping continuous variables to
quaternary or ternary. However, all experiments contained
relationships between neighboring states.

Pugh PSO: The multi-valued PSO extension most sim-
ilar to ours was introduced by Pugh and Martinoli [17]. We

will refer to this variant as PPSO. PPSO, like ICPSO, uses a
probabilistic interpretation of a particle and evaluates fitness
stochastically by generating a sample solution.

The position vector, however, does not represent a valid
probability distribution explicitly in PPSO. When generat-
ing a sample, each element in the position vector has a sig-
moid transformation applied to each of its terms. Then, the
probability of the sample solution’s jth element taking on
value k is the kth term of the position vector’s jth element
divided by the weighted sum of all the elements in that term.
This allows the solution element to take on any value from 0
to a user-specified n. This fitness evaluation involves several
more steps than our implementation of discrete PSO.

An adjustment must also be applied after each modifica-
tion of the particle’s values in order for all of the particles to
share a common reference frame [17]. To achieve this adjust-
ment, a value cij is subtracted from each value of particle i,
element j’s vector of values. This cij is calculated such that
all values of the vector, when mapped to the sigmoid func-
tion, sum to 1. The resulting equation is solved for c via an
approximate root-finding method to produce an adjustment
for each value in each element of the position vector. To ad-
dress the noisy fitness evaluation, the algorithm also reeval-
uates best particles at each iteration, averaging fitness over
particles’ lifetimes. Unlike in ICPSO, the sample’s value is
not used when setting the global or local best positions.

Angle Modulated PSO: Angle Modulated PSO, also
known as AMPSO, reduces a high-dimensional binary search
space into a smaller continuous search space using an angle-
modulation-based method, thus reducing the number of pa-
rameters to be optimized [16]. This speeds up optimiza-
tion while potentially improving performance. The approach
uses the angle modulation equation, which is given as

g(x) = sin(2π(x− a)× b× cos(A)) + d

where A = 2π × c(x− a) and x is a single input value.
AMPSO first optimizes over the parameters a, b, c, and d

in the angle modulation equation. Next, for each variable,
the algorithm generates k evenly-spaced values, where k is
the number of bits needed to represent every state in the
discrete problem. These k values are then transformed into
a bit string by converting positive values to 1 and negative
values to 0.

The novelty of AMPSO is more related to the transforma-
tion of the search space than the PSO implementation itself.
Additionally, this approach requires a binary representation
of the problem, which has similar limitations to BPSO.

3.2 Hybrid Algorithms
Another related class of algorithms combines Estimation

of Distribution Algorithms (EDA) and PSO to create an
EDA-PSO hybrid [1, 5, 23]. These approaches either use
EDA to help guide the movement of particles in PSO, or
use PSO to generate or update individuals generated by an
EDA. Our work differs from these hybrid approaches in that
it retains the core PSO update equations by modifying the
particle representation to fit discrete problems. Addition-
ally, many of these hybrid algorithms are designed to op-
erate on continuous problems, while ICPSO is specifically
designed for discrete optimization.

In the work by El-Abd and Kamel, the authors propose
a hybrid algorithm in which a particle is either updated ac-
cording to the PSO update equations or replaced with a new

56

individual sampled from the estimated distribution [5]. In
another example of a hybrid algorithm, Zhou et al. devel-
oped an algorithm called Discrete Estimation of Distribution
Particle Swarm Optimization (DEDPSO), in which the lo-
cal best positions from all individuals are used to update
the distribution vector. This update distribution vector is
then sampled to update the existing individuals [23]. The
algorithm is designed to operate on binary vectors.

In [18], Reynolds et al. first generate a set of individuals
using EDA and insert them into a PSO swarm. PSO runs
for a set number of iterations and then uses the updated
positions to generate new individuals. Those individuals
are then added back to the original set of individuals from
EDA. The set of individuals from both algorithms are then
used to update the probability distribution, and the pro-
cess is repeated. This is similar to the work by Bengoetxea
and Larrañaga [1]. Their algorithm generates individuals
independently using EDA and PSO and uses the generated
individuals from both algorithms to update the distribution.

Kulkarni and Venayagamoorthy use both EDA and PSO
when updating an individual [13]. An individual is first up-
dated according to the PSO update equations, and a new
individual is generated using EDA. Of these, the individual
with the best fitness is kept in the swarm [13]. Santucci and
Milani take a different approach to hybridization by using
PSO within an EDA framework [20]. This is done by re-
placing the PSO update equations with those found in EDA.
Then each variable in an individual is updated using EDA.
After all individuals have been updated, the distribution is
updated using the new positions of the individuals [20].

3.3 Other Approaches
In addition to the hybrid and discrete PSO algorithms,

there are several PSO variants tailored to specific discrete
problems, such as the Traveling Salesman Problem (TSP).
In these cases, each application requires a specific mapping
or transformation of the problem [2]. For example, Clerk
uses PSO to solve TSP by representing the particle as a
path through all nodes [3]. With this representation, the
velocity is a set of changes to be made to the path. The
addition and subtraction operators are then re-defined to fit
the modified semantics of the optimization [3].

Sha et al. propose a PSO algorithm to solve the job
scheduling problem [21]. Each particle represents a matrix,
where each element is the priority of a job on a machine.
The velocity represents a swap operator of a job to a differ-
ent machine. To evaluate a solution, the matrix is decoded
into a schedule using Giffler and Thompson’s heuristic [8].
This schedule is then evaluated for fitness.

Other approaches use a variation of integer PSO by round-
ing continuous values to integer values during fitness eval-
uation. This is similar to the work done by Salman et al.,
where the authors applied PSO to the task assignment prob-
lem [19]. Each particle’s position represents a matrix that
contains assignments of a task to a machine or processor.
The velocity update remains unchanged, but is also repre-
sented by a matrix. Particle evaluation is done after round-
ing values in the matrix [19].

Hela and Abdelbar also used a matrix representation in
using PSO to solve the quadratic assignment problem [9]. In
that work, the velocity is represented by a matrix where an
element (i, j) represents the likelihood of variable i taking
on value j. The position is then updated by probabilistically

selecting an element for variable i, using roulette wheel se-
lection, based on the values in row i of the velocity matrix.
To update the velocity, the position array is expanded to a
binary position matrix where (i, j) = 1 if variable i is set
to value j. In some ways, this type of matrix-based repre-
sentation is similar to the one used in ICPSO. However, the
differ in that our position matrix serves the same function
as their velocity matrix and our sample position corresponds
to their algorithm’s position array.

A more recent algorithm for combinatorial optimization
problems uses what is called set-based PSO [2]. Here, each
individual represents a subset of values out of a universal
set, and the velocity represents the probability of an element
being selected for inclusion in the set. To fit the updated
position and velocity semantics, the authors define new set-
theoretic velocity and position update equations [2].

4. EXPERIMENTS
We compare ICPSO against the algorithms from Section

3.1, as those were the closest in approach and interpreta-
tion. Specifically, we compared to the Angle Modulated
PSO (AMPSO), Binary PSO (BPSO), Binary PSO using
Gray coding (BGPSO), Integer PSO (IPSO), the PSO pro-
posed by Pugh and Martinoli (PPS), and the PSO proposed
by Veeramachaneni et al. (VPSO).

4.1 Design
We compare the algorithms on a set of benchmark func-

tions (namely, Ackley, Griewank, Rastrigin, Rosenbrock, and
Sphere) using the same function ranges as presented in the
appendix of [4]. Normally, these are studied as continuous
functions to be optimized; however, we modify them to allow
for both integer and categorical (discrete) optimization. For
the integer discrete optimization problem, we restrict the
states of the variables to integer values. This permits adja-
cent values to correlate with their fitness as defined by the
original function. For categorical problems, and unique to
our experimental design within the discrete PSO literature,
we break the relationship between the adjacent numerical
values and their fitness by mapping the integer values to a
randomly chosen (“shuffled”) integer encoding. For example,
the state values of some variable x, {1, 2, 3, 4, 5}, might be
shuffled to the encoding {4, 2, 1, 3, 5}.

We tested all discrete algorithms on both shuffled (cat-
egorical) and unshuffled (integer) versions. Functions were
restricted to 10 dimensions and 10 states for each dimension.
For the shuffled versions, we generated 30 different shuffles
and ran each algorithm 30 times on the each function. Al-
gorithms were also run 30 times on each of the unshuffled
problems.

We also tested the algorithms on NK landscapes, which
are a mathematical framework that generates tunable fitness
landscapes. An NK landscape model contains two parame-
ters, N and K, that control the overall size of the landscape
and the structure or amount of interaction between each di-
mension [11]. Usually, NK landscapes are binary strings.
We, however, used a generalized version that allows for in-
teger strings, where each variable can take on D different
values. For our experiments, we used an NK-landscape with
N = 10 and K = 2. We varied the number of states, D, for
each dimension to values 2, 4, 6, 8, 10, 15, and 20. For each
set of NK landscape parameters, we generated 30 different
landscapes and ran each algorithm 30 times per landscape.

57

All PSO variants used the same set of parameters, in order
to make comparisons as consistent as possible. Parameters
φ1 and φ2 were set to 1.49618, and ω = 0.729, which has
been found to encourage convergent trajectories [4]. Each
algorithm used a swarm of size 5, and terminated once the
global best did not change after 50 iterations. This is due to
the recommendations of [7], which demonstrated that a large
swarm may, counterintuitively, have difficulty exploring the
search space. For our approach, we set the scaling factor ε to
0.75, and in the VPSO we set σ to the authors’ recommended
value of 0.2. All algorithms randomly initialized velocity
and position vectors. Significance testing was done using a
paired Student t-Test with α = 0.05.

4.2 Results
The results from the test functions, reported as average

solution fitness, are shown in Table 1. Standard error is
shown in parentheses. Bold values indicate algorithms that
statistically significantly outperformed all other algorithms.

On the unshuffled functions, IPSO significantly performed
the best. The next best-performing algorithm was ICPSO.
Even though it is not shown in the table, ICPSO significantly
outperformed all other algorithms except IPSO. AMPSO,
BPSO, and BGPSO all had comparable performance. VPSO
was comparable with AMPSO, BPSO, and BGPSO and
PPSO generally outperformed VPSO.

For the shuffled problems, ICPSO statistically performed
the best, with IPSO as the runner-up. The rest of the algo-
rithms have roughly the same performance, and are function-
dependent as to which method performs the best.

Comparing the each algorithm across the regular and shuf-
fled problems, we found that ICPSO had the smallest change
in performance. In some cases the performance on the un-
shuffled problems was better than the shuffled; however, this
was not always the case. Meanwhile, IPSO consistently had
poorer performance on the shuffled problems. AMPSO usu-
ally performed better on the unshuffled problems, except on
the Rastrigin function. BPSO and BGPSO both performed
better on the shuffled functions than unshuffled.

Table 2 contains the results of the PSO variants on max-
imizing NK landscapes. The far left column indicates the
number of states per dimension. On the NK landscapes,
ICPSO almost always demonstrated the best performance
significantly, and was only outperformed on binary strings
(D = 2). In the binary case, BPSO, BGPSO, and VPSO
significantly performed the best. Many of the other algo-
rithms, such as AMPSO, BPSO, and BGPSO only varied
slightly for D = 4 to 20. However, ICPSO had among the
highest variance in performance between different D values.

The fitness curves for all of the PSO algorithms on the
sphere and shuffled sphere problems are shown in Figures 1
and 2. For ease of reading, the results in each case have been
split between two graphs with the same scale. The X-axis
is the number of iterations, while the Y axis is the gBest
fitness averaged over 30 runs. For these experiments, we ran
all algorithms for 200 iterations.

4.3 Analysis
Based on our results, ICPSO is generally more robust than

the other approaches, as demonstrated by its consistent per-
formance on the shuffled and unshuffled functions. We be-
lieve this is because the particles represent distributions in-

Table 1: Results of discrete PSO algorithms on min-
imizing benchmark functions.

Ackleys Shuffled Ackleys
AMPSO 4.83E00(5.08E-01) 5.35E00(9.05E-02)

BPSO 6.86E00(1.08E-01) 5.32E00(1.36E-01)
BGPSO 6.70E00(7.97E-02) 5.42E00(1.05E-01)
ICPSO 3.23E00(1.30E-01) 3.18E00(1.44E-01)3.18E00(1.44E-01)3.18E00(1.44E-01)

IPSO 1.23E00(2.05E-01)1.23E00(2.05E-01)1.23E00(2.05E-01) 4.43E00(1.60E-01)
PPSO 4.35E00(1.70E-01) 4.13E00(1.56E-01)
VPSO 5.98E00(1.01E-01) 5.14E00(1.04E-01)

Griewank Shuffled Griewank
AMPSO 8.19E-01(5.48E-02) 8.64E-01(1.52E-02)

BPSO 9.60E-01(4.96E-03) 8.22E-01(1.44E-02)
BGPSO 9.48E-01(6.46E-03) 8.50E-01(1.27E-02)
ICPSO 4.44E-01(2.58E-02) 5.15E-01(3.32E-02)5.15E-01(3.32E-02)5.15E-01(3.32E-02)

IPSO 2.51E-01(4.01E-02)2.51E-01(4.01E-02)2.51E-01(4.01E-02) 7.51E-01(2.26E-02)
PPSO 8.28E-01(1.84E-02) 8.67E-01(1.50E-02)
VPSO 9.20E-01(8.20E-03) 7.59E-01(1.75E-02)

Rastrigin Shuffled Rastrigin
AMPSO 2.14E04(3.43E03) 1.29E04(3.72E03)

BPSO 3.94E04(1.65E03) 6.80E03(3.88E02)
BGPSO 3.53E04(2.24E03) 7.18E03(3.41E02)
ICPSO 2.14E03(4.79E02) 1.92E03(2.73E02)1.92E03(2.73E02)1.92E03(2.73E02)

IPSO 4.37E02(1.29E02)4.37E02(1.29E02)4.37E02(1.29E02) 7.10E03(8.00E02)
PPSO 8.84E03(1.26E03) 9.05E03(1.34E03)
VPSO 1.17E04(1.31E03) 4.32E03(2.46E02)

Rosenbrock Shuffled Rosenbrock
AMPSO 1.39E04(3.60E03) 1.82E4(1.98E03)

BPSO 3.38E04(2.19E03) 2.66E4(1.83E03)
BGPSO 3.32E04(2.05E03) 2.53E4(1.88E03)
ICPSO 2.04E03(3.24E02) 1.75E3(2.17E02)1.75E3(2.17E02)1.75E3(2.17E02)

IPSO 2.89E02(6.39E01)2.89E02(6.39E01)2.89E02(6.39E01) 5.04E3(9.35E02)
PPSO 8.47E03(1.02E03) 9.31E3(1.33E03)
VPSO 1.22E04(1.36E03) 2.42E4(1.63E03)

Sphere Shuffled Sphere
AMPSO 2.39E01(3.59E00) 2.99E01(1.35E00)

BPSO 4.50E01(1.78E00) 3.06E01(1.28E00)
BGPSO 4.63E01(1.54E00) 3.15E01(1.13E00)
ICPSO 8.80E00(7.94E-01) 7.33E00(6.46E-01)7.33E00(6.46E-01)7.33E00(6.46E-01)

IPSO 2.07E00(9.06E-01)2.07E00(9.06E-01)2.07E00(9.06E-01) 1.35E01(6.98E-01)
PPSO 1.59E01(1.46E00) 1.68E01(1.26E00)
VPSO 3.05E01(1.47E00) 2.74E01(1.17E00)

stead of candidate solutions, and thus do not rely on having
a gradient or relationship between neighboring states.

While PPSO uses a very similar particle representation to
ours, ICPSO always outperformed PPSO. We believe that
this is due in part to how we set and bias the local and global
bests. ICPSO uses the knowledge that if particular sample
has high fitness, more exploration should likely be performed
around the sample. Another benefit to our approach is that
we avoid the added complexity that PPSO incurs due to
the approximate methods it requires to shift position val-
ues. ICPSO instead treats each variable as a probability
distribution and normalizes after the position update.

As the number of states varied in NK landscapes, ICPSO
had the highest variance in terms of its performance. This
could be because it uses samples to set the local and global
best vectors, which may make ICPSO more sensitive to bias

58

Table 2: Results of different discrete PSO algorithms on maximizing NK landscapes.
AMPSO BPSO BGPSO ICPSO IPSO PPSO VPSO

D = 2 7.16(0.02) 7.40(0.02)7.40(0.02)7.40(0.02) 7.39(0.02)7.39(0.02)7.39(0.02) 7.23(0.02) 6.19(0.02) 7.27(0.02) 7.40(0.02)7.40(0.02)7.40(0.02)
D = 4 7.44(0.02) 7.61(0.01) 7.61(0.01) 7.97(0.01)7.97(0.01)7.97(0.01) 6.48(0.02) 7.73(0.01) 7.51(0.01)
D = 6 7.49(0.02) 7.64(0.01) 7.63(0.01) 8.14(0.01)8.14(0.01)8.14(0.01) 6.64(0.02) 7.79(0.01) 7.65(0.01)
D = 8 7.47(0.02) 7.64(0.01) 7.64(0.01) 8.09(0.01)8.09(0.01)8.09(0.01) 6.61(0.02) 7.80(0.01) 7.65(0.01)
D = 10 7.44(0.02) 7.62(0.01) 7.63(0.01) 8.11(0.01)8.11(0.01)8.11(0.01) 6.67(0.02) 7.78(0.01) 7.66(0.01)
D = 15 7.44(0.02) 7.64(0.01) 7.63(0.01) 8.02(0.01)8.02(0.01)8.02(0.01) 6.70(0.02) 7.75(0.01) 7.66(0.01)
D = 20 7.48(0.02) 7.62(0.01) 7.61(0.01) 7.98(0.02)7.98(0.02)7.98(0.02) 6.67(0.02) 7.72(0.01) 7.64(0.01)

associated with sampling. Additionally, this could be caused
by under-sampling the distribution.

Results also suggest that IPSO performs the best if a gra-
dient exists between the states for a variable. If no such
gradient exists, then IPSO suffers the largest drop in per-
formance. This implies that ICPSO may be a more natural
choice for categorical optimization, as its performance is un-
affected by the order or interpretation of the discrete values.

The fitness curves for the sphere problems show that ICPSO
has a steep initial curve. However, there appear to be de-
creasing returns to fitness after about 100 iterations. IPSO
has a similar trend on the unshuffled sphere problem shown
in the left graph in Figure 1. Some other approaches, such
as PPSO and VPSO, converge at a comparatively slow pace.

Analysis of the fitness curves in Figures 1 and 2 suggests
that ICPSO might also be useful in applications where only
a limited number of iterations may be run. Since ICPSO
generally has a sharp initial fitness gain and levels out within
relatively few iterations, it can return a good solution sooner
than many of the competing algorithms.

5. CONCLUSIONS AND FUTURE WORK
Several conclusions can be drawn from this work. First,

ICPSO largely avoids pitfalls associated with assuming re-
lationships between neighboring states in discrete problems,
as demonstrated by its consistent performance across the
shuffled and unshuffled sphere problems. It also requires
few modifications to the PSO update equations. Since the
probabilities are scalars, operators can be applied directly
to the values. ICPSO also frequently outperforms related
methods on both maximizing NK landscapes and optimizing
well-known benchmark functions. The fitness curves suggest
that ICPSO is able to reach a good solution sooner than
competing algorithms, often reaching decreasing returns by
100 iterations on the test problems.

ICPSO is suited for categorical as well as integer problems,
and retains many of the original features of continuous PSO.
It also generally converges to a good solution quickly in the
applications tested. However, it is still sometimes outper-
formed by other discrete PSO approaches, such as IPSO. We
also plan to explore the conditions under which this is likely
to occur, including when applied to combinatorial optimiza-
tion problems (e.g., graph coloring).

Several extensions could be made to ICPSO. For example,
in real-world problems, solution values are not always inde-
pendent as they are assumed to be here. Extending ICPSO
to incorporate constraints and dependencies, possibly using
a probabilistic graphical model, could improve performance
for some applications. Finally, we want to investigate why
ICPSO is sensitive to the number of states per variable.

6. REFERENCES
[1] E. Bengoetxea and P. Larrañaga. EDA-PSO: a hybrid

paradigm combining estimation of distribution
algorithms and particle swarm optimization. In Swarm
Intelligence, pages 416–423. Springer, 2010.

[2] W.-N. Chen, J. Zhang, H. S. Chung, W.-L. Zhong,
W.-G. Wu, and Y.-H. Shi. A novel set-based particle
swarm optimization method for discrete optimization
problems. IEEE Transactions on Evolutionary
Computation, 14(2):278–300, 2010.

[3] M. Clerc. Discrete particle swarm optimization,
illustrated by the traveling salesman problem. In New
optimization techniques in engineering, pages 219–239.
Springer, 2004.

[4] R. C. Eberhart and Y. Shi. Comparing inertia weights
and constriction factors in particle swarm
optimization. In Proceedings of the 2000 Congress on
Evolutionary Computation, volume 1, pages 84–88.
IEEE, 2000.

[5] M. El-Abd and M. S. Kamel. Black-box optimization
benchmarking for noiseless function testbed using an
EDA and PSO hybrid. In Proceedings of the 11th
Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking
Papers, pages 2263–2268, 2009.

[6] A. P. Engelbrecht. Computational intelligence: An
introduction. John Wiley & Sons, 2007.

[7] A. P. Engelbrecht. Fitness function evaluations: A fair
stopping condition? In Proceedings of the IEEE
Swarm Intelligence Symposium (SIS), pages 1–8.
IEEE, 2014.

[8] B. Giffler and G. L. Thompson. Algorithms for solving
production-scheduling problems. Operations research,
8(4):487–503, 1960.

[9] A. M. Helal and A. M. Abdelbar. Incorporating
domain-specific heuristics in a particle swarm
optimization approach to the quadratic assignment
problem. Memetic Computing, 6(4):241–254, 2014.

[10] K. James and E. Russell. Particle swarm optimization.
In Proceedings of the IEEE International Conference
on Neural Networks, pages 1942–1948, 1995.

[11] S. A. Kauffman. The origins of order:
Self-organization and selection in evolution. Oxford
university press, 1993.

[12] J. Kennedy and R. C. Eberhart. A discrete binary
version of the particle swarm algorithm. In IEEE
International Conference on Systems, Man, and
Cybernetics. Computational Cybernetics and
Simulation, volume 5, pages 4104–4108, 1997.

[13] R. V. Kulkarni and G. K. Venayagamoorthy. An

59

0 50 100 150 200
0

20

40

60

80

Iterations

B
es

t
F

it
n
es

s
Fitness vs Iterations

IPSO PPSO

VPSO ICPSO

0 50 100 150 200
0

20

40

60

80

Iterations

B
es

t
F

it
n
es

s

Fitness vs Iterations

AMPSO BGPSO

BPSO ICPSO

Figure 1: Fitness curves for minimizing the discrete sphere function.

0 50 100 150 200
0

20

40

60

80

Iterations

B
es

t
F

it
n
es

s

Fitness vs Iterations

IPSO PPSO

VPSO ICPSO

0 50 100 150 200
0

20

40

60

80

Iterations

B
es

t
F

it
n
es

s

Fitness vs Iterations

AMPSO BGPSO

BPSO ICPSO

Figure 2: Fitness curves for minimizing the shuffled discrete sphere function.

estimation of distribution improved particle swarm
optimization algorithm. In 3rd International
Conference on Intelligent Sensors, Sensor Networks
and Information (ISSNIP), pages 539–544, 2007.

[14] P. Larranaga and J. A. Lozano. Estimation of
distribution algorithms: A new tool for evolutionary
computation, volume 2. Springer Science & Business
Media, 2002.

[15] Z. Michalewicz. Genetic algorithms + data structures
= evolution programs. Springer Science & Business
Media, 1996.

[16] G. Pampara, N. Franken, and A. P. Engelbrecht.
Combining particle swarm optimisation with angle
modulation to solve binary problems. In IEEE
Congress on Evolutionary Computation, volume 1,
pages 89–96, 2005.

[17] J. Pugh and A. Martinoli. Discrete multi-valued
particle swarm optimization. In Proceedings of IEEE
Swarm Intelligence Symposium (SIS), pages 103–110,
2006.

[18] A. P. Reynolds, A. Abdollahzadeh, D. W. Corne,
M. Christie, B. Davies, and G. Williams. A parallel
BOA-PSO hybrid algorithm for history matching. In

IEEE Congress on Evolutionary Computation (CEC),
pages 894–901, 2011.

[19] A. Salman, I. Ahmad, and S. Al-Madani. Particle
swarm optimization for task assignment problem.
Microprocessors and Microsystems, 26(8):363–371,
2002.

[20] V. Santucci and A. Milani. Particle swarm
optimization in the EDA framework. In Soft
Computing in Industrial Applications, pages 87–96.
Springer, 2011.

[21] D. Sha and C.-Y. Hsu. A hybrid particle swarm
optimization for job shop scheduling problem.
Computers & Industrial Engineering, 51(4):791–808,
2006.

[22] K. Veeramachaneni, L. Osadciw, and G. Kamath.
Probabilistically driven particle swarms for
optimization of multi valued discrete problems: Design
and analysis. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS), pages 141–149, 2007.

[23] Y. Zhou, J. Wang, and J. Yin. A discrete estimation
of distribution particle swarm optimization for
combinatorial optimization problems. In Third
International Conference on Natural Computation
(ICNC), volume 4, pages 80–84, 2007.

60

