Relaxing Consensus in Distributed Factored Evolutionary
Algorithms

Stephyn Butcher
Johns Hopkins University
Dept. of Computer Science
Baltimore, MD 21218 -2682
steve.butcher@jhu.edu

Jenna Hoole
Whitworth University
Dept. of Mathematics and
Computer Science
Spokane, WA 99251
jhoole15@my.whitworth.edu

ABSTRACT

Factored Evolutionary Algorithms (FEA) have proven to be
fast and efficient optimization methods, often outperform-
ing established methods using single populations. One re-
striction to FEA is that it requires a central communication
point between all of the factors, making FEA difficult to
use in completely distributed settings. The Distributed Fac-
tored Evolutionary Algorithm (DFEA) relaxes this require-
ment on central communication by having neighboring fac-
tors communicate directly with one another. While DFEA
has been effective at finding good solutions, there is often
an increase in computational complexity due to the commu-
nication between factors. In previous work on DFEA, the
authors required the algorithm reach full consensus between
factors during communication. In this paper, we demon-
strate that even without full consensus, the performance of
DFEA was not statistically different on problems with low
epistasis. Additionally, we found that there is a relationship
between the convergence of consensus between factors and
the convergence of fitness of DFEA.

1. INTRODUCTION

Overlapping Swarm Intelligence (OSI) is a swarm based
algorithm that has been found to produce high quality so-
lutions on a wide range of problems. OSI differs from ba-
sic PSO in that it creates subswarms, or factors, that op-
timize over overlapping subcomponents of the full solution.
Similar to how factorization in mathematics decomposes a
polynomial into a product of factors, OSI decomposes the
optimization problem into a set of factors that, when put
together, represent full solutions to the problem. OSI has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GECCO 16, July 20-24, 2016, Denver, CO, USA

© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. .. $15.00

DOL: http://dx.doi.org/10.1145/2908812.2908936

Shane Strasser
Montana State University
Dept. of Computer Science
Bozeman, MT 59717-3880

shane.strasser@msu.montana.edu

Benjamin Demeo
Williams College
Dept. of Computer Science
Williamstown, MA 01267
bd2@williams.edu

John Sheppard
Montana State University
Dept. of Computer Science
Bozeman, MT 59717-3880
john.sheppard@msu.
montana.edu

been applied successfully to a wide range of problems, such
as energy aware routing in sensor networks [7], training
deep neural networks [14], performing abductive inference in
Bayesian networks [3], and learning Bayesian networks [4, 5].
A generalization of OSI, called Factored Evolutionary Algo-
rithms (FEA), allows for any evolutionary algorithm to be
used as the underlying optimization algorithm [16]. While
OSI requires the factors overlap with one another [3], FEA
does not, which allows the FEA framework to include multi-
population algorithms such as Cooperative Co-evolutionary
Genetic Algorithms [16].

One of the downsides to FEA is that making the algorithm
completely distributed is difficult because FEA relies on a
single full global solution to be communicated between all of
the factors. There has been work on developing distributed
versions of OSI, called Distributed Overlapping Swarm In-
telligence (DOSI), in which the algorithm no longer requires
a single full global solution to be maintained between all fac-
tors [3, 6]. Instead, each factor in DOSI maintains its own
full solution that is updated during a sharing step. While
this allows for DOSI to be completely distributed, it can
increase the runtime. This is because all previous work on
DOSI required factors’ full solutions to reach full consensus
during sharing [3]. Depending on the problem and factor
architecture, this can be computationally expensive.

In this paper, we provide a generalization of DOSI, called
Distributed Factored Evolutionary Algorithm, that is simi-
lar to FEA’s generalization of OSI. This allows for DFEA to
use any optimization algorithm as the underlying optimiza-
tion process. Next, we investigate the effect that relaxing the
amount of consensus between factors has on DFEA’s perfor-
mance. We hypothesize that there is a relationship between
the amount of consensus required during the sharing step
in the DFEA and the degree of epitasis in the problem and
that this relationship affects the solution quality. This hy-
pothesis was tested on various versions of DFEA performing
abductive inference in Bayesian networks, maximizing NK
landscapes, and minimizing benchmark test functions. Each
version of DFEA reduces the number of sharing iterations
during the share step, thereby reducing the amount of con-
sensus between factors. We discover that during each indi-
vidual sharing step, full consensus between the factors’ full

personal solutions is not required. However, a certain degree
of consensus is required in order to obtain quality solutions.
This degree of consensus is controlled by the number of shar-
ing steps. In addition, we present results that show that a
relationship exists between factors reaching consensus and
the convergence of fitness in DFEA.

2. RELATED WORK

Overlapping Swarm Intelligence (OSI) is a swarm based
algorithm based on Particle Swarm Optimization (PSO).
The first version of OSI was introduced in 2012 by Haber-
man and Sheppard [7]. In their paper, the authors created
an algorithm called ”Particle-based Routing with Overlap-
ping Swarms for Energy Efficiency” (PROSE) that works
by creating multiple swarms that are assigned to overlap-
ping subproblems. PROSE was used as a method to de-
velop energy-aware routing protocols for sensor networks
that ensure reliable path selection while minimizing energy
consumption during message transmission. The algorithm
found solutions that were able to extend the life of the sen-
sor networks and to perform significantly better than current
energy-aware routing protocols [7].

PROSE was then adapted by Ganesan Pillai and Shep-
pard to learn the weights of deep artificial neural networks
[14]. It was in this paper that OSI was introduced, where
each swarm represents a unique path starting at an input
node and ending at each output node. Thus the set of
swarms corresponds to all paths through the network, and
each swarm then learns the weights for that path. A com-
mon vector of weights, called the full global solution, is
maintained across all swarms to describe a global view of
the network, which is created by combining the weights of
the best particles in each of the swarms. In their work,
the authors show that OSI outperformed several other PSO
based algorithms as well as standard backpropagation on
deep networks [14].

OSI has also been used for inference tasks in Bayesian net-
works, such as abductive inference, where the task is to find
the most probable set of states for some nodes in the net-
work given a set of observations. Fortier et al. applied OSI
to perform full and partial abductive inference in Bayesian
networks where a subswarm is created for each node in the
network, encoding the states of that node and its Markov
blanket [2, 3]. The authors were able to show that OSI out-
performed several other population-based and traditional al-
gorithms, such as PSO, GA, simulated annealing, stochastic
local search, and mini-bucket elimination [3].

Another application of OSI includes learning Bayesian
networks. Fortier et al. adapted OSI to learn the structure
of Bayesian classifiers by allowing subswarms to learn the
links for each variable in the network, where each variable
represents an attribute in the data [4]. For each variable
in the network, two subswarms were created: one for the
incoming links and one for the outgoing links. The authors
were able to show that in most cases OSI was able to outper-
form the competing approaches significantly. Additionally,
the work included the earliest complexity results on OSI.

When learning Bayesian networks, latent or unobserved
variables are often introduced into the network to reduce
the number of parameters required by the network or to in-
troduce new dependencies between other variables. Fortier
et al. used OSI to learn the parameters of latent variables
in Bayesian networks [5]. A subswarm was created for each

node with unlearned parameters and all of the variables in
that node’s Markov blanket. The authors were able to show
that OSI outperformed PSO and Expectation-Maximization
variants and that the amount of overlap between the sub-
swarms can impact the performance of OSI.

Fortier adapted OSI to perform general structure learn-
ing of Bayesian network [1]. In that work, each subswarm
learned the the links for its Markov blanket and was found
to outperform traditional Bayesian learning algorithms.

DOSI was first developed by Fortier et al. to learn weights
on deep neural networks [6]. The key distinction from OSI is
that a full global solution is not used for fitness evaluation.
Instead, each subswarm maintains its own full personal solu-
tion, which allows for the algorithm to be distributed more
effectively. A communication and sharing algorithm was de-
fined so that subswarms could share values while also com-
peting with one another. The authors were able to show that
DOSTI’s performance was close to that of OSI’s on several dif-
ferent networks, but there were several instances when OSI
outperformed DOSI.

Similar to OSI, DOSI has been adapted to perform full
and partial abductive inference in Bayesian networks. DOSI
was found to be comparable to OSI on most problems and
was only outperformed on large Bayesian networks or when
the explanation sets are greater than 4 [3]. The authors also
demonstrated that DOSI required more fitness evaluations
than OSI [3].

FEA was first introduced by Strasser et al., which gener-
alizes OSI so that any evolutionary algorithm can be used
as the underlying optimization technique [16]. In addition,
the authors were able to show the performance of FEA is
dependent on its factor architecture. This factor architec-
ture is a decomposition of the optimization problem into
subproblems that is based on the factor functions of the fit-
ness function’s factor graph. The paper demonstrated that
when there is a low number of interactions between variables,
the optimal way to derive factors is by using the variables’
Markov blanket. However, when there are a high number of
interactions, FEA performs better when factors are derived
by using a variables’ factor function. Finally, the authors
demonstrate that FEA still performs well even when using
simple optimization algorithms, such as Hill Climbing [16].

3. BACKGROUND

Our experiments with the DFEA require a component op-
timization algorithm and a set of test problems. For this
particular application of DFEA, we utilize Discrete Multi-
Value Particle Swarm Optimization (DMVPSO) proposed
by Veeramchaneni et al. as the underlying optimization al-
gorithm [18].

For the test problems we chose NK landscapes, abductive
inference in Bayesian Networks and some common bench-
mark optimization problems. NK landscapes were included
because they represent commonly used functions for evaluat-
ing the performance of evolutionary and swarm algorithms.
We included abductive inference in Bayesian Networks be-
cause they are a practical application of optimization. Addi-
tionally, Fortier et al. showed that OSI outperforms domain
specific algorithms like approximate mini-bucket elimination
on complex networks [3].

3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm based ap-
proach developed by Kennedy and Eberhart to optimize a
function, usually over a continuous set of variables, based
on the behavior of fish schools and bird flocks [8]. Given
a function f : R® — R to be optimized with parameters
X = (X1,X2,...,Xn), PSO uses a set of particles where
each particle p; contains a vector X; = (X 1, Xi2,. .., Xin)
that represents a candidate solution. This is the particle’s
current position in the search space. In addition, a particle
uses a velocity vector V; that controls the particle’s move-
ment. Each particle keeps track of its own best position
found in a vector, pBest; and the best position discovered
by the entire swarm, gBest. During each iteration, a parti-
cle’s position is updated as follows:

V:=wV; + U(O, (bl) ® (pBeSti - X’L) (1)
+U(0,¢2) ® (gBest — X)
X;=X; +V; (2)

where U(0, ¢1) and U(0, ¢2) are random numbers distributed
uniformly between 0 and ¢1 and ¢2 respectively, and cause
the particles to have more random paths, which aid in the
exploration of the search space. The symbol ® represents
component-wise multiplication, and w is an inertia value
that helps the velocity values from growing out of control.

While the PSO equations shown in Equations (1) and (2)
have been shown to work well on optimization problems in-
volving continuous variables, many real-world problems op-
erate over a set of discrete variables. Several extensions to
the standard PSO algorithm have been developed that en-
able optimizing functions over discrete states. Veeramacha-
neni et al. presented an algorithm that allows PSO to opti-
mize discrete multi-valued functions called Discrete Multi-
Valued PSO (DMVPSO) [18]. In this algorithm, the veloc-
ity update equations remain mostly unchanged. However,
the semantics of the velocity vector are changed to denote
the probability of a particle’s position term having a value
[0, M — 1]. The update to the position vector is also modi-
fied to take advantage of the new velocity vector semantics.
Each dimension in the velocity vector is restricted to values
in [0, M — 1], where M is the cardinality of the dimension.
After the velocity is updated, it is mapped into a [0, M — 1]
interval using the sigmoid function

M-1
1+ exp(=Vi;)
Next, each particle’s position is updated by generating
a random number according to the Gaussian distribution,

X, ~ N(S;,;,0x(M—1)) and rounding the result. Finally,
the result is passed through the piecewise function

Sij =

M -1 Xiyj >M-—-1
Xi;= 0 Xi; <0
Xij otherwise

to ensure the values remains in the range [0, M — 1].

3.2 The NK Model

The NK landscape is a mathematical framework that gen-
erates tunable fitness landscapes that are often used as test
functions for evaluating EAs [11]. An NK landscape model
contains two parameters, N and K, that control the overall

size of the landscape and the structure or amount of inter-
action between each dimension, respectively [10].

An NK landscape is a function f : BY — RT where BY is
a bit string of length N. K specifies the number of other bits
in the string on which a bit is dependent. This interaction
is often referred to as epistasis. Given a landscape, the fit-
ness value is calculated as f(X) = + SN fi(Xi,nbk (X)),
where nbx (X;) returns the K bits that are located within
X,’s neighborhood. The individual factors f; are then de-
fined as f; : BX — R and the values of f; are generally
created randomly.

There are multiple ways to define the neighborhood func-
tion. The simplest way is to return the next K contiguous
bits of the string starting at X;. If the end of the string is
reached, then the neighborhood wraps back around to the
beginning of the string. In other cases, the neighborhood of
each bit is created randomly.

3.3 Bayesian Networks

A Bayesian network is a directed acyclic graph G = (V, E)
that encodes a joint probability distribution over a set of
random variables, where each variable can assume one of an
arbitrary number of mutually exclusive values [12, 13]. In a
Bayesian network, each random variable X; is represented
by a node, and edges between nodes in the network rep-
resent probabilistic relationships between the random vari-
ables. Each root node contains a prior probability distribu-
tion while each non-root node contains a probability distri-
bution conditioned on the node’s parents.

For any set of random variables in the network, the joint
probability distribution can be represented using the local
distributions in the network

P(X1,...,Xn) = H P(X;|Pa(X,)).

where Pa(X;) corresponds to the parents of X;.

A node is conditionally independent of all other nodes
in the network given its Markov Blanket. In a Bayesian
network, the Markov blanket of a node consists of the node’s
parents, children, and children’s parents.

A common type of query for Bayesian networks is the
probability distribution of a variable given a set of evidence.
Another type of query is called abductive inference, which
finds the most probable state assignment x to the variables
in Xy given the evidence Xo = xo. This is also known
as the Maximum A Priori (MAP) probability state of the
variables of a network. In addition, users often ask for the
top k hypotheses. When k > 1, this is often referred to as
the k-Most Probable Explanation (k-MPE) problem.

4. DISTRIBUTED FEA

DFEA is an extension of FEA that allows the algorithm
to be distributed completely. In FEA, all of the factors use
a full central solution G to evaluate the solutions. DFEA
breaks the dependency of all factors requiring access to a
central solution by having each factor maintain its own full
personal solution. However, this requires certain portions of
the FEA algorithm to be adapted to allow for competition
and sharing between neighboring factors.

FEA takes a function f : R®™ — R with parameters X =
(X1, Xa2,...,Xn) and creates a set S of s subpopulations,
or factors. Each S; € & is a subsequence of X of size k.

Note that f can still be optimized over the variables in S;
by holding variables R; = X \ S; constant. When s = 1
and S; = X, then 8§ will have just a single population that
results in a traditional application of the population-based
algorithm, such as PSO, DE, or GA. However, when s > 1,
S; = X for all factors, and |JS; = X for all populations, the
algorithm becomes a multi-population algorithm.

FEA is the case where there are factors that are proper
subsets of X that may or may not overlap with one another.
In this work, we look at problems where every factor overlaps
with some other factor. Should there be a disjoint factor,
we have a family of FEA and DFEAs.

In FEA, all of the factors’ remainder variables R; are guar-
anteed to have the same state assignments because they were
filled with a full global solution G. However, in DFEA| the
remainder variables R; are not set by G and are instead as-
signed by using S;’s neighbors. We now describe the shar-
ing and competition algorithms that update the factors’ full
personal solutions R; U S;.

4.1 Competition

The purpose of the competition phase in DFEA is to de-
termine which factor has the best value for every dimension
and to resolve any conflicts neighboring factors may have
about a variable’s value. In FEA, competition is held by
the full global solution G. However, because DFEA does
not have a full global solution G, competition is held by each
individual factor that acts as the arbiter of which value from
competing factors should be communicated to the remain-
ing factors. Here we present a general DFEA competition
algorithm based on the work done by Fortier et al. [3].

First, we must define an arbiter node for dimension X; to
be a factor that performs the competition for the variable
X;. The arbiter’s full personal solution is then used to eval-
uate other values during competition. Each arbiter node for
X; communicates directly with any factor S; that contains
X, inducing a communication topology between the factors.
We define this induced graph H as the DFEA’s communi-
cation graph, were the nodes represent factors. An edge
connects two nodes in H if and only if one of the nodes is an
arbiter for a value that the other node also optimizes over.
Note that two factors S; and S; can overlap with one an-
other but not communicate directly with one another. This
occurs if S; is the arbiter for variable X; and X; ¢ S;. The
compete algorithm for DFEA is shown in Algorithm 1.

The Compete Algorithm works as follows. First, the func-
tion “arbiter” in line 2 returns the index of the factor that
is the arbiter for dimension X;. After initializing the com-
parison variables in lines 3-4, the algorithm iterates over a
random permutation of all factors optimizing X;, denoted
Si. This random ordering is generated each time the al-
gorithm is called. In line 6, the value from the factor is
substituted into the arbiter’s solution and then compared to
the current best value (lines 7 - 10). The value that results
in the best fitness is then returned by the algorithm.

DFEA’s compete algorithm only relies on the arbiter fac-
tor for X; and the factors that also optimize X;. Note that
the competition algorithm is not guaranteed to find the best
combination of values from the factors. However, by iterat-
ing over random permutations of S;, the algorithm is able to
explore different combinations and is still able to find good
combinations of values.

Algorithm 1 DFEA Competition Algorithm
Input: Factors S, Function f

1: for X; € X do
a <+ arbiter(X;)
3 bestF'it <— oo
4 bestVal « Sq[X;]
5: for all S; € Optimizers(X;) do
6: Sa[Xi] — Sj [XL]
7.
8
9

if f(S. U R,) is better than bestFit then
bestVal + S;[X;]
: bestFit + f(Sa U Ryg)
10: end if

11: end for

12: for S; € Optimizers(X;) do
13: S;.G[X;] « bestVal

14: end for

15: end for

Algorithm 2 DFEA Share Algorithm
Input: Factors S

1: for k=1to C do
2: for all S; € S and S; € neighbors(S;) do
3 Exchange(S;, S;)
4: end for
5
6

: end for
: return

4.2 Sharing

In the DFEA Algorithm, the share step’s purpose is to
let factors distribute information to one another. This is
accomplished by having two neighboring factors in the com-
munication graph H exchange information about their full
personal solutions. However, neighboring factors need to be
augmented with additional information in order for the fac-
tors to know which values to share with one another. This is
accomplished by having each factor maintains a §-map. For
each dimension X;, the J-map stores the minimum number
of steps required to reach a factor learning X;, where a step
can occur only between neighboring factors. For example, if
factor S; learns dimension Xj, then S;.0; = 0. If S; does
not learn dimension X; but neighbors a factor that does,
then SZ(SJ =1.

Let di(Si, S;) denote the distance or the minimum num-
ber of hops between nodes corresponding to S; and S; in
the graph H. Then S;.0x = min{dc(S;, S;)|S; learns Xy}.
We say that the factors reach consensus when they all agree
on all state assignments.

Initially, S;.0; = 0 if S; optimizes X; and S;.0; = oo
otherwise. We say that factor S; knows dimension X once
S;.6r < oo. The full share and exchange algorithms for
DFEA are shown in Algorithm 2 and 3, respectively.

The Share algorithm operates as follows. For C iterations,
the algorithm iterates over all neighboring pairs of factors
in H and calls the exchange algorithm for those two factors.

During the Exchange algorithm, all of the n dimensions
in X are iterated over. In lines 2-5, the algorithm compares
the § values of the two factors for the current dimension k.
If the dx value for factors S; is lower than 65 from S;, then
the value from S; is inserted into S;. In addition, dx for S;
is updated according to line 3. Lines 5-8 do the same thing
except that information is shared from S; to S;. Note that

Algorithm 3 DFEA Exchange Algorithm
Input: Factors S;, S
1: for k=1 ton do
2 if S;.0, > SJ(Sk then
3 516k<—535k+1
4 Si.G[k] + S;.G[k]
5 else if S;.0, < S;.0, then
6: S0k < Sidp+1
7
8
9
0

end if
: end for
: return

—_

Algorithm 4 Distributed Factored Evolutionary Algorithm
Input: Function f
Output: Solution G

1: S <+ initalizeFactors(f, X)

2: repeat

3: for S; €S do
4 S;.optimize(f)
5 end for
6: Compete(S)
7: Share(S)
8:
9:

until Termination Criterion is Met
return G

S;.G|] is the factor’s full personal solution and is equal to
Si:UR..
4.3 Algorithm

Now that Compete and Share algorithms have been de-
fined for DFEA, we present the DFEA algorithm (Algorithm
4). DFEA is initialized similarly to FEA but does not re-
quire initializing full global solution G. Instead each factor
S, contains its full personal solution that is also initialized
in line 1. After the intra-population optimization in lines 3 -
5, the algorithm holds a competition by calling the Compete
function (line 6). Finally, the algorithm performs sharing in
line 7. This process is repeated until the termination criteria
is met.

S. EXPERIMENTS

One of the defining differences between FEA and DFEA
is the necessity of the Share step. Each subswarm in DFEA
has a local rather than central view of a current best-so-
far solution. The Share step is thus necessary to exchange
information between subswarms in order for them to reach
consensus. Depending on the size and complexity of the
communication topology, this can increase the runtime of
DFEA significantly. In order to reduce this runtime, we in-
vestigate the effect that relaxing the amount of consensus
between factors has on DFEA’s performance. To test this,
we relax the number of sharing iterations C' that are used
in the DFEA algorithm, which in turn causes the subpopu-
lations to reach a lower level of consensus. We also applied
DFEA and consensus relaxation to several general optimiza-
tion problems which had not been done before.

5.1 Design

To test our hypothesis, we created three different versions
of DFEA: DFEA-1, DFEA-1/2, and DFEA-Full. DFEA-

1 used only 1 sharing iteration during the Share algorithm
while DFEA-1/2 used Round(D/2) sharing iterations, where
D is the diameter of graph induced by the communication
topology. DFEA-Full ran D sharing iterations. We also ran
the FEA algorithm for an additional comparison. All FEA
and DFEA versions ran for 10 inter-swarm optimization it-
erations since this value was found by Strasser et al. [16] to
allow FEA to converge.

For our experiments we used three sets of problems: max-
imizing NK landscapes, performing abductive inference on
Bayesian networks, and optimizing several standard bench-
mark functions.

For the NK landscapes and abductive inference, FEA and
DFEA used DMVPSO as the underlying optimization al-
gorithm. On the benchmark problems, we used canonical
PSO. For both PSOs, the w parameter was set to 0.729, and
¢1 and ¢2 were both set to 1.49618.

We applied these same versions of PSO, FEA and DFEA
as well as the relaxed versions of DFEA to the benchmark
optimization problems. The individual and component PSO
parameters were the same. The individual PSO was run
for 100 iterations with population sizes of 10 times the di-
mensions. The FEA and DFEA were run for 20 compete-
and-share iterations with the component PSOs running for
5 iterations. This gives single swarm algorithms the same
total number of iterations as the factors in DFEA. Each fac-
tor for FEA and DFEA had a population size of 10, which
gives FEA and DFEA the same number of individuals as the
single swarm algorithms.

5.1.1 NK Landscapes

We generated NK landscapes with parameters N = 25
and 40 and K = 2,5 and 10. For each set of parameters, we
created 30 random landscapes.

In applying DFEA to NK landscapes, we used the Neigh-
borhood architecture proposed by Strasser et al. [16] since
it outperformed competing factor architecture approaches.
The Neighborhood architecture creates a factor for each vari-
able X; and adds to the factor variable X; and all variables
in the set nbx (X;). This results in factors of size K + 1.

5.1.2 Bayesian Networks

For abductive inference on Bayesian networks, we used
the Hailfinder, Hepar2, Insurance, and Win95pts Bayesian
networks from the Bayesian Network Repository [15]. These
networks were chosen to be consistent with [3].

To evaluate the fitness of a state assignment we used the
log likelihood ¢, which is calculated as

(x) = Z log P(z;|Pa(z;))

i=1

where x = {21, 22...xn } is a complete state assignment and
Pa(x;) corresponds to the assignments for the parents of X;.

The factor architecture chosen was the Markov architec-
ture proposed by Fortier et al. since this was shown to out-
perform all other architectures on Bayesian networks [3, 16].
This uses the Markov blanket of every node to create sub-
populations, because it offers one of the most natural ways
to subdivide a Bayesian network and provide overlap. Addi-
tionally, it gives the algorithm an advantage because every
node in the network is conditionally independent of all other
nodes when conditioned on its Markov blanket. For our ex-

periments we used an empty evidence set to keep results
comparable .

5.1.3 Benchmark Optimization Problems

We picked a variety of benchmark optimization problems:
Sphere, Exponential, Schwefel 1.2, Dixon-Price, Ackley’s,
Rosenbrock, and Griewank [9]. All of the problems are min-
imization problems with global minima at 0.0 except for the
Exponential which has a minimum at -1.0. All of the prob-
lems are scalable, meaning they can be optimized for ver-
sions of any dimension. The Sphere function is separable.
The remaining functions are non-separable with most func-
tions depending on adjacent, overlapping dimensions such
as x; and x;+1. Because of this, we used a factor size of two
for all of the benchmark optimization problems.

5.2 Results

Table 1 shows the results comparing FEA and all versions
of DFEA on performing abductive inference on Bayesian
networks and maximizing NK landscapes. Note that these
problems are maximization. Results comparing PSO, FEA,
and DFEA on minimizing the benchmark functions are in
Table 2 while the results comparing the different versions
of DFEA on the benchmark functions are in Table 3. All
results are expressed as means over 30 trials with standard
errors in parentheses.

In the Bayesian network problems, there are only small
differences between all versions of DFEA. In some most
cases, DFEA-Full performs the best. DFEA-1/2 performs
better than DFEA-1 and DFEA-Full only on the Win95pts
network. In the Insurance network, DFEA-1 performs bet-
ter than DFEA-Full, but only by a small margin. On all
networks, all DFEA algorithms are competitive and some-
times better than the FEA algorithm.

For the NK-landscape results, DFEA-1 almost always per-
formed worse than the other DFEA algorithms. In some
landscapes, such as N = 25 and K = 2, DFEA-1/2 per-
forms better than DFEA-Full but for when N = 25 and
K = 10, DFEA-1/2 performs slightly worse than DFEA-
Full. When N = 40 and K = 2,10, DFEA-1/2 outperforms
DFEA-Full, but when N = 40 and K = 5, DFEA-Full out-
performs DFEA-1/2.

On the benchmark optimization problems, DFEA-Full out-
performed the PSO except for the Schwefel 1.2 function.
Overall, DFEA was slightly worse than FEA on all the
benchmark problems. When looking at the consensus re-
sults in Table 3 relaxation results are presented. DFEA-Full
performed better that DFEA-1 and DFEA-1/2 on Sphere,
Exponential, Dixon-Price, and Ackley’s. However, DFEA-
1 performed the best on Rosenbrock while DFEA-1/2 per-
formed the best was on Griewank. DFEA-1/2 outperformed
DFEA-1 on all functions except for Schwefel and Rosen-
brock, but was outperformed by DFEA-Full except on Schwe-
fel and Griewank.

6. DISCUSSION

Based on the Bayesian network results, we can see that
DFEA does not need to reach full consensus during each
Share step in order to find quality solutions. To investigate
this, we looked at the the average Hamming distance be-
tween DFEA’s factors on the Hailfinder Bayesian network
(Figure 1). We also looked at fitness curves (Figure 2). In
Figure 1, the major X-axis on the chart is the inter-factor

10

¢DFEA-1
DIEA-1/2
ADFEA-Full

Average Hamming Distance

Iterations

Figure 1: Average consensus between factors over time of
DFEA performing abductive inference on the Hailfinder Net-
work.

0 —
-2000

-4000
-6000 /
-8000

-10000 {

-12000

¢DFEA-1
DFEA-1/2
ADFEA-Full

Fitness

-14000
Tterations

Figure 2: Fitness over time of DFEA performing abductive
inference on Hailfinder Network.

optimization iterations while the minor X-axis is the number
of sharing iterations for the different DFEA versions. The
X-axis in Figure 2 is the inter-factor iteration.

Based on the charts, one can see that in DFEA-1 and
DFEA-1/2, the factors are still able to reach consensus over
the lifetime of the algorithms because they all eventually
reach a Hamming distance of zero. We believe this because
when optimizers start converging in their search spaces, the
number of values changed during the exchange step decreases
and therefore, the factors are able to reach consensus over
several DFEA iterations.

We performed a similar analysis for NK landscapes N =
25 and K = 10. However, we set the number of inter-factor
iterations to 50. Figures 3 and 4 show the consensus and
fitness graphs for NK landscapes N = 25 and K = 10 .

For NK landscapes N = 25 and K = 10, DFEA-1 reaches
consensus at a much slower rate than DFEA-1/2 and DFEA-
Full. Meanwhile, DFEA-1/2 reaches consensus and fitness
at about the same rate as DFEA-Full. DFEA-1 may be
able to reach the same fitness as DFEA-1/2 and DFEA-Full
in more iterations, but the cost of needing more iterations
greatly outweighs the reduction in runtime by only having
1 sharing step. This appears to be the case where there is
high epistasis in the problems, like on NK landscapes when
K =5,10. When there is high epistasis, the solve and com-
petition steps increase the differences between factors. This
necessitates the need for more sharing iterations in order
to reduce the difference. When there is low epistasis, the
increase in the factors’ difference during the solve and com-

Table 1: Results from varying the amount of consensus between factors.

| Diameter | PSO | FEA | DFEA-1 | DFEA-1/2 | DFEA-Full |
g Hailfinder 8 —86.94 (23.70) | —33.85 (0.46) | —38.70 (0.49) | —38.58 (0.58) | —36.86 (0.66)
z Hepar2 5 —49.47 (0.45) | —16.85 (0.34) | —20.05 (1.13) | —21.03 (1.01) | —19.62 (1.16)
= Insurance 5 —23.83 (0.24) | —11.22 (0.29) | —12.76 (0.59) | —13.75 (0.48) | —12.78 (0.44)
e Win95pts 5 —90.41 (1.65) | —16.41 (1.34) | —29.86 (1.28) | —28.50 (2.00) | —31.16 (2.07)
K=2 12 17.96 (0.02) 18.56 (0.09) 17.69 (0.09) 18.06 (0.10) 18.00 (0.09)
N=25| K=5 5 18.23 (0.02) 19.23 (0.05) 18.38 (0.06) 18.46 (0.06) 18.23 (0.07)
v K =10 3 18.21 (0.01) 18.99 (0.04) 18.27 (0.04) 18.38 (0.06) 18.40 (0.05)
z K=2 20 26.88 (0.03) 2055 (0.10) | 26.58 (0.11) | 28.91 (0.11) | 28.73 (0.11)
N=40| K=5 8 27.43 (0.05) | 30.85(0.07) | 28.37 (0.09) | 29.21 (0.11) | 29.55 (0.10)
K =10 4 27.54 (0.05) 30.53 (0.06) 27.47 (0.06) 28.17 (0.08) 28.75 (0.09)
Table 2: Benchmark Problem results for PSO, FEA and DFEA
| | PSO | FEA | DFEA-Full |
Sphere 38E + 00 (L7E —01) 1.7E —09 (15E —10) | 1.5E — 09 (1.4E — 10)
%’ Exponential | —1.00F + 00 (3.7E — 05) —1.0E 400 (1.7E—-09) | —1.0E + 00 (0.0F + 00)
g Schwefel 4.4F + 03 (9.6E + 01) 1.8FE + 04 (1.2E + 03) 2.5E 4+ 05 (6.3E + 03)
Z | Dixon-Price | 215+01 (TAE—01) | 56E—01 (18E—01) | 12E+00 (1.7E —01)
s Ackley’s 2.2E 4+ 00 (4.5FE — 02) 1.9F — 05 (8.4E — 07) 2.3E — 05 (1.9FE — 06)
M | Rosenbrock 1.7E + 02 (6.5E + 00) 5.6E 4+ 00 (1.1E + 00) 6.8E + 00 (2.5E + 00)
Griewank 6.3E — 01 (2.3FE —02) 2.6FE —03 (1.1E — 03) 8.6FE — 02 (2.5FE — 02)
23 18 A A A AAAAAAAAAAAAdiidiidididiididiiididid
A e ki —
| M
f;ﬂj 2] W::::-::‘::::::¢v:::::::::- 6000000000000000
E *DFEA-1 £ *DFEA-1
g1 DFEA-112 =8 DFEA-1/2
gh ADFEA-Full 6 ADFEA-Full
3 4
<
2
13057 9 11131517 19 21 23 25 27 29 31 33 35 37 30 41 43 45 47 49 ! 135 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iterations

Figure 3: Average consensus between factors in DFEA on
maximizing NK Landscapes N = 25 and K = 10.

petition steps in DFEA is small enough that only 1 sharing
iteration is enough to reduce the difference between factors.

The results for the benchmark optimization problems are
interesting. DFEA outperformed the PSO on all of the prob-
lems with results that are often several orders of magni-
tude better than PSO. For example, on Ackley’s function,
PSO achieved a mean minimum of 2.2E+400 whereas DFEA
achieved a mean minimum of 2.3E-05. The one exception
is the Schwefel 1.2 function where all three algorithms per-
formed poorly. In general, DFEA results were the same or
slightly worse than the FEA results.

As previously mentioned, DFEA-Full performed better
on Sphere, Exponential, Dixon-Price, and Ackley’s while
DFEA-1 performed better on Rosenbrock and Griewank. It
is not altogether clear why this would be the case because we
would generally expect consensus to be more important on
harder problems. Rosenbrock and Griewank are generally
considered to be harder problems than Sphere or Exponen-
tial. The pattern for DFEA-1/2 is harder to summarize.

11

Tterations

Figure 4: Fitness of DFEA on maximizing NK Landscapes
N =25 and K = 10.

It lies outside the DFEA-1 to DFEA-Full range on several
problems (Sphere and Griewank), is sometimes closer to the
winner (Exponential, Dixon-Price, Ackley’s, Griewank) but
is also sometimes closer to the loser (Rosenbrock).

7. CONCLUSION

We have been able to show that in problems with low
epistasis, DFEA is able to perform well when using a re-
duced number of sharing iterations. However, for problems
with high epistasis, DFEA performs worse with less sharing
iterations. This drop in performance can be combated by
performing more inter-factor iterations, but may negate the
complexity reduction gained when the sharing iterations are
reduced.

In our future work, we want to explore the relationship
between performance and consensus of DFEA further. For
example, we want to explore using the emergence of consen-
sus between factors as a stopping criterion. We also want to
see if minimum amount of consensus between factors needed

Table 3: Benchmark problem results with varying degrees of DFEA consensus

| [DFEA-1 [DFEA-1/2 [DFEA-Full |

Sphere 22F — 09 (24E —10) | 3.1E —09 (45E —10) | L5E — 09 (L4E — 10)

% | Exponential | —4.7E =05 (3.65 — 06) | —1.0E+00 (2.1E —09) | —1.0E + 00 (0.0E + 00)
2| Schwefel 2.2FE 405 (4.9E+03) | 24E+05 (5.6E+03) | 2.5E+ 05 (6.3E + 03)
Z | Dixon-Price | 9.65+00 (1L8E+00) | 1.2E+00 (1.9E—01) | 1.2E 400 (1L.7E - 01)
£| Ackley’s 6.9E+00 (1.2E—01) | 3.1E—05(1.6E—06) | 2.3E— 05 (1.9E — 06)
@ | Rosenbrock | 4.8E+00 (27E—01) | 7.5E+00 (2.6E+00) | 6.8E + 00 (2.5E + 00)
Griewank 47E—02 (5b4E—03) | 41E—02 (L.7E—02) | 86E —02 (2.5E — 02)

to guarantee DFEA converges at a similar rate to DFEA-
Full. A related area of work involves investigating how some
of the other FEA and DFEA parameters affect the algorithm
performance. This includes looking at how to configure the
number of times factors should optimize their values before
competition and sharing are performed.

We also want to analyze the convergence properties of
FEA and DFEA. Currently, it is not known whether FEA
and DFEA are guaranteed of converging to a local optimum.
To accomplish this, we plan on using Van den Bergh and
Engelbrecht’s convergence proof for Cooperative PSO and
adapting it to FEA [17].

Finally, we plan to apply FEA and DFEA to a wider range
of optimization problems including more benchmark opti-
mization problems and other specific applications such as
3-SAT problems. This will help inform us as to what kind
of problems FEA and DFEA are effective at solving.

Acknowledgments

This project was supported by an NSF Research Experi-
ence for Undergraduates grant, CNS-1156475, of which both
Jenna Hoole and Benjamin Demeo were a part. We would
like to thank the members of the Numerical Intelligence Sys-
tem Laboratory (NISL) at MSU, in particular, Dr. Nathan
Fortier, Houston King, and Logan Perreault, for their advice
and ideas as this research progressed.

8. REFERENCES

[1] N. Fortier. Inference and Learning in Bayesian
Networks Using Overlapping Swarm Intelligence. PhD
thesis, Montana State University, 2015.

N. Fortier, J. Sheppard, and K. G. Pillai. Bayesian
abductive inference using overlapping swarm
intelligence. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS), pages 263-270, 2013.
N. Fortier, J. Sheppard, and S. Strasser. Abductive
inference in Bayesian networks using distributed
overlapping swarm intelligence. Soft Computing,
19(4):981-1001, 2014.

N. Fortier, J. Sheppard, and S. Strasser. Learning
Bayesian classifiers using overlapping swarm
intelligence. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS), 2015.

N. Fortier, J. Sheppard, and S. Strasser. Parameter
estimation in bayesian networks using overlapping
swarm intelligence. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO),
pages 9-16, 2015.

N. Fortier, J. W. Sheppard, and K. Pillai. DOSI:
training artificial neural networks using overlapping

2]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

12

swarm intelligence with local credit assignment. In
Joint 6th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 13th International
Symposium on Advanced Intelligent Systems (ISIS),
pages 1420-1425, 2012.

B. K. Haberman and J. W. Sheppard. Overlapping
particle swarms for energy-efficient routing in sensor
networks. Wireless Networks, 18(4):351-363, 2012.

K. James and E. Russell. Particle swarm optimization.
In Proceedings of the IEEE International Conference
on Neural Networks, pages 19421948, 1995.

M. Jamil and X. Yang. A literature survey of
benchmark functions for global optimization problems.
CoRR, abs/1308.4008, 2013.

T. Jones. Evolutionary algorithms, fitness landscapes
and search. PhD thesis, University of New Mexico,
Department of Computer Science, 1995.

S. A. Kauffman. The origins of order:
Self-organization and selection in evolution. Oxford
university press, 1993.

D. Koller and N. Friedman. Probabilistic Graphical
Models - Principles and Techniques. MIT Press, 2009.
J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann,
1988.

K. G. Pillai and J. Sheppard. Overlapping swarm
intelligence for training artificial neural networks. In
Proceedings of the IEEE Swarm Intelligence
Symposium (SIS), pages 1-8, 2011.

M. Scutari. Bayesian network repository, 2012.
http://www.bnlearn.com/bnrepository/.

S. Strasser, J. Sheppard, and N. Fortier. Factored
evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, Submitted 2015.

F. Van den Bergh and A. P. Engelbrecht. A
cooperative approach to particle swarm optimization.
IEEE Transactions on FEvolutionary Computation,
8(3):225-239, 2004.

K. Veeramachaneni, L. Osadciw, and G. Kamath.
Probabilistically driven particle swarms for
optimization of multi valued discrete problems: Design
and analysis. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS), pages 141-149, 2007.

